The Effects of Maternal Endocrinopathies and Exposure to Endocrine Disruptors During Pregnancy on the Fetus and Newborn
Abstract
1. Introduction
2. Obesity and Diabetes
3. Polycystic Ovarian Syndrome
4. Thyroid Disease
5. Cushing’s Syndrome
6. Endocrine Disruptors
7. Conclusions
8. Future Directions
9. Strengths and Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACOG | American College of Obstetricians and Gynecologists |
ACTH | Adrenocorticotropic Hormone |
ADA | American Diabetes Association |
ADHD | Attention-Deficit/Hyperactivity Disorder |
ALL | Acute Lymphoblastic Leukemia |
AMH | Anti-Mullerian Hormone |
ATDs | Thionamide Antithyroid Drugs |
BMI | Body Mass Index |
BPA | Bisphenol A |
CRH | Corticotropin-Releasing Hormone |
DKA | Diabetic Ketoacidosis |
DMNTs | DNA Methyltransferases |
DNA | Deoxyribonucleic Acid |
DOHaD | Developmental Origins of Health and Disease |
EDs | Endocrine Disruptors |
EDCs | Endocrine-Disrupting Chemicals |
ERs | Estrogen Receptors |
FGRs | Fetal Growth Restrictions |
GC-MS | Gas Chromatography-Mass Spectrometry |
GDM | Gestational Diabetes Mellitus |
GnRH | Gonadotropin-Releasing Hormone |
hCG | Human Chorionic Gonadotropin |
HPA | Hypothalamic-Pituitary-Adrenal |
hPL | Human Placental Lactogen |
HT | Hashimoto’s Thyroiditis |
IL6 | Interleukin 6 |
IUGR | Intrauterine Growth Restriction |
IQ | Intelligence Quotient |
LD | Linear Dichroism |
LGA | Large for Gestational Age |
miRNA | MicroRNA |
NCBI | National Center for Biotechnology Information |
NICE | National institute for Clinical Excellence |
NLRs | NOD-like receptors |
NIH | National Institute of Health |
PAEs | Phthalates |
PCBs | Polychlorinated Biphenyls |
PCOS | Polycystic Ovarian Syndrome |
PFASs | Polyfluoroalkyl Substances |
PPAR | Peroxisome Proliferator-Activated Receptor |
PTU | Propylthiouracil |
RXR | Retinoid X Receptor |
SMFM | Society of Maternal-Fetal Medicine |
T1D | Type 1 Diabetes |
T2D | Type 2 Diabetes |
TBG | Thyroxine-Binding Globulin |
TNF | Tumor Necrosis Factor |
TRABs | TSH Receptor Antibodies |
TSH | Thyroid Stimulating Hormone |
References
- Lubrano, C.; Parisi, F.; Cetin, I. Impact of Maternal Environment and Inflammation on Fetal Neurodevelopment. Antioxidants 2024, 13, 453. [Google Scholar] [CrossRef] [PubMed]
- Möllers, L.S.; Yousuf, E.I.; Hamatschek, C.; Morrison, K.M.; Hermanussen, M.; Fusch, C.; Rochow, N. Metabolic-Endocrine Disruption Due to Preterm Birth Impacts Growth, Body Composition, and Neonatal Outcome. Pediatr. Res. 2022, 91, 1350–1360. [Google Scholar] [CrossRef] [PubMed]
- Şanlı, E.; Kabaran, S. Maternal Obesity, Maternal Overnutrition and Fetal Programming: Effects of Epigenetic Mechanisms on the Development of Metabolic Disorders. Curr. Genom. 2019, 20, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, P.; Morriseau, T.S.; Kereliuk, S.M.; Doucette, C.A.; Wicklow, B.A.; Dolinsky, V.W. Maternal Obesity, Diabetes during Pregnancy and Epigenetic Mechanisms That Influence the Developmental Origins of Cardiometabolic Disease in the Offspring. Crit. Rev. Clin. Lab. Sci. 2018, 55, 71–101. [Google Scholar] [CrossRef]
- Eitmann, S.; Mátrai, P.; Németh, D.; Hegyi, P.; Lukács, A.; Bérczi, B.; Czumbel, L.M.; Kiss, I.; Gyöngyi, Z.; Varga, G.; et al. Maternal Overnutrition Elevates Offspring’s Blood Pressure—A Systematic Review and Meta-analysis. Paediatr. Perinat. Epidemiol. 2022, 36, 276–287. [Google Scholar] [CrossRef]
- Bapayeva, G.; Terzic, S.; Dotlic, J.; Togyzbayeva, K.; Bugibaeva, U.; Mustafinova, M.; Alisheva, A.; Garzon, S.; Terzic, M.; Laganà, A.S. Pregnancy Outcomes in Women with Diabetes Mellitus—The Impact of Diabetes Type and Treatment. Menopausal Rev. 2022, 21, 37–46. [Google Scholar] [CrossRef]
