Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = ferrozine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 806 KB  
Protocol
An Improved Ferrozine-Based Protocol for Safe, Reproducible, and Accurate Quantification of Iron in Biological and Chemical Samples
by Chao Wang and Shan Zhang
Methods Protoc. 2026, 9(1), 9; https://doi.org/10.3390/mps9010009 - 9 Jan 2026
Viewed by 130
Abstract
Accurate quantification of iron is essential in biological, chemical, and nanomaterial research, yet commonly used ferrozine-based assays suffer from safety hazards, inconsistent reduction efficiency, and unstable absorbance readings. To address these issues, we systematically optimized the classical protocol and validated improvements that enhance [...] Read more.
Accurate quantification of iron is essential in biological, chemical, and nanomaterial research, yet commonly used ferrozine-based assays suffer from safety hazards, inconsistent reduction efficiency, and unstable absorbance readings. To address these issues, we systematically optimized the classical protocol and validated improvements that enhance both operational safety and analytical reproducibility. In this work, samples were digested using perchloric acid and hydrogen peroxide, reduced with hydroxylamine, and complexed with ferrozine, with all steps quantitatively evaluated to identify conditions that minimize variability. The optimized assay introduces three key refinements: combining the two traditional hydroxylamine additions into a single reduction step, extending the post-complexation incubation to 2 h to ensure complete formation of the Fe2+–ferrozine complex, and performing digestion exclusively in 5 mL screw-cap polypropylene tubes to eliminate tube-bursting events frequently observed with flip-cap formats. Kinetic analysis confirmed that absorbance at 562 nm reaches a stable plateau after 2 h, and the resulting standard curve exhibited excellent linearity (R2 = 0.9999). These improvements significantly enhance precision, safety, and ease of implementation. The refined method is broadly applicable and enables reliable quantification of iron in tissues, cultured cells, aqueous solutions, and iron-containing nanomaterials. Full article
(This article belongs to the Section Biochemical and Chemical Analysis & Synthesis)
Show Figures

Figure 1

11 pages, 1302 KB  
Article
Iron Mediates Radiation-Induced Glioblastoma Cell Diffusion
by Stephenson Boakye Owusu, Akalanka B. Ekanayake, Alexei V. Tivanski and Michael S. Petronek
Int. J. Mol. Sci. 2025, 26(10), 4755; https://doi.org/10.3390/ijms26104755 - 16 May 2025
Viewed by 1335
Abstract
Radiation therapy is a standard of care treatment for patients with glioblastoma. However, patients’ survival rate is dismal, with nearly all patients experiencing disease progression after treatment. Enriched iron content associated with increased transferrin receptor (TfR) expression is an indicator of poor glioblastoma [...] Read more.
Radiation therapy is a standard of care treatment for patients with glioblastoma. However, patients’ survival rate is dismal, with nearly all patients experiencing disease progression after treatment. Enriched iron content associated with increased transferrin receptor (TfR) expression is an indicator of poor glioblastoma patient outcomes; however, the underlying contributions to tumor progression remain elusive. The goal of this present study is to understand how iron metabolism in glioma contributes to radiation-induced glioblastoma cell motility. U251 and a doxycycline-inducible ferritin heavy chain overexpressing U251 (U251 FtH+) cell line were used. For in vitro studies, cells were irradiated with 2 Gy using a 37Cs source, and after 72 h, atomic force microscopy (AFM) nanoindentation was employed to assess changes in cell stiffness following irradiation. Cell motility was studied using temporal confocal microscopy. For in vivo studies, U251 cells were grown in the rear flanks of female nude athymic mice, and the tumor was irradiated with five fractions of 2 Gy (10 Gy). The tumors were then imaged using a GE 7T small animal MRI to assess changes in T2* MRI, and colorimetric analysis of labile iron was performed using ferrozine. Following irradiation, a biomechanical shift characterized by decreased cell stiffness along with increased cell motility occurred in U251 cells, which corresponded to increased TfR expression. FtH overexpression completely reversed the enhanced cell motility following irradiation. Irradiation of U251 tumors induced the same iron metabolic shift. Interestingly, the change in labile iron in U251 tumors corresponded with an increase in T2* relaxation times, suggesting that T2* mapping may serve as a surrogate marker for assessing radiation-induced changes in iron metabolism. Full article
(This article belongs to the Special Issue Biomechanics and Molecular Research on Glioblastoma: 2nd Edition)
Show Figures

