Impact of Perioperative Antibiotic Prophylaxis in Caesarean Section on the Maternal Gut Microbiome: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
- Population (P): mothers undergoing Caesarean section,
- Intervention (I): perioperative antibiotic prophylaxis with cefuroxime or other beta-lactams,
- Comparison (C): no antibiotic intervention or alternative timing/regimen,
- Outcome (O): changes in maternal gut microbiome, specifically alpha- or beta-diversity metrics assessed by molecular techniques (e.g., 16S rRNA or shotgun sequencing).
3. Results
3.1. Overview of Included Studies
3.2. Alpha-Diversity Metrics
3.3. Beta-Diversity Metrics
3.4. Reported Antibiotic Regimen
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANOSIM | Analysis of Similarities |
ASV | Amplicon Sequencing Variant |
CS | Caesarean section |
IAP | intrapartum antibiotic prophylaxis |
ICTRP | International Clinical Trials Registry Platform |
IV | intravenously |
IQR | Interquartile Range |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
KO | KEGG Ortholog |
MECIR | Methodological Expectations of Cochrane Intervention Reviews |
NGS | Next-Generation Sequencing |
OTU | Operational Taxonomic Unit |
PAP | Perioperative Antibiotic Prophylaxis |
PERMANOVA | Permutational Multivariate Analysis of Variance |
PICO | Population, Intervention, Comparison, Outcome |
PCoA | Principal Coordinates Analysis |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
RoB | Risk of Bias |
SE | Standard Error |
SSI | Surgical Site Infection |
SWiM | Synthesis Without Meta-Analysis |
VD | Vaginal Delivery |
WHO | World Health Organization |
References
- World Health Organization Human Reproduction Programme. WHO Recommendation on Prophylactic Antibiotics for Women Undergoing Caesarean Section; World Health Organization Human Reproduction Programme: Geneva, Switzerland, 2021. [Google Scholar]
- Keenan, L.; Noble, E. Caesarean Section Rates Continue to Rise, Amid Growing Inequalities in Access: Rising Rates Suggest Increasing Numbers of Medically Unnecessary, Potentially Harmful Procedures. Available online: https://www.who.int/news/item/16-06-2021-caesarean-section-rates-continue-to-rise-amid-growing-inequalities-in-access (accessed on 15 November 2022).
- World Health Organization (WHO). Global Guidelines for the Prevention of Surgical Site Infection, 2nd ed.; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- AWMF (Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften) Online. S3-Leitlinie: Sectio Caesarea. AWMF-Registernummer 015-084. Available online: https://register.awmf.org/assets/guidelines/015084l_S3_Sectio-caesarea_2020-06_1_02.pdf (accessed on 4 September 2024).
- National Institute for Health and Care Excellence (NICE). Caesarean Section. Available online: https://www.nice.org.uk/guidance/ng192/resources/caesarean-birth-pdf-66142078788805 (accessed on 4 September 2024).
- The American College of Obstetricians and Gynecologists (ACOG). ACOG Practice Bulletin No. 199: Use of Prophylactic Antibiotics in Labor and Delivery: Clinical Management Guidelines for Obstetrician–Gynecologists. Obstet. Gynecol. 2018, 132, e103–e119. [Google Scholar] [CrossRef] [PubMed]
- Smaill, F.M.; Grivell, R.M. Antibiotic prophylaxis versus no prophylaxis for preventing infection after cesarean section. Cochrane Database Syst. Rev. 2014, 10, CD007482. [Google Scholar] [CrossRef] [PubMed]
- Ríos-Covian, D.; Langella, P.; Martín, R. From Short- to Long-Term Effects of C-Section Delivery on Microbiome Establishment and Host Health. Microorganisms 2021, 9, 2122. [Google Scholar] [CrossRef] [PubMed]
