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Abstract: It is known that flavonoids can react with toxic carbonyl compounds in the process of
the storage, aging, and digestion of flavonoid-rich foods and beverages. However, the effect of
these reactions on the antioxidant properties of the polyphenolic fraction and the properties of the
resulting products remain poorly studied. The aim of the present work was to study the antioxidant
activity of quercetin, taxifolin, catechin, eriodictyol, hesperetin, naringenin and a product of the
condensation of taxifolin with glyoxylic acid, as well as to reveal the structure–activity relationship
of these polyphenols. It was found that flavonoids containing the catechol moiety exhibited higher
antioxidant activity than hesperetin and naringenin. The product showed the highest hydrogen
peroxide scavenging activity, a lower metal-reducing and a higher iron-binding ability than catechol-
containing flavonoids, and a lipid peroxidation inhibitory activity comparable with that of taxifolin.
Thus, the condensation of flavonoids with toxic carbonyl compounds might lead to the formation
of products exhibiting high antioxidant activity. Meanwhile, the conditions under which parent
flavonoids and their products exhibit the maximal antioxidant activity may differ. The data suggest
that the antioxidant profile of the polyphenolic fraction and bioavailability of polyphenols, carbonyl
compounds, and metal ions may change when these reactions occur.

Keywords: flavonoids; glyoxylate-taxifolin condensation product; antioxidant activity; metal-reducing
ability; iron-chelating activity; ferrozine

1. Introduction

Polyphenols are the most numerous and widely distributed compounds of plant
origin [1]. They are involved in various processes of the growth and development of
plants [2], and their protection against unfavorable environmental factors [3–5]. They
enter the body of humans and animals with plant food. The intake of polyphenols or
polyphenol-rich food products might be associated with a lower risk of cardiovascular [6–8],
neurodegenerative [9–12], and other diseases [6,13,14]. More than 8000 polyphenols have
been identified; of these, more than 4000 compounds belong to the group of flavonoids [1].
In nature, polyphenols occur as monomers, oligomers, and polymers (proanthocyanidins,
condensed tannins). There is also evidence indicating that, during the storage and aging
of food products and beverages with a high content of flavonoids, the latter react with
carbonyl compounds such as acetaldehyde, methylglyoxal, glyoxylic acid, and furfurol,
which results in the formation of monomeric, oligomeric, and polymeric adducts [15–22].

When entering the human gastrointestinal tract (GIT), polyphenols either remain
in the native form or undergo various chemical transformations [23]. Both parent and
modified polyphenols are capable of producing local effects. In addition, when enter-
ing the circulation, they may induce systemic effects [23]. In the first case, the effect of
polyphenols can be appreciable because their concentration in the GIT can reach rather high
values [23–25]. In particular, they can cause antioxidant effects by interacting with reactive
oxygen species (ROS) and ions of metals of variable valency or react with toxic compounds
formed during the preparation and digestion of food. This is evidenced by the literature
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data indicating that the consumption of some food products containing partially oxidized
lipids increases the level of toxic hydroperoxides and malonic aldehyde in the stomach
and, as a result of their absorption, in the blood plasma. The combined consumption of
these food products with polyphenolic compounds substantially reduces or completely
prevents the accumulation of these toxic compounds [26–30], producing a protective effect
on the body. However, the properties of the resulting compounds as well as the effect of
the condensation of polyphenols with carbonyl compounds on the antioxidant properties
of the polyphenolic fraction remain poorly understood.

The goal of the present work was to study the antioxidant activity of six structurally
similar flavonoids (quercetin, taxifolin, catechin, eriodictyol, hesperetin, naringenin) and a
product of the condensation of taxifolin with glyoxylic acid (Figure 1), as well as to reveal
the structure–activity relationship of these polyphenols. For this purpose, the ability of the
polyphenols to scavenge hydrogen peroxide and inhibit iron-induced lipid peroxidation
was examined. In addition, the ability of the polyphenols to reduce iron and cooper ions
was estimated.
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Figure 1. Structures of polyphenols being tested. The product of the condensation of taxifolin with glyoxylic acid is
designated as DfTf.