Figure 1

15 pages, 1411 KB  
Article
Antioxidant and Anti-Inflammatory Profiles of Two Mexican Heteropterys Species and Their Relevance for the Treatment of Mental Diseases: H. brachiata (L.) DC. and H. cotinifolia A. Juss. (Malpighiaceae)
by Antonio Nieto Camacho, Itzel Isaura Baca Ibarra and Maira Huerta-Reyes
Molecules 2024, 29(13), 3053; https://doi.org/10.3390/molecules29133053 - 27 Jun 2024
Cited by 2 | Viewed by 1649
Abstract
Depression and anxiety are recognized as the most common mental diseases worldwide. New approaches have considered different therapeutic targets, such as oxidative stress and the inflammation process, due to their close association with the establishment and progression of mental diseases. In the present [...] Read more.
Depression and anxiety are recognized as the most common mental diseases worldwide. New approaches have considered different therapeutic targets, such as oxidative stress and the inflammation process, due to their close association with the establishment and progression of mental diseases. In the present study, we evaluated the antioxidant and anti-inflammatory activities of the methanolic extracts of the plant species Heteropterys brachiata and Heteropterys cotinifolia and their main compounds, chlorogenic acid and rutin, as potential complementary therapeutic tools for the treatment of anxiety and depression, since the antidepressant and anxiolytic activities of these methanolic extracts have been shown previously. Additionally, we also evaluated their inhibitory activity on the enzyme acetylcholinesterase (AChE). Our results revealed that both species exhibited potent antioxidant activity (>90%) through the TBARS assay, while by means of the DPPH assay, only H. cotinifolia exerted potent antioxidant activity (>90%); additionally, low metal chelating activity (<40%) was detected for all samples tested in the ferrozine assay. The methanolic extracts of H. brachiata and H. cotinifolia exhibited significant anti-inflammatory activities in the TPA-induced ear edema, while only H. cotinifolia exerted significant anti-inflammatory activities in the MPO assay (>45%) and also exhibited a higher percentage of inhibition on AChE of even twice (>80%) as high as the control in concentrations of 100 and 1000 µg/mL. Thus, the potent antioxidant and inflammatory properties and the inhibition of AChE may be involved in the antidepressant activities of the species H. cotinifolia, which would be positioned as a candidate for study in drug development as an alternative in the treatment of depression. Full article
(This article belongs to the Special Issue Advances in Natural Products and Their Biological Activities)
Show Figures

Figure 1

11 pages, 2595 KB  
Technical Note
Exploratory Analysis of Image-Guided Ionizing Radiation Delivery to Induce Long-Term Iron Accumulation and Ferritin Expression in a Lung Injury Model: Preliminary Results
by Amira Zaher, Bryce Duchman, Marina Ivanovic, Douglas R. Spitz, Muhammad Furqan, Bryan G. Allen and Michael S. Petronek
Bioengineering 2024, 11(2), 182; https://doi.org/10.3390/bioengineering11020182 - 14 Feb 2024
Cited by 3 | Viewed by 2402
Abstract
Background: Radiation therapy (RT) is an integral and commonly used therapeutic modality for primary lung cancer. However, radiation-induced lung injury (RILI) limits the irradiation dose used in the lung and is a significant source of morbidity. Disruptions in iron metabolism have been linked [...] Read more.
Background: Radiation therapy (RT) is an integral and commonly used therapeutic modality for primary lung cancer. However, radiation-induced lung injury (RILI) limits the irradiation dose used in the lung and is a significant source of morbidity. Disruptions in iron metabolism have been linked to radiation injury, but the underlying mechanisms remain unclear. Purpose: To utilize a targeted radiation delivery approach to induce RILI for the development of a model system to study the role of radiation-induced iron accumulation in RILI. Methods: This study utilizes a Small Animal Radiation Research Platform (SARRP) to target the right lung with a 20 Gy dose while minimizing the dose delivered to the left lung and adjacent heart. Long-term pulmonary function was performed using RespiRate-x64image analysis. Normal-appearing lung volumes were calculated using a cone beam CT (CBCT) image thresholding approach in 3D Slicer software. Quantification of iron accumulation was performed spectrophotometrically using a ferrozine-based assay as well as histologically using Prussian blue and via Western blotting for ferritin heavy chain expression. Results: Mild fibrosis was seen histologically in the irradiated lung using hematoxylin and eosin-stained fixed tissue at 9 months, as well as using a scoring system from CBCT images, the Szapiel scoring system, and the highest fibrotic area metric. In contrast, no changes in breathing rate were observed, and median survival was not achieved up to 36 weeks following irradiation, consistent with mild lung fibrosis when only one lung was targeted. Our study provided preliminary evidence on increased iron content and ferritin heavy chain expression in the irradiated lung, thus warranting further investigation. Conclusions: A targeted lung irradiation model may be a useful approach for studying the long-term pathological effects associated with iron accumulation and RILI following ionizing radiation. Full article
(This article belongs to the Special Issue Image-Guided Radiation Therapy for Cancer)
Show Figures