- Maulik, D.; Chuy, V.; Kumar, S. Preexisting Thyroid Disease in Pregnancy: A Brief Overview. Mo. Med. 2022, 119, 360–365. [Google Scholar]
- Rolfo, A.; Nuzzo, A.M.; De Amicis, R.; Moretti, L.; Bertoli, S.; Leone, A. Fetal–Maternal Exposure to Endocrine Disruptors: Correlation with Diet Intake and Pregnancy Outcomes. Nutrients 2020, 12, 1744. [Google Scholar] [CrossRef]
- Pattnaik, L.; Naaz, S.A.; Das, B.; Dash, P.; Pattanaik, M. Adverse Pregnancy Outcome in Polycystic Ovarian Syndrome: A Comparative Study. Cureus 2022, 14, e25790. [Google Scholar] [CrossRef]
- Kyriakos, G.; Farmaki, P.; Voutyritsa, E.; Patsouras, A.; Quiles-Sánchez, L.V.; Damaskos, C.; Stelianidi, A.; Pastor-Alcaraz, A.; Palomero-Entrenas, P.; Diamantis, E. Cushing’s Syndrome in Pregnancy: A Review of Reported Cases. Endokrynol. Pol. 2021, 72, 64–72. [Google Scholar] [CrossRef]
- Pourali, L.; Vatanchi, A.M.; Hamidi, A. A Case of Cushing’s Syndrome in Pregnancy. Iran. J. Med. Sci. 2017, 42, 607–610. [Google Scholar]
- Cholekho, S.; Liu, Y.; Tan, H. Cushing’s syndrome during pregnancy—Two case reports. Front. Endocrinol. 2024, 15, 1326496. [Google Scholar] [CrossRef]
- Kitsiou-Tzeli, S.; Tzetis, M. Maternal epigenetics and fetal and neonatal growth. Curr. Opin. Endocrinol. Diabetes Obes. 2017, 24, 43–46. [Google Scholar] [CrossRef]
- Dolinoy, D.C.; Das, R.; Weidman, J.R.; Jirtle, R.L. Metastable Epialleles, Imprinting, and the Fetal Origins of Adult Diseases. Pediatr. Res. 2007, 61, 30R–37R. [Google Scholar] [CrossRef]
- Itoh, M.; Hata, A.; Nishigori, H.; Yamada, T.; Minakami, H. A Half-Century History of Nutritional Guidance for Pregnant Women in Japan: A Promising Research Target of the DOHaD Study. Front. Endocrinol. 2022, 13, 942256. [Google Scholar] [CrossRef]
- Lacagnina, S. The Developmental Origins of Health and Disease (DOHaD). Am. J. Lifestyle Med. 2019, 14, 47–50. [Google Scholar] [CrossRef]
- Mikołajewska, K.; Stragierowicz, J.; Gromadzińska, J. Bisphenol A—Application, Sources of Exposure and Potential Risks in Infants, Children and Pregnant Women. Int. J. Occup. Med. Environ. Health 2015, 28, 209–241. [Google Scholar] [CrossRef]
- World Health Organization. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 18 June 2025).
- He, F.; Berg, A.; Imamura Kawasawa, Y.; Bixler, E.O.; Fernandez-Mendoza, J.; Whitsel, E.A.; Liao, D. Association between DNA methylation in obesity-related genes and body mass index percentile in adolescents. Sci. Rep. 2019, 9, 2079. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.; Selvaraju, V.; Babu, J.R.; Geetha, T. Association of the DNA Methylation of Obesity-Related Genes with the Dietary Nutrient Intake in Children. Nutrients 2023, 15, 2840. [Google Scholar] [CrossRef] [PubMed]
- Samblas, M.; Milagro, F.I.; Martínez, A. DNA Methylation Markers in Obesity, Metabolic Syndrome, and Weight Loss. Epigenetics 2019, 14, 421–444. [Google Scholar] [CrossRef] [PubMed]
- Amorín, R.; Liu, L.; Moriel, P.; DiLorenzo, N.; Lancaster, P.A.; Peñagaricano, F. Maternal Diet Induces Persistent DNA Methylation Changes in the Muscle of Beef Calves. Sci. Rep. 2023, 13, 1587. [Google Scholar] [CrossRef]
- Baccarelli, A.; Bollati, V. Epigenetics and Environmental Chemicals. Curr. Opin. Pediatr. 2009, 21, 243–251. [Google Scholar] [CrossRef]
- Muhlhausler, B.S.; Adam, C.L.; Findlay, P.A.; Duffield, J.A.; McMillen, I.C. Increased Maternal Nutrition Alters Development of the Appetite-Regulating Network in the Brain. FASEB J. 2006, 20, E556–E565. [Google Scholar] [CrossRef] [PubMed]