- Hoang, D.M.; Levy, E.I.; Vandenplas, Y. The impact of Caesarean section on the infant gut microbiome. Acta Paediatr. 2021, 110, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Koren, O.; Goodrich, J.K.; Cullender, T.C.; Spor, A.; Laitinen, K.; Bäckhed, H.K.; Gonzalez, A.; Werner, J.J.; Angenent, L.T.; Knight, R.; et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 2012, 150, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Gorczyca, K.; Obuchowska, A.; Kimber-Trojnar, Ż.; Wierzchowska-Opoka, M.; Leszczyńska-Gorzelak, B. Changes in the Gut Microbiome and Pathologies in Pregnancy. Int. J. Environ. Res. Public Health 2022, 19, 9961. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Liang, X.; Bao, H.; Ma, G.; Tang, X.; Luo, H.; Xiao, X. Multi-omics analysis reveals the associations between altered gut microbiota, metabolites, and cytokines during pregnancy. mSystems 2024, 9, e0125223. [Google Scholar] [CrossRef] [PubMed]
- Abbas, M.; Gaïa, N.; Buchs, N.C.; Delaune, V.; Girard, M.; Andrey, D.O.; Meyer, J.; Schrenzel, J.; Ris, F.; Harbarth, S.; et al. Changes in the gut bacterial communities in colon cancer surgery patients: An observational study. Gut Pathog. 2022, 14, 2. [Google Scholar] [CrossRef] [PubMed]
- Bidell, M.R.; Hobbs, A.L.V.; Lodise, T.P. Gut microbiome health and dysbiosis: A clinical primer. Pharmacotherapy 2022, 42, 849–857. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef] [PubMed]
- Rethlefsen, M.L.; Kirtley, S.; Waffenschmidt, S.; Ayala, A.P.; Moher, D.; Page, M.J.; Koffel, J.B. PRISMA-S: An extension to the PRISMA Statement for Reporting Literature Searches in Systematic Reviews. Syst. Rev. 2021, 10, 39. [Google Scholar] [CrossRef] [PubMed]
- Campbell, M.; McKenzie, J.E.; Sowden, A.; Katikireddi, S.V.; Brennan, S.E.; Ellis, S.; Hartmann-Boyce, J.; Ryan, R.; Shepperd, S.; Thomas, J.; et al. Synthesis without meta-analysis (SWiM) in systematic reviews: Reporting guideline. BMJ 2020, 368, l6890. [Google Scholar] [CrossRef] [PubMed]
- Chephasaar Chem.-pharm; Fabrik GmbH. Fachinformation Cefuroxim-saar 750 mg/1500 mg: Pulver zur Herstellung einer Injektionslösung: St. Ingbert, 2019. Available online: www.fachinfo.de (accessed on 14 July 2025).
- Higgins, J.; Lasserson, T.; Thomas, J.; Flemyng, E.; Churchill, R. Methodological Expectations of Cochrane Intervention Reviews (MECIR): Standards for the Conduct of New Cochrane Intervention Reviews, and the Planning and Conduct of Updates. Version August 2023. Available online: https://community.cochrane.org/mecir-manual (accessed on 30 August 2024).
- Vallès, Y.; Artacho, A.; Pascual-García, A.; Ferrús, M.L.; Gosalbes, M.J.; Abellán, J.J.; Francino, M.P. Microbial succession in the gut: Directional trends of taxonomic and functional change in a birth cohort of Spanish infants. PLoS Genet. 2014, 10, e1004406. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Forster, S.C.; Tsaliki, E.; Vervier, K.; Strang, A.; Simpson, N.; Kumar, N.; Stares, M.D.; Rodger, A.; Brocklehurst, P.; et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature 2019, 574, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Bäckhed, F.; Roswall, J.; Peng, Y.; Feng, Q.; Jia, H.; Kovatcheva-Datchary, P.; Li, Y.; Xia, Y.; Xie, H.; Zhong, H.; et al. Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host Microbe 2015, 17, 690–703. [Google Scholar] [CrossRef] [PubMed]
- Jokela, R.; Korpela, K.; Jian, C.; Dikareva, E.; Nikkonen, A.; Saisto, T.; Skogberg, K.; de Vos, W.M.; Kolho, K.-L.; Salonen, A. Quantitative insights into effects of intrapartum antibiotics and birth mode on infant gut microbiota in relation to well-being during the first year of life. Gut Microbes 2022, 14, 2095775. [Google Scholar] [CrossRef] [PubMed]