Figure 1

18 pages, 7306 KB  
Article
Fe-Cr-Nb-B Magnetic Particles and Adipose-Derived Mesenchymal Cells Trigger Cancer Cell Apoptosis by Magneto-Mechanical Actuation
by Horia Chiriac, Anca Emanuela Minuti, Cristina Stavila, Dumitru-Daniel Herea, Luminita Labusca, Gabriel Ababei, George Stoian and Nicoleta Lupu
Nanomaterials 2023, 13(22), 2941; https://doi.org/10.3390/nano13222941 - 14 Nov 2023
Cited by 3 | Viewed by 2022
Abstract
Magnetic nanoparticles (MPs) are emerging as powerful and versatile tools for biotechnology, including cancer research and theranostic applications. Stem cell-mediated magnetic particle delivery has been previously recognized as a modality to target sites of malignancies. Here, we propose the use of adipose-derived mesenchymal [...] Read more.
Magnetic nanoparticles (MPs) are emerging as powerful and versatile tools for biotechnology, including cancer research and theranostic applications. Stem cell-mediated magnetic particle delivery has been previously recognized as a modality to target sites of malignancies. Here, we propose the use of adipose-derived mesenchymal cells (ADSC) for the targeted delivery of Fe-Cr-Nb-B magnetic particles to human osteosarcoma (HOS) cells and magneto-mechanical actuation (MMA) for targeting and destroying HOS cells. We show that MPs are easily incorporated by ADSCs and HOS cells, as confirmed by TEM images and a ferrozine assay. MP-loaded ADSCs display increased motility towards tumor cells compared with their unloaded counterparts. MMA of MP-loaded ADSCs induces HOS destruction, as confirmed by the MTT and live/dead assays. MMA enables the release of the MPs towards cancer cells, producing a significant decrease (about 80%) in HOS viability immediately after application. In contrast, normal human dermal fibroblasts’ (NHDFs) viability exposed to similar conditions remains high, showing a differential behavior of normal and malignant cells to MP load and MMA exposure. Taken together, the method could derive successful strategies for in vivo applications in targeting and destroying malignant cells while protecting normal cells. Full article
Show Figures

Figure 1

17 pages, 3553 KB  
Article
Phenolic Compounds and Antioxidant and Anti-Enzymatic Activities of Selected Adaptogenic Plants from South America, Asia, and Africa
by Jakub Gębalski, Milena Małkowska, Filip Graczyk, Artur Słomka, Elżbieta Piskorska, Dorota Gawenda-Kempczyńska, Aneta Kondrzycka-Dąda, Anna Bogucka-Kocka, Maciej Strzemski, Ireneusz Sowa, Magdalena Wójciak, Sebastian Grzyb, Krystian Krolik, Aneta A. Ptaszyńska and Daniel Załuski
Molecules 2023, 28(16), 6004; https://doi.org/10.3390/molecules28166004 - 10 Aug 2023
Cited by 14 | Viewed by 3036
Abstract
Despite the fact that there are many studies related to the adaptogenic and pro-healthy activities of plant-based compounds, there are some adaptogenic plants whose activities are not fully known, especially those coming from the wild regions of Asia, Africa, and South America. The [...] Read more.
Despite the fact that there are many studies related to the adaptogenic and pro-healthy activities of plant-based compounds, there are some adaptogenic plants whose activities are not fully known, especially those coming from the wild regions of Asia, Africa, and South America. The aim of these studies was to examine the contents of non-nutritional compounds, such as polyphenols, flavonoids, and phenolic acids in ten adaptogenic species (Astragalus membranaceus (AM), Uncaria rhynchophylla (UR), Polygonum multiflorum (PM), Angelica sinensis (AS), Andrographis paniculatea (AP), Tinospora cordifolia (TC), Uncaria tomentosa (UT), Pfaffia paniculate (PP), Sutherlandia frutescens (SF), and Rhaponticum carthamoides (RC)). Considering biological activity, their antioxidant (DPPH, ABTS, FRAP, and ferrous-ion-chelating ability assays), anti-acetylcholinesterase, anti-hyaluronidase, and anti-tyrosinase activities were evaluated. The richest in polyphenols, flavonoids, and phenolic acids was UR (327.78 mg GAE/g, 230.13 mg QE/g, and 81.03 mg CA/g, respectively). The highest inhibitions of acetylcholinesterase, hyaluronidase, and tyrosinase were observed for TC, UR, and PM, respectively. In the case of antioxidant properties, extract from PM appeared to most strongly reduce DPPH, extract from UR inhibited ABTS, and extract from SF showed the best chelating properties. It should be noted that a particularly interesting plant was Ulcaria rhynchophylla. The results mean that there were compounds in UR with broad biological activities, and this species should be explored in more detail. Additionally, our results justify the traditional use of these species in the nutripharmacological or ethnopharmacological care systems of different regions. Full article
(This article belongs to the Special Issue Natural Antioxidants in Foods and Medicinal Plants)
Show Figures