- Brion, M.-J.A.; Ness, A.R.; Rogers, I.; Emmett, P.; Cribb, V.; Davey Smith, G.; Lawlor, D.A. Maternal Macronutrient and Energy Intakes in Pregnancy and Offspring Intake at 10 y: Exploring Parental Comparisons and Prenatal Effects. Am. J. Clin. Nutr. 2010, 91, 748–756. [Google Scholar] [CrossRef] [PubMed]
- Lawlor, D.A.; Smith, G.D.; O’Callaghan, M.; Alati, R.; Mamun, A.A.; Williams, G.M.; Najman, J.M. Epidemiologic Evidence for the Fetal Overnutrition Hypothesis: Findings from the Mater-University Study of Pregnancy and Its Outcomes. Am. J. Epidemiol. 2006, 165, 418–424. [Google Scholar] [CrossRef] [PubMed]
- Dosch, N.C.; Guslits, E.F.; Weber, M.B.; Murray, S.E.; Ha, B.; Coe, C.L.; Auger, A.P.; Kling, P.J. Maternal Obesity Affects Inflammatory and Iron Indices in Umbilical Cord Blood. J. Pediatr. 2016, 172, 20–28. [Google Scholar] [CrossRef]
- Howell, K.R.; Powell, T.L. Effects of Maternal Obesity on Placental Function and Fetal Development. Reproduction 2017, 153, R97–R108. [Google Scholar] [CrossRef]
- Cho, W.K.; Suh, B.-K. Catch-Up Growth and Catch-Up Fat in Children Born Small for Gestational Age. Korean J. Pediatr. 2016, 59, 1–7. [Google Scholar] [CrossRef]
- Ornoy, A.; Becker, M.; Weinstein-Fudim, L.; Ergaz, Z. Diabetes during Pregnancy: A Maternal Disease Complicating the Course of Pregnancy with Long-Term Deleterious Effects on the Offspring. A Clin. Review. Int. J. Mol. Sci. 2021, 22, 2965. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, B.; Sun, Y.; Du, Y.; Santillan, M.K.; Santillan, D.A.; Snetselaar, L.G.; Bao, W. Association of Maternal Prepregnancy Diabetes and Gestational Diabetes Mellitus with Congenital Anomalies of the Newborn. Diabetes Care 2020, 43, 2983–2990. [Google Scholar] [CrossRef]
- Beta, J.; Khan, N.; Khalil, A.; Fiolna, M.; Ramadan, G.; Akolekar, R. Maternal and Neonatal Complications of Fetal Macrosomia: Systematic Review and Meta-Analysis. Ultrasound Obstet. Gynecol. 2019, 54, 308–318. [Google Scholar] [CrossRef]
- Depla, A.L.; De Wit, L.; Steenhuis, T.J.; Slieker, M.G.; Voormolen, D.N.; Scheffer, P.G.; De Heus, R.; Van Rijn, B.B.; Bekker, M.N. Effect of Maternal Diabetes on Fetal Heart Function on Echocardiography: Systematic Review and Meta-Analysis. Ultrasound Obstet. Gynecol. 2021, 57, 539–550. [Google Scholar] [CrossRef] [PubMed]
- Stene, L.C.; Norris, J.M.; Rewers, M.J. Risk Factors for Type 1 Diabetes. In Diabetes in America [Internet]; Lawrence, J.M., Casagrande, S.S., Herman, W.H., Cowie, C.C., Eds.; National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK): Bethesda, MD, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK597412/ (accessed on 17 June 2025).
- McDonnell, R.; Hart, R.J. Pregnancy-Related Outcomes for Women with Polycystic Ovary Syndrome. Women’s Health 2017, 13, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, K.; Saha, I.; Sen, D.; Bose, C.; Chaudhuri, G.R.; Dutta, S.; Sengupta, P.; Bhattacharya, S.; Barman, S.S.; Syamal, A.K. Role of Anti-Müllerian Hormone in Polycystic Ovary Syndrome. Middle East Fertil. Soc. J. 2022, 27, 32. [Google Scholar] [CrossRef]
- Palomba, S.; de Wilde, M.A.; Falbo, A.; Koster, M.P.H.; La Sala, G.B.; Fauser, B.C.J.M. Pregnancy Complications in Women with Polycystic Ovary Syndrome. Hum. Reprod. Update 2015, 21, 575–592. [Google Scholar] [CrossRef]
- de Wilde, M.A.; Veltman-Verhulst, S.M.; Goverde, A.J.; Lambalk, C.B.; Laven, J.S.E.; Franx, A.; Koster, M.P.H.; Eijkemans, M.J.C.; Fauser, B.C.J.M. Preconception Predictors of Gestational Diabetes: A Multicentre Prospective Cohort Study on the Predominant Complication of Pregnancy in Polycystic Ovary Syndrome. Hum. Reprod. 2014, 29, 1327–1336. [Google Scholar] [CrossRef]
- Yu, H.-F.; Chen, H.-S.; Rao, D.-P.; Gong, J. Association Between Polycystic Ovary Syndrome and the Risk of Pregnancy Complications. Medicine 2016, 95, e4863. [Google Scholar] [CrossRef]