- Kamal, S.S.; Hyldig, N.; Krych, Ł.; Greisen, G.; Krogfelt, K.A.; Zachariassen, G.; Nielsen, D.S. Impact of Early Exposure to Cefuroxime on the Composition of the Gut Microbiota in Infants Following Cesarean Delivery. J. Pediatr. 2019, 210, 99–105.e2. [Google Scholar] [CrossRef] [PubMed]
- Morreale, C.; Giaroni, C.; Baj, A.; Folgori, L.; Barcellini, L.; Dhami, A.; Agosti, M.; Bresesti, I. Effects of Perinatal Antibiotic Exposure and Neonatal Gut Microbiota. Antibiotics 2023, 12, 258. [Google Scholar] [CrossRef] [PubMed]
- Shankar, A.; Das, D.J.; Nayar, S.; Thomas, S. Deciphering the effect of maternal postpartum antibiotic prophylaxis on the infant gut microbiome: A whole metagenomic analysis. Future Microbiol. 2023, 18, 427–441. [Google Scholar] [CrossRef] [PubMed]
- Valentine, G.; Chu, D.M.; Stewart, C.J.; Aagaard, K.M. Relationships Between Perinatal Interventions, Maternal-Infant Microbiomes, and Neonatal Outcomes. Clin. Perinatol. 2018, 45, 339–355. [Google Scholar] [CrossRef] [PubMed]
- Lozupone, C.A.; Stombaugh, J.I.; Gordon, J.I.; Jansson, J.K.; Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 2012, 489, 220–230. [Google Scholar] [CrossRef] [PubMed]
- Angolile, C.M.; Max, B.L.; Mushemba, J.; Mashauri, H.L. Global increased cesarean section rates and public health implications: A call to action. Health Sci. Rep. 2023, 6, e1274. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, E.; Cass, S.; Seo, Y.D.; Damania, A.V.; Meng, X.; Sahasrabhojane, P.V.; Liu, J.S.; Liu, W.; Chen, Y.; Bassett, R.L.; et al. Abstract 2806: A single dose of perioperative cefazolin disrupts the gut microbiome and immunity in patients (pts) with early-stage melanoma. Cancer Res. 2024, 84 (Suppl. S6), 2806. [Google Scholar] [CrossRef]
- Ma, S.; You, Y.; Huang, L.; Long, S.; Zhang, J.; Guo, C.; Zhang, N.; Wu, X.; Xiao, Y.; Tan, H. Alterations in Gut Microbiota of Gestational Diabetes Patients During the First Trimester of Pregnancy. Front. Cell. Infect. Microbiol. 2020, 10, 58. [Google Scholar] [CrossRef] [PubMed]
Publication | Methods | ||||||
---|---|---|---|---|---|---|---|
First Author | Year | Country | Scope | Main Result | Total Study Population | Time of Stool Sampling | Sequencing Method (Platform) |
Vallès [20] | 2014 | Spain | taxonomic and functional gut microbiota succession in infants | two-phase succession driven by solid food; progresses toward maternal microbiota but incomplete by 1 year | 26 | 1 week prior to delivery; 1 year after delivery | Metagenomic Analysis via Pyro-sequencing (Roche/454 sequencing) |
Bäckhed [22] | 2015 | Sweden | dynamics of infant gut microbiome influenced by delivery mode and feeding | cessation of breastfeeding drives functional maturation to an adult-like microbiome | 196 | 2 days after delivery | Shotgun Metagenomic Sequencing via NGS (Illumina Hiseq2000) |
Shao [21] | 2019 | UK | impact of CS on neonatal gut microbiota development | CS disrupts maternal microbial transfer, increases colonization by hospital-associated pathogens | 771 | before OR after OR during delivery | Shotgun Metagenomic Sequencing via NGS (Illumina Hiseq2500 v4) |
Publication | Metric | Median (±SE) | IQR | Range (Min–Max) | Comparison | Statistical Test | p- Value |
---|---|---|---|---|---|---|---|
Vallès (2014) [20] | Chao1 index (taxonomic) | 337.18 (±13.43) | 79.86 | 193.48–512.90 | pre- vs. post-birth | Wilcoxon signed-rank | 0.414 |
Vallès (2014) [20] | Shannon index (taxonomic) | 3.28 (±0.12) | 0.83 | 1.36–4.66 | pre- vs. post-birth | Wilcoxon signed-rank | 0.588 |
Vallès (2014) [20] | Richness Estimator N (taxonomic) | 238.82 (±9.44) | 55.82 | 136.38–359.66 | pre- vs. post-birth | Wilcoxon signed-rank | 0.216 |
Vallès (2014) [20] | Chao1 index (functional) | 95.71 (±0.77) | 3.2 | 89.22–102.1 | pre- vs. post-birth | Wilcoxon signed-rank | 0.002 |