Graphical abstract

13 pages, 2419 KB  
Article
Acquiring Iron-Reducing Enrichment Cultures: Environments, Methods and Quality Assessments
by Aline Figueiredo Cardoso, Rayara do Socorro Souza da Silva, Isabelle Gonçalves de Oliveira Prado, José Augusto Pires Bitencourt and Markus Gastauer
Microorganisms 2023, 11(2), 448; https://doi.org/10.3390/microorganisms11020448 - 10 Feb 2023
Cited by 6 | Viewed by 3842
Abstract
Lateritic duricrusts cover iron ore deposits and form spatially restricted, unique canga ecosystems endangered by mining. Iron cycling, i.e., the dissolution and subsequent precipitation of iron, is able to restitute canga duricrusts, generating new habitats for endangered biota in post-mining landscapes. As iron-reducing [...] Read more.
Lateritic duricrusts cover iron ore deposits and form spatially restricted, unique canga ecosystems endangered by mining. Iron cycling, i.e., the dissolution and subsequent precipitation of iron, is able to restitute canga duricrusts, generating new habitats for endangered biota in post-mining landscapes. As iron-reducing bacteria can accelerate this iron cycling, we aim to retrieve microbial enrichment cultures suitable to mediate the large-scale restoration of cangas. For that, we collected water and sediment samples from the Carajás National Forest and cultivated the iron-reducing microorganisms therein using a specific medium. We measured the potential to reduce iron using ferrozine assays, growth rate and metabolic activity. Six out of seven enrichment cultures effectively reduced iron, showing that different environments harbor iron-reducing bacteria. The most promising enrichment cultures were obtained from environments with repeated flooding and drying cycles, i.e., periodically inundated grasslands and a plateau of an iron mining waste pile characterized by frequent soaking. Selected enrichment cultures contained iron-reducing and fermenting bacteria, such as Serratia and Enterobacter. We found higher iron-reducing potential in enrichment cultures with a higher cell density and microorganism diversity. The obtained enrichment cultures should be tested for canga restoration to generate benefits for biodiversity and contribute to more sustainable iron mining in the region. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