- Vanky, E.; Engen Hanem, L.G.; Abbott, D.H. Children Born to Women with Polycystic Ovary Syndrome—Short- and Long-Term Impacts on Health and Development. Fertil. Steril. 2019, 111, 1065–1075. [Google Scholar] [CrossRef]
- da Silva, B.S.; Grevet, E.H.; Silva, L.C.F.; Ramos, J.K.N.; Rovaris, D.L.; Bau, C.H.D. An Overview on Neurobiology and Therapeutics of Attention-Deficit/Hyperactivity Disorder. Discov. Ment. Health 2023, 3, 2. [Google Scholar] [CrossRef]
- Cesta, C.E.; Öberg, A.S.; Ibrahimson, A.; Yusuf, I.; Larsson, H.; Almqvist, C.; D’Onofrio, B.M.; Bulik, C.M.; Fernández de la Cruz, L.; Mataix-Cols, D.; et al. Maternal Polycystic Ovary Syndrome and Risk of Neuropsychiatric Disorders in Offspring: Prenatal Androgen Exposure or Genetic Confounding? Psychol. Med. 2020, 50, 616–624. [Google Scholar] [CrossRef]
- Chen, X.; Kong, L.; Piltonen, T.T.; Gissler, M.; Lavebratt, C. Association of Polycystic Ovary Syndrome or Anovulatory Infertility with Offspring Psychiatric and Mild Neurodevelopmental Disorders: A Finnish Population-Based Cohort Study. Hum. Reprod. 2020, 35, 2336–2347. [Google Scholar] [CrossRef]
- Dubey, P.; Thakur, B.; Rodriguez, S.; Cox, J.; Sanchez, S.; Fonseca, A.; Reddy, S.; Clegg, D.; Dwivedi, A.K. A Systematic Review and Meta-Analysis of the Association Between Maternal Polycystic Ovary Syndrome and Neuropsychiatric Disorders in Children. Transl. Psychiatry 2021, 11, 569. [Google Scholar] [CrossRef]
- Berni, T.R.; Morgan, C.L.; Berni, E.R.; Rees, D.A. Polycystic Ovary Syndrome Is Associated with Adverse Mental Health and Neurodevelopmental Outcomes. J. Clin. Endocrinol. Metab. 2018, 103, 2116–2125. [Google Scholar] [CrossRef] [PubMed]
- Raperport, C.; Chronopoulou, E.; Homburg, R. Effects of Metformin Treatment on Pregnancy Outcomes in Patients with Polycystic Ovary Syndrome. Expert. Rev. Endocrinol. Metab. 2021, 16, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, R.S.; Loeken, M.R. Metformin Use in Pregnancy: Promises and Uncertainties. Diabetologia 2017, 60, 1612–1619. [Google Scholar] [CrossRef] [PubMed]
- Merck Glucophage®: Oral Diabetes Treatment. Available online: https://www.merckgroup.com/en/news/glucophage-oral-diabetes-treatment-28-02-2022.html (accessed on 18 June 2025).
- Brand, K.M.G.; Saarelainen, L.; Sonajalg, J.; Boutmy, E.; Foch, C.; Vääräsmäki, M.; Morin-Papunen, L.; Schlachter, J.; Hakkarainen, K.M.; Korhonen, P. Metformin in Pregnancy and Risk of Adverse Long-Term Outcomes: A Register-Based Cohort Study. BMJ Open Diabetes Res. Care 2022, 10, e002363. [Google Scholar] [CrossRef]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Hilliard, M.E.; Isaacs, D.; Johnson, E.L.; et al. 15. Management of Diabetes in Pregnancy: Standards of Care in Diabetes—2023. Diabetes Care 2023, 46, S254–S266. [Google Scholar] [CrossRef]
- American College of Obstetricians and Gynecologists. Practice Bulletin No. 180: Gestational Diabetes Mellitus. Obstet. Gynecol. 2017, 130, e17–e37. [Google Scholar] [CrossRef]
- Barbour, L.A.; Scifres, C.; Valent, A.M.; Friedman, J.E.; Buchanan, T.A.; Coustan, D.; Aagaard, K.; Thornburg, K.L.; Catalano, P.M.; Galan, H.L.; et al. A Cautionary Response to SMFM Statement: Pharmacological Treatment of Gestational Diabetes. Am. J. Obstet. Gynecol. 2018, 219, 367.e1–367.e7. [Google Scholar] [CrossRef]
- National Institute for Health and Care Excellence. Diabetes in Pregnancy: Management of Diabetes and Its Complications from Preconception to the Postnatal Period [Internet]; NICE: London, UK, 2015; Available online: https://www.nice.org.uk/guidance/ng3 (accessed on 17 June 2025).