2. Materials and Methods
2.1. Chemicals

Taxifolin, quercetin, catechin, eriodictyol, hesperetin, naringenin, horseradish peroxi-
dase (150 U/mg), 3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine-4,40-disulfonic acid monosodium
salt hydrate (ferrozine), bathocuproinedisulfonic acid (BCDS), copper (II) sulfate, ascorbic
acid, 1-butanol, 1,1,3,3 tetraethoxypropane, and 5-amino-2,3-dihydro-1,4-phthalazinedione
(luminol) were obtained from Sigma-Aldrich (St. Louis, MO, USA). Acetic acid, or-
thophosphoric acid (H3PO4), sodium acetate, ferrous sulfate (FeSO4·7H2O), ferric chloride
(FeCl3·6H2O), and hydrogen peroxide (H2O2) were purchased from Reakhim (Moscow, Rus-



Antioxidants 2021, 10, 1262 3 of 15

sia). Phosphate buffered saline (PBS) was purchased from Paneco (Moscow, Russia),
thiobarbituric acid (TBA) from Dia-m (Moscow, Russia), and lecithin from AppliChem
(Darmstadt, Germany). The product of the condensation of taxifolin with glyoxylic acid
(DfTf) was synthesized as described previously [31]. All reagents were of analytical grade
purity. Water used for the preparation of the solutions was purified by a Milli-Q system
(Millipore, Burlington, MA, USA).

2.2. Hydrogen Peroxide Scavenging Activity

The hydrogen peroxide scavenging activity of polyphenols was estimated by luminol-
dependent chemiluminescence (LCL) as described previously [31]. Briefly, the reaction mix-
tures contained NaH2PO4/NaOH buffer (20 mM, pH 7.4), luminol (100 µM), horseradish
peroxidase (1.25 U), hydrogen peroxide (10 µM), and polyphenols at different concentra-
tions (0.25–40.0 µM). Hydrogen peroxide was added to the solutions immediately prior to
the registration of the signal. LCL was recorded in 96-well plates (Greiner, Kremsmunster,
Austria) using a multi-plate reader (Infinite F200 Tecan, Grodig, Austria) until it returned
to the baseline. The reduction in LCL signal intensity in the presence of polyphenols was
estimated using the following formula:

∫
LCL = (

∫
polyphenol/

∫
control) × 100%, where∫

LCL is the integral LCL, %;
∫

polyphenol is the integral LCL in the presence of polyphe-
nols;

∫
control is the integral LCL without the addition of polyphenols. Measurements

were carried out at 37 ◦C.

2.3. Metal-Reducing Activity
2.3.1. Copper-Reducing Activity

The copper-reducing ability of polyphenols was assayed using BCDS [32]. Briefly, the
reaction mixtures contained NaH2PO4/NaOH buffer (20 mM, pH 7.4), BCDS (600 µM),
copper (II) sulfate (100 µM), and polyphenols at different concentrations (5–130 µM). CuSO4
was added to the mixtures immediately prior to measurements. The Cu (I)-BCDS complex
was detected at 483 nm at 37 ◦C. Measurements were carried out on a multi-plate reader
(Infinite F200 Tecan) in 96-well plates (Greiner). The concentration of Cu+ was evaluated
by a calibration curve obtained using the solutions of CuSO4 and ascorbic acid (200 µM);
the latter served as a standard reducing agent [32].

2.3.2. Iron-Reducing Activity

The iron-reducing ability of polyphenols was evaluated using ferrozine [32]. Briefly,
the reaction mixtures contained Na-acetate buffer (20 mM, pH 5.0), ferrozine (1 mM), iron
(III) chloride (100 µM), and polyphenols at different concentrations (5–130 µM). FeCl3 was
added to the mixtures immediately prior to measurements. The Fe (II)-ferrozine complex
was detected at 562 nm at 37 ◦C. Measurements were carried out on a multi-plate reader
(Infinite F200, Tecan) in 96-well plates (Greiner). The Fe2+ concentration was estimated by
a calibration curve obtained using FeSO4 solutions.