20 pages, 3431 KB  
Article
New Insights into the In Vitro Antioxidant Routes and Osteogenic Properties of Sr/Zn Phytate Compounds
by Gerardo Asensio, Marcela Martín-del-Campo, Rosa Ana Ramírez, Luis Rojo and Blanca Vázquez-Lasa
Pharmaceutics 2023, 15(2), 339; https://doi.org/10.3390/pharmaceutics15020339 - 19 Jan 2023
Cited by 9 | Viewed by 2779
Abstract
Sr/Zn phytate compounds have been shown interest in biomaterial science, specifically in dental implantology, due to their antimicrobial effects against Streptococcus mutans and their capacity to form bioactive coatings. Phytic acid is a natural chelating compound that shows antioxidant and osteogenic properties that can [...] Read more.
Sr/Zn phytate compounds have been shown interest in biomaterial science, specifically in dental implantology, due to their antimicrobial effects against Streptococcus mutans and their capacity to form bioactive coatings. Phytic acid is a natural chelating compound that shows antioxidant and osteogenic properties that can play an important role in bone remodelling processes affected by oxidative stress environments, such as those produced during infections. The application of non-protein cell-signalling molecules that regulate both bone and ROS homeostasis is a promising strategy for the regeneration of bone tissues affected by oxidative stress processes. In this context, phytic acid (PA) emerged as an excellent option since its antioxidant and osteogenic properties can play an important role in bone remodelling processes. In this study, we explored the antioxidant and osteogenic properties of two metallic PA complexes bearing bioactive cations, i.e., Sr2+ (SrPhy) and Zn2+ (ZnPhy), highlighting the effect of the divalent cations anchored to phytate moieties and their capability to modulate the PA properties. The in vitro features of the complexes were analyzed and compared with those of their precursor PA. The ferrozine/FeCl2 method indicated that SrPhy exhibited a more remarkable ferrous ion affinity than ZnPhy, while the antioxidant activity demonstrated by a DPPH assay showed that only ZnPhy reduced the content of free radicals. Likewise, the antioxidant potential was assessed with RAW264.7 cell cultures. An ROS assay indicated again that ZnPhy was the only one to reduce the ROS content (20%), whereas all phytate compounds inhibited lipid peroxidation following the decreasing order of PA > SrPhy > ZnPhy. The in vitro evaluation of the phytate’s osteogenic ability was performed using hMSC cells. The results showed tailored properties related to the cation bound in each complex. ZnPhy overexpressed ALP activity at 3 and 14 days, and SrPhy significantly increased calcium deposition after 21 days. This study demonstrated that Sr/Zn phytates maintained the antioxidant and osteogenic properties of PA and can be used in bone regenerative therapies involving oxidative environments, such as infected implant coatings and periodontal tissues. Full article
Show Figures

Graphical abstract

11 pages, 1431 KB  
Article
Enterococcus faecalis NADH Peroxidase-Defective Mutants Stain Falsely in Colony Zymogram Assay for Extracellular Electron Transfer to Ferric Ions
by Lars Hederstedt
Microorganisms 2023, 11(1), 106; https://doi.org/10.3390/microorganisms11010106 - 31 Dec 2022
Cited by 6 | Viewed by 2956
Abstract
Enterococcus faecalis cells can reduce ferric ions and other electron acceptors by extracellular electron transfer (EET). To find mutants with enhanced or defective EET, strain OG1RF with random transposon insertions in the chromosome was screened for ferric reductase activity by colony zymogram staining [...] Read more.
Enterococcus faecalis cells can reduce ferric ions and other electron acceptors by extracellular electron transfer (EET). To find mutants with enhanced or defective EET, strain OG1RF with random transposon insertions in the chromosome was screened for ferric reductase activity by colony zymogram staining using the chromogenic ferrous-chelating compound Ferrozine. The screen revealed npr, eetB, and ndh3 mutants. The aberrant ferric reductase phenotype of Npr (NADH peroxidase)-defective mutants was found to be a property of colonies and not apparent with washed cells grown in liquid culture. EetB- and Ndh3-defective mutants, in contrast, consistently showed low ferric reductase activity. It is concluded that colony zymogram staining for ferric reductase activity using Ferrozine can be misleading, especially through false negative results. It is suggested that hydrogen peroxide produced in the colony quenches the zymogram staining. In addition, it is demonstrated that the negative effect of heme on EET to ferric ion in E. faecalis is relieved by cytochrome bd deficiency. The findings can help to identify bacteria with EET ability and contribute to our understanding of EET in Gram-positive bacteria and the physiology of E. faecalis. Full article
(This article belongs to the Special Issue New Electrogenic Microbes)
Show Figures