- Eyal, S.; Easterling, T.R.; Carr, D.; Umans, J.G.; Miodovnik, M.; Hankins, G.D.; Clark, S.M.; Risler, L.; Wang, J.; Kelly, E.J.; et al. Pharmacokinetics of Metformin during Pregnancy. Drug Metab. Dispos. 2010, 38, 833–840. [Google Scholar] [CrossRef]
- Abolhassani, N.; Winterfeld, U.; Kaplan, Y.C.; Jaques, C.; Minder Wyssmann, B.; Del Giovane, C.; Panchaud, A. Major Malformations Risk Following Early Pregnancy Exposure to Metformin: A Systematic Review and Meta-Analysis. BMJ Open Diabetes Res. Care 2023, 11, e002919. [Google Scholar] [CrossRef] [PubMed]
- Nilsen, G.Ø.; Simpson, M.R.; Hanem, L.G.E.; Løvvik, T.S.; Ødegård, R.; Stokkeland, L.M.T.; Andersen, M.S.; Juliusson, P.B.; Vanky, E. Anthropometrics of Neonates Born to Mothers with PCOS with Metformin or Placebo Exposure In Utero. Acta Obstet. Gynecol. Scand. 2024, 103, 176–187. [Google Scholar] [CrossRef] [PubMed]
- Tarry-Adkins, J.L.; Aiken, C.E.; Ozanne, S.E. Neonatal, Infant, and Childhood Growth Following Metformin versus Insulin Treatment for Gestational Diabetes: A Systematic Review and Meta-Analysis. PLoS Med. 2019, 16, e1002848. [Google Scholar] [CrossRef]
- Tarry-Adkins, J.L.; Ozanne, S.E.; Aiken, C.E. Impact of Metformin Treatment during Pregnancy on Maternal Outcomes: A Systematic Review/Meta-Analysis. Sci. Rep. 2021, 11, 9240. [Google Scholar] [CrossRef]
- Chesire, J.; Garg, A.; Smith, P.; Devall, A.J.; Coomarasamy, A.; Dhillon Smith, R.K. Preconception and First Trimester Metformin on Pregnancy Outcomes in Women with Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. Am. J. Obstet. Gynecol. 2025; in press. [Google Scholar] [CrossRef]
- Mimouni, N.E.H.; Paiva, I.; Barbotin, A.L.; Timzoura, F.E.; Plassard, D.; Le Gras, S.; Ternier, G.; Pigny, P.; Catteau-Jonard, S.; Simon, V.; et al. Polycystic Ovary Syndrome Is Transmitted via a Transgenerational Epigenetic Process. Cell Metab. 2021, 33, 513–530.e8. [Google Scholar] [CrossRef]
- Chen, D.W.; Yeh, M.W. Disparities in Thyroid Care. Endocrinol. Metab. Clin. N. Am. 2022, 51, 229–241. [Google Scholar] [CrossRef]
- Abadi, K.K.; Jama, A.H.; Legesse, A.Y.; Gebremichael, A.K. Prevalence of Hypothyroidism in Pregnancy and Its Associations with Adverse Pregnancy Outcomes Among Pregnant Women in a General Hospital: A Cross-Sectional Study. Int. J. Womens Health 2023, 15, 1481–1490. [Google Scholar] [CrossRef]
- Sullivan, S.A. Hypothyroidism in Pregnancy. Clin. Obstet. Gynecol. 2019, 62, 308–319. [Google Scholar] [CrossRef]
- Sahay, R.; Nagesh, V.S. Hypothyroidism in Pregnancy. Indian J. Endocrinol. Metab. 2012, 16, 364. [Google Scholar] [CrossRef]
- Springer, D.; Jiskra, J.; Limanova, Z.; Zima, T.; Potlukova, E. Thyroid in Pregnancy: From Physiology to Screening. Crit. Rev. Clin. Lab. Sci. 2017, 54, 102–116. [Google Scholar] [CrossRef]
- Huget-Penner, S.; Feig, D.S. Maternal Thyroid Disease and Its Effects on the Fetus and Perinatal Outcomes. Prenat. Diagn. 2020, 40, 1077–1084. [Google Scholar] [CrossRef]
- Kazakou, P.; Theodora, M.; Kanaka-Gantenbein, C.; Zapanti, E.; Bouza, H.; Petropoulou, C.; Daskalakis, G.; Paschou, S.A.; Anastasiou, E. Fetal Hyperthyroidism Associated with Maternal Thyroid Autoantibodies: A Case Report. Case Rep. Womens Health 2018, 20, e00081. [Google Scholar] [CrossRef] [PubMed]