2.4. Iron-Binding Properties of DfTf

Competition between the product and ferrozine for Fe2+ was assessed as follows.
A solution of FeSO4 (at a final concentration of 0.1 mM) was first added to the solutions of
DfTf dissolved in PBS (at the final concentrations of 0.16, 0.31, 0.63, 1.25, 2.50, and 5.00 mM).
This led to the formation of a polyphenol-iron complex, which was detected at 460 nm [31].
After 30 min, a solution of ferrozine (at a final concentration of 333 µM) was added to
the mixtures. As a strong chelator, ferrozine bound free ions and ions weakly bound by
polyphenol. The resulting Fe(ferrozine)3

2+ complex was recorded at 562 nm. On the basis
of the data on absorption changes (at 562 nm) depending on the molar ratio DfTf/ferrozine,
the apparent binding constant of the DfTf-iron complex was estimated. The calculation
of the apparent binding constant is given in Supplementary Materials. Experiments were
performed in 96-well microplates at 37 ◦C using a Tecan Infinite F200 microplate reader.
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2.5. Lipid Peroxidation Inhibitory Activity

Lipid peroxidation was estimated by measuring the content of malondialdehyde
(MDA). The production of MDA was measured using TBA [33,34]. Briefly, the reaction
mixtures containing hydrogen peroxide (1 mM), FeSO4 (1 mM), lecithin (10 mg/mL), and
polyphenols at different concentrations (0, 0.03, 0.06, 0.12, 0.24, 0.50, 1.00, 2.00, 4.00 mM)
were incubated at 37 ◦C for 1 h. Then, 0.50 mL of TBA (0.67%) dissolved in 2% orthophos-
phoric acid was added to 0.50 mL of the mixtures. After that, the mixtures were incubated
at 100 ◦C for 1 h. After cooling, the resulting colored adduct was extracted from the mix-
tures with 1.0 mL of n-butanol. At the end, the adduct was detected using a Cary 100 Scan
spectrophotometer (Varian, Sydney, Australia) at 532 nm. 1,1,3,3-Tetraethoxypropane was
used as an MDA standard.

2.6. Statistical Analysis

The data represent the means ± standard deviation of at least five independent
experiments. The statistical significance was estimated by the Student’s t-test (p < 0.05).

3. Results
3.1. Hydrogen Peroxide Scavenging Activity

It was found that the integral LCL response in the presence of polyphenols decreases
with increasing concentration of these compounds (Figure 2). Polyphenol concentrations
necessary for the 50% inhibition of LCL (IC50) are given in Table 1. It is seen that DfTf
exhibits the highest antioxidant activity. Next are eriodictyol, quercetin, taxifolin, and catechin,
which show similar antioxidant properties. It should be noted that these compounds contain
two hydroxyl groups in the B ring, which are in the ortho-position relative to each other (the
catechol fragment). Hesperetin and naringenin exhibit a lower antioxidant activity.
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Table 1. Polyphenol concentrations necessary for the 50% inhibition of chemiluminescence (IC50).

Polyphenols IC50, µM

DfTf 0.48 ± 0.04 *
eriodictyol 0.73 ± 0.05
quercetin 0.75 ± 0.05
taxifolin 0.76 ± 0.05
catechin 0.93 ± 0.09

hesperetin 2.17 ± 0.15 *
naringenin 34.2 ± 4.32 *

The values are the means ± standard deviation of ten independent experiments. * Significantly different from
other compounds, p < 0.05.

3.2. Metal-Reducing Activity

Figure 3 shows the data on the reduction of metal ions in the presence of polyphenols.
It is seen that all compounds are capable of reducing copper (II) ions (Figure 3a,b).
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significant differences between the compounds, p < 0.05.

The most effective reducing agents are quercetin, taxifolin, eriodicyol, and catechin,
whereas DfTf, hesperetin, and naringenin produce a weaker copper-reducing effect. Thus,
except for DfTf, the compounds containing a catechol fragment in the structure exhibit
high copper-reducing activity.
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These four compounds (quercetin, taxifolin, eriodicyol, and catechin) also effectively
reduce iron ions (Figure 3c,d). It was found that catechin in the concentration range of
20–30 µM exhibits a higher iron-reducing activity than the other compounds (Figure 3c,d).
As an example, Figure 3c presents the time-dependent reduction of iron (III) ions in the
presence of polyphenols at a concentration of 20 µM. It is seen that eriodictyol exhibits a
higher iron-reducing activity than taxifolin. There is no significant difference in the iron-
reducing activity between eriodictyol and quercetin and between quercetin and taxifolin.
The concentration of reduced iron ions in the presence of hesperetin and naringenin is low.
DfTf is capable of reducing iron (III) ions; however, the concentration of iron (II) ions is
significantly lower than in the presence of catechol-containing flavonoids and depends
little on the concentration of this polyphenol in the system, which has been found earlier
by us at pH 5.4 [31]. It can be suggested that this is related to the iron-binding capacity of
DfTf. To verify this assumption, we estimated the rigidity of the complex formed between
DfTf and Fe (II).