Figure 1

25 pages, 4418 KB  
Article
Lutein Decreases Inflammation and Oxidative Stress and Prevents Iron Accumulation and Lipid Peroxidation at Glutamate-Induced Neurotoxicity
by Ramóna Pap, Edina Pandur, Gergely Jánosa, Katalin Sipos, Tamás Nagy, Attila Agócs and József Deli
Antioxidants 2022, 11(11), 2269; https://doi.org/10.3390/antiox11112269 - 17 Nov 2022
Cited by 33 | Viewed by 4615
Abstract
The xanthophyll carotenoid lutein has been widely used as supplementation due to its protective effects in light-induced oxidative stress. Its antioxidant and anti-inflammatory features suggest that it has a neuroprotective role as well. Glutamate is a major excitatory neurotransmitter in the central nervous [...] Read more.
The xanthophyll carotenoid lutein has been widely used as supplementation due to its protective effects in light-induced oxidative stress. Its antioxidant and anti-inflammatory features suggest that it has a neuroprotective role as well. Glutamate is a major excitatory neurotransmitter in the central nervous system (CNS), which plays a key role in regulating brain function. Excess accumulation of intracellular glutamate accelerates an increase in the concentration of reactive oxygen species (ROS) in neurons leading to glutamate neurotoxicity. In this study, we focused on the effects of glutamate on SH-SY5Y neuroblastoma cells to identify the possible alterations in oxidative stress, inflammation, and iron metabolism that affect the neurological function itself and in the presence of antioxidant lutein. First, ROS measurements were performed, and then catalase (CAT) and Superoxide Dismutase (SOD) enzyme activity were determined by enzyme activity assay kits. The ELISA technique was used to detect proinflammatory TNFα, IL-6, and IL-8 cytokine secretions. Alterations in iron uptake, storage, and release were followed by gene expression measurements and Western blotting. Total iron level detections were performed by a ferrozine-based iron detection method, and a heme assay kit was used for heme measurements. The gene expression toward lipid-peroxidation was determined by RT-PCR. Our results show glutamate changes ROS, inflammation, and antioxidant enzyme activity, modulate iron accumulation, and may initiate lipid peroxidation in SH-SY5Y cells. Meanwhile, lutein attenuates the glutamate-induced effects on ROS, inflammation, iron metabolism, and lipid peroxidation. According to our findings, lutein could be a beneficial, supportive treatment in neurodegenerative disorders. Full article
(This article belongs to the Special Issue Oxidative Stress and Antioxidants in Neurodegenerative Disorders)
Show Figures

Graphical abstract

9 pages, 2464 KB  
Article
An Improved Method for Quick Quantification of Unsaturated Transferrin
by Ruirui Guo, Juanjuan Gao, Lingyun Hui, Yanqing Li, Junhui Liu, Yao Fu, Lei Shi, Yawen Wang and Bing Liu
Biosensors 2022, 12(9), 708; https://doi.org/10.3390/bios12090708 - 1 Sep 2022
Cited by 5 | Viewed by 3190
Abstract
Blood iron levels play a vital role in oxygen metabolism and energy generation whilst transporter protein, transferrin, binds and delivers iron to the transferrin receptor of endosomal compartments of cells. Consequently, the iron-binding capacity of transferrin is an important indicator for many diseases, [...] Read more.
Blood iron levels play a vital role in oxygen metabolism and energy generation whilst transporter protein, transferrin, binds and delivers iron to the transferrin receptor of endosomal compartments of cells. Consequently, the iron-binding capacity of transferrin is an important indicator for many diseases, and its measurements are used in the diagnosis and treatment of anaemias. Various assays, including Total Iron Binding Capacity (TIBC), Unsaturated Iron-Binding Capacity (UIBC) and Transferrin Saturation (TS), were developed to assess the iron-binding capacity of transferrin. Clinically, UIBC is measured in serum by a multi-step liquid ferrozine method and subjected to interference from conditions such as haemolysis and lipemia. Here, we report a quick method that directly measures the concentration of apotransferrin in EDTA-treated plasma, theoretically equivalent to UIBC. Importantly, this supramolecular assembly-based method is more time-efficient, cost-effective and insensitive to serum cation fluctuations. With additional colorimetric property, this method also provides a visual indicator for abnormal health conditions with extreme transferrin statuses such as those found in cancers. Its minimal requirement for equipment would be particularly useful for diagnosis in remote and under-developed regions. Full article
Show Figures

