Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (167)

Search Parameters:
Keywords = ferrofluid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1800 KiB  
Article
Design of a Photonic Crystal Fiber Optic Magnetic Field Sensor Based on Surface Plasmon Resonance
by Yuxuan Yi, Hua Yang, Tangyou Sun, Zao Yi, Zigang Zhou, Chao Liu and Yougen Yi
Sensors 2025, 25(13), 3931; https://doi.org/10.3390/s25133931 - 24 Jun 2025
Viewed by 421
Abstract
To enhance the sensing performance of fiber-optic magnetic field sensors, we explored the design, optimization, and application prospects of a D-type fiber-optic magnetic field sensor. This D-type PCF-SPR sensor is metal coated on one side (the metal used in this study is gold), [...] Read more.
To enhance the sensing performance of fiber-optic magnetic field sensors, we explored the design, optimization, and application prospects of a D-type fiber-optic magnetic field sensor. This D-type PCF-SPR sensor is metal coated on one side (the metal used in this study is gold), which serves as the active metal for SPR and enhances structural stability. Magnetic fluid is applied on the outer side of the gold film for SPR magnetic field sensing. Six internal air holes arranged in a hexagonal shape form a central light transmission channel that facilitates the connection between the two modes, which are the sensor’s core mode and SPP mode, respectively. The outer six large air holes and two small air holes are arranged in a circular pattern to form the cladding, which allows for better energy transmission and reduces energy loss in the fiber. In this paper, the finite element method is employed to analyze the transmission performance of the sensor, focusing on the transmission mode. Guidelines for optimizing the PCF-SPR sensor are derived from analyzing the fiber optic sensor’s dispersion curve, the impact of surface plasmon excitation mode, and the core mode energy on sensing performance. After analyzing and optimizing the transmission mode and structural parameters, the optimized sensor achieves a magnetic field sensitivity of 18,500 pm/mT and a resolution of 54 nT. This performance is several orders of magnitude higher than most other sensors in terms of sensitivity and resolution. The SPR-PCF magnetic field sensor offers highly sensitive and accurate magnetic field measurements and shows promising applications in medical and industrial fields. Full article
(This article belongs to the Special Issue Advances and Applications of Magnetic Sensors: 2nd Edition)
Show Figures

Figure 1

12 pages, 2838 KiB  
Article
Glass Microbubble Encapsulation for Improving the Lifetime of a Ferrofluid-Based Magnetometer
by Chenchen Zhang and Srinivas Tadigadapa
Micromachines 2025, 16(5), 519; https://doi.org/10.3390/mi16050519 - 28 Apr 2025
Viewed by 407
Abstract
In this paper, we explore the use of chip-scale blown glass microbubble structures for MEMS packaging applications. Specifically, we demonstrate the efficacy of this method of packaging for the improvement of the lifetime of a ferrofluid-based magnetoviscous magnetometer. We have previously reported on [...] Read more.
In this paper, we explore the use of chip-scale blown glass microbubble structures for MEMS packaging applications. Specifically, we demonstrate the efficacy of this method of packaging for the improvement of the lifetime of a ferrofluid-based magnetoviscous magnetometer. We have previously reported on the novel concept of a ferrofluid based magnetometer in which the viscoelastic response of a ferrofluid interfacial layer on a high frequency shear wave quartz resonator is sensitively monitored as a function of applied magnetic field. The quantification of the magnetic field is accomplished by monitoring the at-resonance admittance characteristics of the ferrofluid-loaded resonator. While the proof-of-concept measurements of the device have been successfully made, under open conditions, the evaporation of the carrier fluid of the ferrofluid continuously changes its viscoelastic properties and compromises the longevity of the magnetometer. To prevent the evaporation of the ferrofluid, here, we seal the ferrofluid on top of the micromachined quartz resonator within a blown glass hemispherical microbubble attached to it using epoxy. The magnetometer design used a bowtie-shaped thin film Metglas (Fe85B5Si10) magnetic flux concentrator on the resonator chip. A four-times smaller noise equivalent, a magnetic field of 600 nT/√Hz at 0.5 Hz was obtained for the magnetometer using the Metglas flux concentrator. The ferrofluid-based magnetometer is capable of sensing magnetic fields up to a modulation frequency of 40 Hz. Compared with the unsealed ferrofluid device, the lifetime of the glass microbubble integrated chip packaged device improved significantly from only a few hours to over 50 days and continued. Full article
Show Figures