3.3. Iron-Binding Properties of DfTf

We have found earlier that DfTf is capable of binding iron (II) ions [31]. Here, we
studied the ability of DfTf to bind iron (II) ions in the presence of ferrozine, a strong chelator
of the corresponding ions. It was shown that the addition of DfTf to an iron (II) sulfate
solution leads to the appearance of a new absorption band (λmax 460 nm) not characteristic
for this polyphenol, indicating the formation of the polyphenol-Fe (II) complex. The
addition of ferrozine to the system after 30 min of incubation leads to the binding of free
iron and iron weakly bound with polyphenols and the formation of a ferrozine–Fe (II)
complex with the absorption maximum at 562 nm. Changes in the optical density at this
wavelength at different molar ratios of DfTf/ferrozine indicate that these compounds
compete with each other for the binding of iron (II) ions (Figure 4). Based on these data, the
apparent binding constant of the DfTf-Fe (II) complex was estimated to be 6.3 × 107 M−1.
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3.4. Lipid Peroxidation Inhibitory Activity

It was found that quercetin, taxifolin, eriodictyol, and catechin are the most effective
LPO inhibitors, which have similar properties in the concentration range used (Figure 5).
DfTf in the range of lower concentrations inhibits LPO to a lesser extent than quercetin,
catechin, and eriodicyol. However, there is no significant difference between the inhibitory
effects of DfTf and taxifolin. In turn, DfTf at low concentrations more strongly inhibits
LPO than hesperetin. Hesperetin inhibits LPO in a significantly weaker manner than all
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flavonoids containing a catechol fragment in their structure. Naringenin produces the least
inhibitory effect (Figure 5).
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other compounds; b differences are significant compared with catechin, quercetin, eriodictyol, and
naringenin; c differences are significant compared with other compounds, with the exception of DfTf;
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4. Discussion

The results of the study indicate that compounds containing hydroxyl groups in the B
ring and being in the ortho-position relative to each other (the catechol fragment) have the
most effective antioxidant activity (DfTf, eriodictyol, quercetin, taxifolin, catechin). The
methylation of the hydroxyl group at the 4′-position (hesperetin) or the absence of the
hydroxyl group at the 3′-position of the B ring (naringenin) leads to a significant reduction
in activity. The presence of the 2,3-double bond, or the carbonyl group at the C4 atom, or
the aliphatic hydroxyl group at the 3-position of the C ring affects the antioxidant properties
of these compounds substantially less. These results agree well with the literature data
indicating that quercetin exhibits high scavenging activity toward radicals generated in the
aqueous phase (ABTS and DPPH radicals). Catechin and taxifolin show a lower radical
scavenging activity than quercetin, whereas hesperetin and naringenin possess a lower
antiradical activity than flavonoids mentioned above [35,36]. In spite of the fact that the
order of efficacy of flavonoids as radical scavengers can change depending on experimental
conditions and methods used by the authors, the most important structural feature of
high antiradical activity for these compounds remains the same: the presence of the ortho-
dihydroxy group in the B-ring [35,36]. DfTf is a dimer consisting of two taxifolin units,
which are linked via the carboxymethine bridge at the C-6 and C-8 positions of the A
ring [31]. Consequently, DfTf contains twice as many hydroxyl groups in the structure
as the parent flavonoid and, as indicated above, shows the highest hydrogen peroxide
scavenging activity. Based on these data and on our previous results, it can be concluded
that the effectiveness of DfTf against ROS present in the aqueous phase is higher than
that of the parent flavonoid taxifolin [31] and its structural analogs (quercetin, eriodictyol,
catechin, hesperetin, and naringenin).