Figure 1

17 pages, 537 KB  
Article
Phenolic Profile, Antioxidant, Anti-Enzymatic and Cytotoxic Activity of the Fruits and Roots of Eleutherococcus senticosus (Rupr. et Maxim.) Maxim
by Filip Graczyk, Jakub Gębalski, Anna Makuch-Kocka, Dorota Gawenda-Kempczyńska, Aneta A. Ptaszyńska, Sebastian Grzyb, Anna Bogucka-Kocka and Daniel Załuski
Molecules 2022, 27(17), 5579; https://doi.org/10.3390/molecules27175579 - 30 Aug 2022
Cited by 20 | Viewed by 4202
Abstract
Eleutherococcus senticosus (Rupr. et Maxim.) Maxim. is well-known for its adaptogenic properties in traditional Eastern medicine. It has been categorized as an endangered species due to the over-exploitation of the roots. As a result, alternatives must be found, including the usage of renewable [...] Read more.
Eleutherococcus senticosus (Rupr. et Maxim.) Maxim. is well-known for its adaptogenic properties in traditional Eastern medicine. It has been categorized as an endangered species due to the over-exploitation of the roots. As a result, alternatives must be found, including the usage of renewable aerial parts such as fruits. The goal of this research was to determine the phenolic compounds and the enzymatic, antioxidant, and cytotoxic activities of the intractum gained from the E. senticosus fruits and the mixture of chloroform-methanol roots extract with naringenin (3:7:5). The obtained results showed, that the intractum contained 1.02 mg/g ext. of polyphenols, 0.30 mg/g ext. of flavonoids, and 0.19 mg/g ext. of phenolic acids. In turn, the mixture of chloroform-methanol roots extract with naringenin (3:7:5) contained 159.27 mg/g ext. of polyphenols, 137.47 mg/g ext. of flavonoids, and 79.99 mg/g ext. of phenolic acids. Regarding the anti-enzymatic assay, the IC50 values for tyrosinase and hyaluronidase were equal to 586.83 and 217.44 [μg/mL] for the intractum, and 162.56 and 44.80 [μg/mL] for the mixture, respectively. Both preparations have possessed significant antioxidant activity in the ABTS, DPPH, and ferrozine tests. No cytotoxic effect on the FaDu and HEP G2 cancer cell lines was observed. Our findings support the traditional use of fruits and roots. Moreover, the results indicate also that adaptogens are rather nontoxic for normal and cancer cells, which corresponds with some hypotheses on adaptogens activity. Full article
(This article belongs to the Special Issue Natural Antioxidants in Foods and Medicinal Plants)
Show Figures

Figure 1

12 pages, 1653 KB  
Article
A Chemical Investigation of the Antioxidant Capacity of Extracts from Red Macroalga Gracilaria domingensis
by Priscila Torres, Fungyi Chow and Deborah Yara Alves Cursino dos Santos
Phycology 2022, 2(3), 332-343; https://doi.org/10.3390/phycology2030018 - 25 Aug 2022
Cited by 8 | Viewed by 2876
Abstract
Extracts that were obtained with solvents of increasing polarity (hexane, dichloromethane, methanol, 80% methanol, and water) from the red macroalga Gracilaria domingensis were evaluated by reducing power with ferric reduction antioxidant power (FRAP) and Folin–Ciocalteu (FC) assays, lipid peroxidation inhibition by β-carotene-linoleic acid [...] Read more.
Extracts that were obtained with solvents of increasing polarity (hexane, dichloromethane, methanol, 80% methanol, and water) from the red macroalga Gracilaria domingensis were evaluated by reducing power with ferric reduction antioxidant power (FRAP) and Folin–Ciocalteu (FC) assays, lipid peroxidation inhibition by β-carotene-linoleic acid assay, and metal chelating ability based on the iron-ferrozine system. The highest antioxidant capacity was reported for the hexane (Hx) extract by the FRAP, metal chelating, and lipid peroxidation inhibition assays. An activity-guided fractionation of the Hx extract was carried out for the identification of its active constituents. The primary components were the most active antioxidant compounds. Despite the high antioxidant activities, the Hx extract was not active in the FC assay. In this assay, the activities were found in the methanol (M) and 80% methanol (80M) extracts. The FC assay is commonly used to measure the total phenolic compounds. However, no phenolic compounds were detected by GC-MS and HPLC analyses in the M and 80M extracts. Thus, non-phenolic components influenced the FC assay. The M and 80M extracts showed high content of mycosporine-like amino acids (MAAs). A fraction contained two MAAs (porphyra-334 and shinorine) (156 mg GAE·g−1) showed a similar performance to the values that were found for well-known antioxidants (BHT = 156 mg GAE·g−1 and Trolox = 166 mg GAE·g−1) and 30 times higher than those of the original extracts (~5 mg GAE·g−1) in the FC assay. Thus, MAAs contribute to the antioxidant activities that were observed in the FC assay within the studied samples. Together, these results advance our understanding of the antioxidant properties of algal extracts. Full article
Show Figures