- Fumarola, A.; Di Fiore, A.; Dainelli, M.; Grani, G.; Carbotta, G.; Calvanese, A. Therapy of Hyperthyroidism in Pregnancy and Breastfeeding. Obstet. Gynecol. Surv. 2011, 66, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Tsakiridis, I.; Giouleka, S.; Kourtis, A.; Mamopoulos, A.; Athanasiadis, A.; Dagklis, T. Thyroid Disease in Pregnancy: A Descriptive Review of Guidelines. Obstet. Gynecol. Surv. 2022, 77, 45–62. [Google Scholar] [CrossRef] [PubMed]
- Hakami, O.A.; Ahmed, S.; Karavitaki, N. Epidemiology and Mortality of Cushing’s Syndrome. Best Pract. Res. Clin. Endocrinol. Metab. 2021, 35, 101521. [Google Scholar] [CrossRef]
- Hamblin, R.; Coulden, A.; Fountas, A.; Karavitaki, N. The Diagnosis and Management of Cushing’s Syndrome in Pregnancy. J. Neuroendocr. 2022, 34, e13118. [Google Scholar] [CrossRef]
- Caimari, F.; Valassi, E.; Garbayo, P.; Steffensen, C.; Santos, A.; Corcoy, R.; Webb, S.M. Cushing’s Syndrome and Pregnancy Outcomes: A Systematic Review of Published Cases. Endocrine 2017, 55, 555–563. [Google Scholar] [CrossRef]
- Luger, A.; Broersen, L.H.A.; Biermasz, N.R.; Biller, B.M.K.; Buchfelder, M.; Chanson, P.; Jorgensen, J.O.L.; Kelestimur, F.; Llahana, S.; Maiter, D.; et al. ESE Clinical Practice Guideline on Functioning and Nonfunctioning Pituitary Adenomas in Pregnancy. Eur. J. Endocrinol. 2021, 185, G1–G33. [Google Scholar] [CrossRef]
- Sridharan, K.; Sahoo, J.; Palui, R.; Patil, M.; Kamalanathan, S.; Ramesh, A.S.; Kubera, N.S. Diagnosis and Treatment Outcomes of Cushing’s Disease during Pregnancy. Pituitary 2021, 24, 670–680. [Google Scholar] [CrossRef]
- Hunt, A.B.; McConahey, W.M. Pregnancy Associated with Diseases of the Adrenal Glands. Am. J. Obstet. Gynecol. 1953, 66, 970–987. [Google Scholar] [CrossRef] [PubMed]
- Brue, T.; Amodru, V.; Castinetti, F. Management of Endocrine Disease: Management of Cushing’s Syndrome during Pregnancy: Solved and Unsolved Questions. Eur. J. Endocrinol. 2018, 178, R259–R266. [Google Scholar] [CrossRef] [PubMed]
- Duthie, L.; Reynolds, R.M. Changes in the Maternal Hypothalamic-Pituitary-Adrenal Axis in Pregnancy and Postpartum: Influences on Maternal and Fetal Outcomes. Neuroendocrinology 2013, 98, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Jung, C.; Ho, J.T.; Torpy, D.J.; Rogers, A.; Doogue, M.; Lewis, J.G.; Czajko, R.J.; Inder, W.J. A Longitudinal Study of Plasma and Urinary Cortisol in Pregnancy and Postpartum. J. Clin. Endocrinol. Metab. 2011, 96, 1533–1540. [Google Scholar] [CrossRef]
- Thomson, M. The Physiological Roles of Placental Corticotropin Releasing Hormone in Pregnancy and Childbirth. J. Physiol. Biochem. 2013, 69, 559–573. [Google Scholar] [CrossRef]
- Machado, M.C.; Fragoso, M.C.B.V.; Bronstein, M.D. Pregnancy in Patients with Cushing’s Syndrome. Endocrinol. Metab. Clin. N. Am. 2018, 47, 441–449. [Google Scholar] [CrossRef]
- Bronstein, M.D.; Machado, M.C.; Fragoso, M.C.B.V. Management of Endocrine Disease: Management of Pregnant Patients with Cushing’s Syndrome. Eur. J. Endocrinol. 2015, 173, R85–R91. [Google Scholar] [CrossRef]
- World Health Organization. State of the Science of Endocrine Disrupting Chemicals. Available online: https://www.who.int/publications/i/item/state-of-the-science-of-endocrine-disrupting-chemicals (accessed on 17 June 2025).