Although the properties of the products of condensation and polymerization of flavonoids
remain poorly studied [37,38], there is evidence that these compounds exhibit higher antiox-
idant, antimicrobal, and enzyme inhibitory activities than parent flavonoids [38–44]. In
particular, the polycondensates of catechin-aldehyde and poly(rutin) show higher superoxide-
anion scavenging activity and inhibit the oxidation of human low-density lipoprotein to
a greater extent than the monomeric form of flavonoids [39,41,42]. Poly(naringenin) has a
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greater activity in reducing ABTS and DPPH radicals than naringenin [44]. Proanthocyanidins
found in various plants exhibit potent antioxidant activity, which positively correlates with
the degree of their polymerization [45–48]. The products of reactions between quercetin and
methylglyoxal (mono- and di-MGO quercetin adducts) retain the ability to scavenge DPPH
radical and carbonyl compounds [19]. Thus, the condensation of flavonoids with toxic lipid
peroxidation products leads not only to the utilization of the latter, but also to the formation
of compounds exhibiting high antioxidant activity.

The antioxidant activity of polyphenols in turn determines their capacity to reduce
transition metal ions, which can participate in the Fenton reaction in the presence of hydro-
gen peroxide, resulting in the initiation and branching of radical chains [49,50]. It is worth
noting that, in systems containing polyphenol and transition metal ions, such as Fe (III) and
Cu (II), several processes affecting each other may take place simultaneously. In particular,
it is known that polyphenols bind transition metal ions, forming complexes with differ-
ent stoichiometry, a process which highly depends on experimental conditions [32,51–54].
The redox process leads to changes in the composition and the ratio of the components
present in the system. As a result, various complexes are composed, among other things,
of oxidized forms of flavonoids and reduced metal ions form [54,55]. On the other hand,
complex formation leads to changes in the redox potential of the system and a shift of the
equilibrium of the redox reaction. Reagents used for the estimation of the metal-reducing
activity of compounds, such as ferrozine and BCDS, firmly bind reduced metal ions (the
constant of binding of ferrozine to Fe2+ is logβ = 15.5 [56] and that of BCDS to Cu+ is
logβ = 19.8 [57]), minimizing the effects of processes proceeding simultaneously on the
result of the measurement. Nevertheless, if a polyphenol is capable of firmly binding
metal ions, it may compete with the reagent (ferrozine, BCDS) for the binding of the cor-
responding metal ions [53,55,58–62]. In these cases, the concentration of ions that was
reduced in the presence of the polyphenol may also be considered as a measure of its
redox activity in the reaction mixture and can be used to compare the metal-reducing
activity of this polyphenol and other compounds. In turn, the model system containing
reagents competing with polyphenols for metal ions offers an additional tool for studying
polyphenol–metal ion interaction. The data being obtained by means of these systems
form the basis necessary for a better understanding of the mechanisms underlying the pro-
and antioxidant effects of polyphenols as well as a switch from antioxidant to prooxidant
properties of these compounds [49,50].

An examination of the metal-reducing activity of polyphenols showed that copper
(II) and iron (III) ions are reduced most effectively in the presence of four compounds
containing a catechol fragment: catechin, quercetin, eriodictyol, and taxifolin. In the liter-
ature, there is evidence indicating a high metal-reducing activity of catechol-containing
compounds (quercetin, taxifolin, catechin) [32,63,64]. However, the order of metal-reducing
efficacy of flavonoids may change depending on pH, the flavonoid/metal ion molar ratio,
and the time interval [63–65]. Most likely, in the first two cases, the changes in the redox
potentials of the systems play a key role, while in the last case the decisive factor is the
kinetics of the redox reactions [64]. In general, the results obtained here and the available
literature data demonstrate high metal-reducing activity of polyphenols containing the
catechol group [32,63,64]. DfTf contains two catechol moieties in the structure. Neverthe-
less, the metal-reducing activity of this compound is lower than that of catechol-containing
flavonoids, suggesting that this polyphenol is less likely to act as a prooxidant. The metal-
reducing capacity of poly(catechin)s condensed through acetaldehyde was also lower than
that of the parent flavonoid and decreased as their molecular weight increased [39]. The
copper-reducing activity of poly(naringenin) was lower than that of naringenin [44]. On
the other hand, the metal-reducing power of proanthocyanidins increased with increasing
size of polyphenols [58].