Vallès (2014) [20] | Shannon index (functional) | 5.77 (±0.01) | 0.07 | 5.63–5.90 | pre- vs. post-birth | Wilcoxon signed-rank | 0.017 |
Vallès (2014) [20] | Richness Estimator N (functional) | 90.98 (±0.43) | 2.24 | 86.69–95.65 | pre- vs. post-birth | Wilcoxon signed-rank | 0.017 |
Bäckhed (2015) [22] | OTUs (taxonomic) | 690 (n.r.) | n.r. | n.r. | n.r. | n.a. | n.a. |
Shao (2019) [21] | Shannon index (taxonomic) | 3.125 (n.r.) | 0.4375 | 2.875–3.3125 | n.r. | n.a. | n.a. |
Publication | Metric | Comparison Groups | Statistical Test | p-Value | Effect Size |
---|---|---|---|---|---|
Vallès (2014) [20] | ANOSIM (Bray–Curtis, taxonomic) | pre vs. post birth | ANOSIM | 0.2241 | n.a. |
Vallès (2014) [20] | ANOSIM (Bray–Curtis, functional) | pre vs. post birth | ANOSIM | 0.0798 | n.a. |
Vallès (2014) [20] | PCoA (Gower distances, taxonomic) | pre vs. post birth | PCoA | 0.45 | d > 0.8 |
Vallès (2014) [20] | PCoA (Gower distances, functional) | pre vs. post birth | PCoA | 0.4793 | d > 0.8 |
Bäckhed (2015) [22] | Bray–Curtis (genus level) | CS vs. VD | Mann–Whitney U | 0.667 | n.a. |
Bäckhed (2015) [22] | Bray–Curtis (MetaOTUs) | CS vs. VD | Mann–Whitney U | 1 | n.a. |
Bäckhed (2015) [22] | UniFrac (unweighted, KO level) | mothers vs. infants | n.a. | n.a. | n.a. |
Shao (2019) [21] | PERMANOVA (Bray–Curtis) | VD | PERMANOVA | 0.9371 | R2 = 0.04693 |
Shao (2019) [21] | PERMANOVA (Bray–Curtis) | IAP | PERMANOVA | 0.8342 | R2 = 0.01492 |
Publication | Mothers | Intrapartum Antibiotic Prophylaxis (IAP) | Antibiotic Regimen | |||||||
---|---|---|---|---|---|---|---|---|---|---|
total mothers (n) | CS (n) | VD (n) | IAP given | IAP not reported (n, %) | control /no IAP (n, %) | IAP during CS delivery (agent and dosing, n) | IAP before any delivery (agent and dosing, n) | |||
total (n, %) | in CS (n, %) | in VD (n, %) | ||||||||
Shao 2019 [21] | 175 | 65 | 110 | 90 | 65 | 25 | 77 | 8 | not reported | not reported |
(51%) | (37%) | (14%) | (44%) | (5%) | ||||||
Bäckhed 2015 [22] | 98 | 15 | 83 | 20 | 10 | 10 | not reported | not reported | 1 × 4 g Piperacillin/Tazobactam (n = 8) 1 × 600 mg Clindamycin (n = 2) | 1–4 × 3 g Benzylpenicillin (n = 12) 1 × 900 mg Clindamycin (n = 1) |
(20%) | (10%) | (10%) | (not applicable) | (not applicable) | ||||||
Vallès 2014 [20] | 13 | 3 | 10 | 6 | 3 | 3 | 0 | 7 | Amoxicillin, dosage not reported (n = 3) | Benzylpenicillin, dosage not reported (n = 1); Amoxicillin, dosage not reported (n = 2) |
(46%) | (23%) | (23%) | (0%) | (54%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feles, E.A.; Neidhöfer, C.; Wessels, C.; Gruber, R.; Mattner, F. Impact of Perioperative Antibiotic Prophylaxis in Caesarean Section on the Maternal Gut Microbiome: A Systematic Review. J. Clin. Med. 2025, 14, 5104. https://doi.org/10.3390/jcm14145104
Feles EA, Neidhöfer C, Wessels C, Gruber R, Mattner F. Impact of Perioperative Antibiotic Prophylaxis in Caesarean Section on the Maternal Gut Microbiome: A Systematic Review. Journal of Clinical Medicine. 2025; 14(14):5104. https://doi.org/10.3390/jcm14145104
Chicago/Turabian StyleFeles, Elisabeth AL, Claudio Neidhöfer, Christina Wessels, Rosalie Gruber, and Frauke Mattner. 2025. "Impact of Perioperative Antibiotic Prophylaxis in Caesarean Section on the Maternal Gut Microbiome: A Systematic Review" Journal of Clinical Medicine 14, no. 14: 5104. https://doi.org/10.3390/jcm14145104
APA StyleFeles, E. A., Neidhöfer, C., Wessels, C., Gruber, R., & Mattner, F. (2025). Impact of Perioperative Antibiotic Prophylaxis in Caesarean Section on the Maternal Gut Microbiome: A Systematic Review. Journal of Clinical Medicine, 14(14), 5104. https://doi.org/10.3390/jcm14145104