- Chen, Y.; Xiao, H.; Namat, A.; Liu, J.; Ruan, F.; Xu, S.; Li, R.; Xia, W. Association between Trimester-Specific Exposure to Thirteen Endocrine Disrupting Chemicals and Preterm Birth: Comparison of Three Statistical Models. Sci. Total Environ. 2022, 851, 158236. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, H.; Wu, J.; Yuan, L.; Wang, Y.; Du, X.; Wang, R.; Marwa, P.W.; Petlulu, P.; Chen, X.; et al. The Adverse Health Effects of Bisphenol A and Related Toxicity Mechanisms. Environ. Res. 2019, 176, 108575. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, J.; Wei, Y.; Chen, J.; Kang, L.; Long, C.; Wu, S.; Shen, L.; Wei, G. Contribution of Prenatal Endocrine-Disrupting Chemical Exposure to Genital Anomalies in Males: The Pooled Results from Current Evidence. Chemosphere 2022, 286, 131844. [Google Scholar] [CrossRef]
- Toledano, J.M.; Puche-Juarez, M.; Moreno-Fernandez, J.; Gonzalez-Palacios, P.; Rivas, A.; Ochoa, J.J.; Diaz-Castro, J. Implications of Prenatal Exposure to Endocrine-Disrupting Chemicals in Offspring Development: A Narrative Review. Nutrients 2024, 16, 1556. [Google Scholar] [CrossRef]
- Hajjar, R.; Hatoum, S.; Mattar, S.; Moawad, G.; Ayoubi, J.M.; Feki, A.; Ghulmiyyah, L. Endocrine Disruptors in Pregnancy: Effects on Mothers and Fetuses—A Review. J. Clin. Med. 2024, 13, 5549. [Google Scholar] [CrossRef]
- Leclerc, F.; Dubois, M.-F.; Aris, A. Maternal, Placental and Fetal Exposure to Bisphenol A in Women with and without Preeclampsia. Hypertens. Pregnancy 2014, 33, 341–348. [Google Scholar] [CrossRef]
- Cantonwine, D.E.; Meeker, J.D.; Ferguson, K.K.; Mukherjee, B.; Hauser, R.; McElrath, T.F. Urinary Concentrations of Bisphenol A and Phthalate Metabolites Measured during Pregnancy and Risk of Preeclampsia. Environ. Health Perspect. 2016, 124, 1651–1655. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Kang, B.S.; Kim, O.; Won, S.; Kim, H.S.; Wie, J.H.; Shin, J.E.; Choi, S.K.; Jo, Y.S.; Kim, Y.H.; et al. The Associations between Maternal and Fetal Exposure to Endocrine-Disrupting Chemicals and Asymmetric Fetal Growth Restriction: A Prospective Cohort Study. Front. Public Health 2024, 12, 1351786. [Google Scholar] [CrossRef] [PubMed]
- Alavian-Ghavanini, A.; Rüegg, J. Understanding Epigenetic Effects of Endocrine Disrupting Chemicals: From Mechanisms to Novel Test Methods. Basic Clin. Pharmacol. Toxicol. 2018, 122, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Akanbi, C.A.; Rotimi, D.E.; Ojo, A.B.; Ojo, O.A. Endocrine-Disrupting Chemicals (EDCs) and Epigenetic Regulation in Embryonic Development: Mechanisms, Impacts, and Emerging Trends. Toxicol. Rep. 2025, 14, 101885. [Google Scholar] [CrossRef]
- Kurşunoğlu, N.E.; Sarer Yurekli, B.P. Endocrine Disruptor Chemicals as Obesogen and Diabetogen: Clinical and Mechanistic Evidence. World J. Clin. Cases 2022, 10, 11226–11239. [Google Scholar] [CrossRef]
- Li, D.; Suh, S. Health Risks of Chemicals in Consumer Products: A Review. Environ. Int. 2019, 123, 580–587. [Google Scholar] [CrossRef]
- Dalkan, C.; Uncu, M.; Duran, S.; Bahçeciler, N.N. Association of Cord Blood Bisphenol A (BPA) with Cord Blood Adiponectin, Leptin, Fetal Growth; Adiposity and Neonatal Complications in a Newborn Cohort. J. Matern. Fetal Neonatal Med. 2020, 33, 2588–2593. [Google Scholar] [CrossRef]
- Legeay, S.; Faure, S. Is Bisphenol A an Environmental Obesogen? Fundam. Clin. Pharmacol. 2017, 31, 594–609. [Google Scholar] [CrossRef] [PubMed]
- Castillo, L.Y.; Ríos-Carrillo, J.; González-Orozco, J.C.; Camacho-Arroyo, I.; Morin, J.-P.; Zepeda, R.C.; Roldán-Roldán, G. Juvenile Exposure to BPA Alters the Estrous Cycle and Differentially Increases Anxiety-like Behavior and Brain Gene Expression in Adult Male and Female Rats. Toxics 2022, 10, 513. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Lee, H.K.; Kong, A.P.S.; Lim, L.L.; Cai, Z.; Chung, A.C.K. Early-Life Exposure to Endocrine Disrupting Chemicals Associates with Childhood Obesity. Ann. Pediatr. Endocrinol. Metab. 2018, 23, 182–195. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Lehmler, H.-J.; Sun, Y.; Xu, G.; Sun, Q.; Snetselaar, L.G.; Wallace, R.B.; Bao, W. Association of Bisphenol A and Its Substitutes, Bisphenol F and Bisphenol S, with Obesity in United States Children and Adolescents. Diabetes Metab. J. 2019, 43, 59–75. [Google Scholar] [CrossRef]
- Mustieles, V.; Casas, M.; Ferrando-Marco, P.; Ocón-Hernández, O.; Reina-Pérez, I.; Rodríguez-Carrillo, A.; Vela-Soria, F.; Pérez-Lobato, R.; Navarrete-Muñoz, E.M.; Freire, C.; et al. Bisphenol A and Adiposity Measures in Peripubertal Boys from the INMA-Granada Cohort. Environ. Res. 2019, 173, 443–451. [Google Scholar] [CrossRef]