On the whole, our results support the data indicating that polyphenols (including DfTf)
exhibit higher reducing capacity toward copper ions than toward iron ions [32]. It is significant
that the concentration of iron (II) ions in the presence of DfTf depends only insignificantly on
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its concentration in the system, which we have shown earlier at pH 5.4 [31]. This effect is not
revealed in the presence of other catechol-containing compounds studied (taxifolin, eriodictyol,
catechin, and quercetin) and may be associated with the metal-binding capacity of DfTf and its
oxidized forms. This assumption is supported by the fact that ferrozine and DfTf compete with
each other for the binding of Fe (II) ions; in this case, DfTf rather firmly binds these ions. To date
there are no studies devoted to the evaluation of the stability of complexes formed between
the conjugates of flavonoids with carbonyl compounds and transition metal ions. However,
in the literature there is evidence indicating that some polyphenols compete for binding of
the corresponding ions with well-known chelators, including ferrozine. These are baicalein
(acidic and neutral pH) [53,59], quercetin (neutral pH) [53,55,60], isorhamnetin and tamarixetin
(neutral pH) [61], isoquercetin (slightly acidic and neutral pH) [60], proanthocyanidins [58],
and tannic acid [62]. Therefore, both monomeric and polymeric polyphenols are capable
of firmly binding transition metal ions. Nevertheless, the data available in the literature
do not enable one to directly estimate the impact of condensation reactions on the metal-
binding capacity of the polyphenolic fraction. Here, we demonstrate for the first time that
the interaction of taxifolin with glyoxylic acid leads to the formation of a product (DfTf)
exhibiting higher metal-binding activity in comparison not only to the parent flavonoid but
also to its structural analog quercetin, which possesses higher metal-binding capacity than
taxifolin [53]. Taking into account the structural features of polyphenols and the data presented
in the literature, several iron binding sites of DfTf can be proposed: (1) the 4-carbonyl group
in the C ring and the 5-hydroxyl group of the A ring; (2) the 4-carbonyl group in the C
ring and the 3-hydroxyl group of the C ring; and (3) the 3′- and 4′-hydroxy groups of the B
ring [49,51,53,66]. Our previous results have shown that naringenin lacking the 3-hydroxyl
group in the C ring and 3′-hydroxy groups in the B ring [51,52] are able to form complexes
with iron (II) and copper (I) ions, suggesting that the coordination of metal ions involves the
carbonyl and 3-hydroxyl groups. It may be assumed that the coordination of metal ions in
DfTf-iron complexes occurs at the same positions. Taxifolin also forms complexes with iron (II)
and copper (I) ions [51,52]. With due regard for the stoichiometry of the complexes, it may be
concluded that, in contrast to naringenin, one molecule of taxifolin is capable of binding two
metal ions [51,52], indicating that taxifolin has two coordination sites. Presumably, DfTf has
similar coordination sites. In favor of this suggestion are our previous data indicating that DfTf
is able to bind up to four iron (II) ions [31]. Supposing that one metal ion is coordinated at the
carbonyl group in the fourth position of the C ring and at the 5-OH-group, it is more likely that
the other ion is coordinated at the 3′- and 4′-hydroxy groups of the B ring. Nevertheless, the
involvement of the 3-hydroxyl and 4-oxo groups in the complex formation by the polyphenols
cannot be excluded.

A study of LPO in the presence of polyphenols and iron (II) ions showed that quercetin,
catechin, eriodictyol, and taxifolin (compounds containing a catechol fragment) are effective
inhibitors of LPO and exert similar inhibitory effects. Other studies on the effects of
flavonoids on the lipid peroxidation demonstrated a different order of the effectiveness
of these compounds, which depends on the system used [67,68]. Thus, Shahidi and
coworkers have shown that quercetin and taxifolin exhibit similar antioxidant activity in
a lipid system [69], while in another study quercetin inhibited the lipid peroxidation to a
lesser extent than taxifolin [70]. Quercetin better protects lipids from oxidation induced
by ultraviolet radiation or Fe (II) than catechin [68]. In addition, quercetin prevents the
autooxidation of rat cerebral membranes better than hesperetin and naringenin [67]. On
the other hand, hesperetin prevents linoleate peroxidation induced by Fe (II) better than
quercetin [67]. On the whole, the data indicate that compounds containing the ortho-
dihydroxy group exhibit a high lipid peroxidation inhibitory activity [36,71,72].