Figure 1

11 pages, 1608 KB  
Article
Biochemical, Biophysical and Functional Characterization of an Insoluble Iron Containing Hepcidin–Ferritin Chimeric Monomer Assembled Together with Human Ferritin H/L Chains at Different Molar Ratios
by Mohamed Boumaiza, Imene Fhoula, Fernando Carmona, Maura Poli, Michela Asperti, Alessandra Gianoncelli, Michela Bertuzzi, Paolo Arosio and Mohamed Nejib Marzouki
Curr. Issues Mol. Biol. 2022, 44(1), 117-127; https://doi.org/10.3390/cimb44010009 - 28 Dec 2021
Cited by 1 | Viewed by 2854
Abstract
Hepcidin and ferritin are key proteins of iron homeostasis in mammals. In this study, we characterize a chimera by fusing camel hepcidin to a human ferritin H-chain to verify if it retained the properties of the two proteins. The construct (HepcH) is expressed [...] Read more.
Hepcidin and ferritin are key proteins of iron homeostasis in mammals. In this study, we characterize a chimera by fusing camel hepcidin to a human ferritin H-chain to verify if it retained the properties of the two proteins. The construct (HepcH) is expressed in E. coli in an insoluble and iron-containing form. To characterize it, the product was incubated with ascorbic acid and TCEP to reduce and solubilize the iron, which was quantified with ferrozine. HepcH bound approximately five times more iron than the wild type human ferritin, due to the presence of the hepcidin moiety. To obtain a soluble and stable product, the chimera was denatured and renatured together with different amounts of L-ferritin of the H-chain in order to produce 24-shell heteropolymers with different subunit proportions. They were analyzed by denaturing and non-denaturing PAGE and by mass spectroscopy. At the 1:5 ratio of HepcH to H- or L-ferritin, a stable and soluble molecule was obtained. Its biological activity was verified by its ability to both bind specifically cell lines that express ferroportin and to promote ferroportin degradation. This chimeric molecule showed the ability to bind both mouse J774 macrophage cells, as well as human HepG2 cells, via the hepcidin–ferroportin axis. We conclude that the chimera retains the properties of both hepcidin and ferritin and might be exploited for drug delivery. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

15 pages, 2408 KB  
Article
Comparison of Antioxidant Properties of a Conjugate of Taxifolin with Glyoxylic Acid and Selected Flavonoids
by Victoria S. Shubina, Victoria I. Kozina and Yuri V. Shatalin
Antioxidants 2021, 10(8), 1262; https://doi.org/10.3390/antiox10081262 - 8 Aug 2021
Cited by 30 | Viewed by 5905
Abstract
It is known that flavonoids can react with toxic carbonyl compounds in the process of the storage, aging, and digestion of flavonoid-rich foods and beverages. However, the effect of these reactions on the antioxidant properties of the polyphenolic fraction and the properties of [...] Read more.
It is known that flavonoids can react with toxic carbonyl compounds in the process of the storage, aging, and digestion of flavonoid-rich foods and beverages. However, the effect of these reactions on the antioxidant properties of the polyphenolic fraction and the properties of the resulting products remain poorly studied. The aim of the present work was to study the antioxidant activity of quercetin, taxifolin, catechin, eriodictyol, hesperetin, naringenin and a product of the condensation of taxifolin with glyoxylic acid, as well as to reveal the structure–activity relationship of these polyphenols. It was found that flavonoids containing the catechol moiety exhibited higher antioxidant activity than hesperetin and naringenin. The product showed the highest hydrogen peroxide scavenging activity, a lower metal-reducing and a higher iron-binding ability than catechol-containing flavonoids, and a lipid peroxidation inhibitory activity comparable with that of taxifolin. Thus, the condensation of flavonoids with toxic carbonyl compounds might lead to the formation of products exhibiting high antioxidant activity. Meanwhile, the conditions under which parent flavonoids and their products exhibit the maximal antioxidant activity may differ. The data suggest that the antioxidant profile of the polyphenolic fraction and bioavailability of polyphenols, carbonyl compounds, and metal ions may change when these reactions occur. Full article
(This article belongs to the Special Issue Phenolics as Antioxidant Agents)
Show Figures

Graphical abstract

Back to TopTop