- Neri, C.; Edlow, A.G. Effects of Maternal Obesity on Fetal Programming: Molecular Approaches. Cold Spring Harb. Perspect. Med. 2016, 6, a026591. [Google Scholar] [CrossRef]
- Chevalier, N.; Fénichel, P. Bisphenol A: Targeting Metabolic Tissues. Rev. Endocr. Metab. Disord. 2015, 16, 299–309. [Google Scholar] [CrossRef]
- Liu, B.; Lu, X.; Jiang, A.; Lv, Y.; Zhang, H.; Xu, B. Influence of Maternal Endocrine Disrupting Chemicals Exposure on Adverse Pregnancy Outcomes: A Systematic Review and Meta-Analysis. Ecotoxicol. Environ. Saf. 2024, 270, 115851. [Google Scholar] [CrossRef]
Endocrinopathy (Study/Sources) | Time of Onset | Effects in Pregnancy | Maternal Complication | Fetal Complication | Management |
---|---|---|---|---|---|
Obesity Sanli et al. [3], Agarwal et al. [4], Howell et al. [28], Yang et al. [98]. | Pre-existing | Increased insulin resistance Metabolic signaling pathway disruptions | Increased risk of GDM Pre-eclampsia Placental dysfunction | LGA Epigenetic modifications Growth restriction | Increase physical activity (at least 30 min/day of moderate exercise). Introduce a balanced diet: a variety of nutrient-rich foods, focusing on fruits, vegetables, whole grains, lean protein, and low-fat or fat-free dairy. Limit intake of saturated and trans fats, sodium, and added sugars. |
Diabetes Agarwal et al. [4], Bapayeva et al. [6], Howell et al. [28], Wu et al. [31], NICE [53]. | Pre-existing or the 2nd half of pregnancy | Increased insulin resistance | Nephropathy, retinopathy, DKA Pre-eclampsia | Congenital malformations Macrosomia, perinatal death, neonatal hypoglycemia | Adequate glycemic control in the first trimester. Multidisciplinary surveillance and an adequate plan for delivery. |
PCOS Pattnaik et al. [9], Yu et al. [39], NICE [53]. | Pre-existing | Increased risk of insulin resistance, obesity, and metabolic abnormalities | Higher incidences of spontaneous abortion, preterm birth, and GDM Pregnancy-induced hypertension | Increased risk of perinatal death | Metformin use to improve outcomes. Frequent and timely antenatal care |
Thyroid Diseases Maulik et al. [7], Huget-Penner et al. [66], Tsakiridis et al. [69]. | Pre-existing | Increased TSH hypothyroidism | Elevated risk of pre-eclampsia | Increased risks of low birth weight, premature delivery, and hypertension Fetal growth restriction and fetal goiter | Transition to non-teratogenic medication and individualized treatment plans. Monitoring thyroid values. |
Cushing’s Disease Cholekho et al. [12], Hakami et al. [70], Caimari et al. [72], Luger et al. [73], Bronstein et al. [81]. | Pre-existing, very rare in pregnancy | Impaired glucose tolerance, adrenal insufficiency, and hypercortisolism | Spontaneous abortion and premature birth | Fetal growth restrictions, respiratory distress, and fetal death | Parental counseling and close monitoring of cortisol levels. |
EDCs (Bisphenol A) Rolfo et al. [8], WHO [82], Toledano et al. [86], Leclerc et al. [88], Cantonwine et al. [89], Hong et al. [90]. | Exposure during pregnancy | Hormonal disruption Decrease in micronutrient supply | Increased disposition for pre-eclampsia Preterm birth | Placental dysfunction Developmental abnormalities | Careful diet and planning involving selecting seasonal produce and proper cooking and storage |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fox, R.; Akinboro, S.; Kędzia, A.; Niechciał, E. The Effects of Maternal Endocrinopathies and Exposure to Endocrine Disruptors During Pregnancy on the Fetus and Newborn. Biomedicines 2025, 13, 1965. https://doi.org/10.3390/biomedicines13081965
Fox R, Akinboro S, Kędzia A, Niechciał E. The Effects of Maternal Endocrinopathies and Exposure to Endocrine Disruptors During Pregnancy on the Fetus and Newborn. Biomedicines. 2025; 13(8):1965. https://doi.org/10.3390/biomedicines13081965
Chicago/Turabian StyleFox, Ruth, Su’ad Akinboro, Andrzej Kędzia, and Elżbieta Niechciał. 2025. "The Effects of Maternal Endocrinopathies and Exposure to Endocrine Disruptors During Pregnancy on the Fetus and Newborn" Biomedicines 13, no. 8: 1965. https://doi.org/10.3390/biomedicines13081965
APA StyleFox, R., Akinboro, S., Kędzia, A., & Niechciał, E. (2025). The Effects of Maternal Endocrinopathies and Exposure to Endocrine Disruptors During Pregnancy on the Fetus and Newborn. Biomedicines, 13(8), 1965. https://doi.org/10.3390/biomedicines13081965