Thus, our results indicate that catechol-containing flavonoids exhibit high antioxidant
activity against ROS present in the aqueous phase and ROS generated in the biphasic
system. In contrast, DfTf, which shows the highest antioxidant activity in the aqueous
phase, inhibits LPO worse than quercetin, eriodictyol, and catechin. Presumably, this is
related to the physicochemical properties of these polyphenols (Table 2). As seen from
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the table, DfTf is most hydrophilic among all compounds examined. It can be suggested
that the more hydrophobic quercetin, eriodictyol, and catechin accumulate in the lipid to a
greater extent than hydrophilic DfTf.

Table 2. Physicochemical parameters of polyphenols being tested.

Polyphenols Solubility, mg/mL logP logD7.4

DfTf more than 12 mg/mL 1.13 ± 0.12 [31] -

taxifolin 0.87 [73]
1.0 [74] 1.57 ± 0.03 [52] 0.96 ± 0.02 [52]

quercetin 0.060 [75] 1.82 ± 0.32 [76]
1.26 1 [72] 0.76 ± 0.09 [77]

catechin 4.54 [78] 1.31 1 [72] -

hesperetin 0.001 [79] 2.6 [80] -

naringenin 0.00438 [81]

2.30 ± 0.18 [52]
2.60 ± 0.03 [76]

1.60 1 [72]
2.52 [80]

2.18 ± 0.06 [52]
2.09 ± 0.14 [82]

eriodictyol 0.070 [75] 2.27 ± 0.02 [76]
2.02 [80] -

1 Experiments were carried out at 50 ◦C.

This enhances the antioxidant effect produced by these compounds, namely, the inhi-
bition of LPO. At the same time, no significant difference was found between the inhibitory
effects of DfTf and taxifolin. In addition, DfTf inhibits LPO to a greater extent than hes-
peretin. In general, the results obtained indicate that DfTf may act as a relatively strong
antioxidant in biphasic systems. As mentioned above, poly(catechin)s and poly(rutin)
inhibit the oxidation of human low-density lipoprotein [39,42]. Additionally, these poly-
mers protect endothelial cells from oxidative injury induced by AAPH AAPH [39,42].
Water-soluble oligomers can also exert high antioxidant activity in oil-in-water emulsion
systems [58,83]. It has been suggested that, owing to their amphipathic structure, hy-
drophilic polyphenols can interact with lipids, which can lead to the localization of these
compounds at the lipid interface where they can efficiently inhibit LPO [58,83]. Probably,
the location of DfTf to some extent influences its LPO inhibitory activity. Meanwhile, the
metal-binding properties of the product may play a key role in the protection of lipids from
oxidation. A summary of the structure–activity relationships for the antioxidant activities
of the polyphenols being tested is shown in Figure 6.
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5. Conclusions

The results obtained indicate that quercetin, taxifolin, eriodicyol, and catechin, com-
pounds containing a catechol group, exhibit a higher antioxidant activity than hesperetin
and naringenin. The product of the condensation of taxifolin with glyoxylic acid contains
two catechol fragments in its structure. However, the relative efficiency of this compound
differs in various systems. The product exhibits the highest scavenging activity toward
hydrogen peroxide, a lower metal-reducing activity and a higher iron-binding activity
than catechol-containing flavonoids (the product competes with ferrozine for binding to
iron ions); its lipid peroxidation inhibitory activity is comparable with that of taxifolin.
Our previous results have shown that the product is more hydrophilic than taxifolin, indi-
cating different distribution of these compounds in biphasic systems. As a whole, these
data indicate that the condensation of flavonoids with toxic carbonyl compounds leads
not only to the utilization of the latter but also to the formation of products that exhibit
high antioxidant activity and, probably, are capable of scavenging additional molecules of
carbonyl compounds. In turn, the properties of parent flavonoids and products as well as
the conditions under which they show the maximum antioxidant activity can vary. Thus,
in the course of condensation reactions, the composition and the antioxidant profile of the
polyphenols fraction change. In addition, the bioavailability of polyphenols and carbonyl
compounds involved in these reactions as well as that of food components such as minerals
(owing to the metal-binding properties of products) can change.
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