Figure 1

16 pages, 3806 KiB  
Article
Tunable Magnetic Heating in La0.51Sr0.49MnO3 and La0.51Dy0.045Sr0.445MnO3 Nanoparticles: Frequency- and Amplitude-Dependent Behavior
by Mourad Smari, Monica Viorica Moisiuc, Mohammad Y. Al-Haik, Iordana Astefanoaei, Alexandru Stancu, Fedor Shelkovyi, Radel Gimaev, Julia Piashova, Vladimir Zverev and Yousef Haik
Nanomaterials 2025, 15(9), 642; https://doi.org/10.3390/nano15090642 - 23 Apr 2025
Viewed by 441
Abstract
The use of perovskite manganite nanoparticles in magnetic hyperthermia has attracted significant attention due to their tunable magnetic properties and high specific absorption rate (SAR). In this work, we present a combined experimental and theoretical investigation of the frequency- and amplitude-dependent magnetic heating [...] Read more.
The use of perovskite manganite nanoparticles in magnetic hyperthermia has attracted significant attention due to their tunable magnetic properties and high specific absorption rate (SAR). In this work, we present a combined experimental and theoretical investigation of the frequency- and amplitude-dependent magnetic heating behavior of La0.51Sr0.49MnO3 (LSMO) and Dy-doped La0.51Dy0.045Sr0.445MnO3 (DLSMO) nanoparticles. The nanoparticles were synthesized via the sol–gel method and characterized by XRD and SEM, while SAR values were experimentally evaluated under varying magnetic field strengths (60–120 Oe) and frequencies (150–300 kHz). In parallel, theoretical modeling based on Néel and Brownian relaxation mechanisms was employed to predict SAR behavior as a function of particle size, magnetic anisotropy, and fluid viscosity. The results reveal that Dy doping enhances magnetic anisotropy, which modifies the relaxation dynamics and leads to a reduction in SAR. The model identifies the optimal nanoparticle size (~18–20 nm) and ferrofluid viscosity to maximize heating efficiency. This combined approach provides a comprehensive framework for designing and optimizing perovskite-based nanoparticles for magnetic hyperthermia applications. Full article
(This article belongs to the Section Physical Chemistry at Nanoscale)
Show Figures

Figure 1

19 pages, 13794 KiB  
Article
Experimental Study on Thermal Conductivity of Hybrid Magnetic Fluids Under External Magnetic Field
by Licong Jin, Jixian Yang, Qian Li, Xin Tian and Decai Li
Magnetochemistry 2025, 11(4), 30; https://doi.org/10.3390/magnetochemistry11040030 - 3 Apr 2025
Viewed by 905
Abstract
In the paper, a hybrid magnetic fluid is prepared by adding carbon nanotubes to pure ferrofluid to improve its thermal conductivity. Furthermore, an electromagnet is used as magnetic source equipment, and the magnetic field strength in the air gap of the electromagnet is [...] Read more.
In the paper, a hybrid magnetic fluid is prepared by adding carbon nanotubes to pure ferrofluid to improve its thermal conductivity. Furthermore, an electromagnet is used as magnetic source equipment, and the magnetic field strength in the air gap of the electromagnet is analyzed in theory, simulations, and experiments. A thermal conductivity measurement apparatus for magnetic fluid is established according to the transient hot-wire method. The effects of weight fraction and the length of carbon nanotubes, the external magnetic field strength, and the magnetic field duration time on the thermal conductivity of hybrid magnetic fluid are experimentally investigated. The results show that the thermal conductivity of the hybrid magnetic fluid is significantly improved by adding long carbon nanotubes (10–30 μm), and the thermal conductivity could be enhanced by 23.39% when its weight fraction is 1%. The magnetic field strength (41, 81, 122, 162 mT) and magnetic field duration time have little influence on the thermal conductivity of the hybrid magnetic fluid. The thermal conductivity of the hybrid magnetic fluid has good stability. Full article
(This article belongs to the Special Issue Ferrofluids: Electromagnetic Properties and Applications)
Show Figures

Figure 1

28 pages, 7166 KiB  
Article
Enhanced Stability and Adsorption of Cross-Linked Magnetite Hydrogel Beads via Silica Impregnation
by Nur Maisarah Mohamad Sarbani, Endar Hidayat, Kanako Naito, Mitsuru Aoyagi and Hiroyuki Harada
J. Compos. Sci. 2025, 9(4), 152; https://doi.org/10.3390/jcs9040152 - 23 Mar 2025
Viewed by 482
Abstract
Hydrogel-based adsorbents have gained increasing recognition in recent years due to their promising potential for pollutant removal. However, conventional hydrogels often suffer from low mechanical strength over prolonged use. Therefore, this study explores the incorporation of silica extracted from bamboo culm (Dendrocalamus [...] Read more.
Hydrogel-based adsorbents have gained increasing recognition in recent years due to their promising potential for pollutant removal. However, conventional hydrogels often suffer from low mechanical strength over prolonged use. Therefore, this study explores the incorporation of silica extracted from bamboo culm (Dendrocalamus asper) to enhance the mechanical stability of hydrogel beads composed from carboxymethyl cellulose (CMC), chitosan (CS), and magnetite ferrofluid (Fe3O4), through cross-linking. We hypothesize that silica enhances the mechanical properties of magnetite hydrogel beads without compromising their adsorption capacity. The extracted silica was confirmed with FTIR and EDS analysis. The synthesized CMC-CS-Fe3O4-Si hydrogel beads were characterized using FTIR and SEM. Its stability was assessed through dry weight loss measurements, while its adsorption efficiency was evaluated using batch adsorption experiments. The silica-incorporated hydrogel exhibited enhanced mechanical and thermal stability under various pH and temperature conditions, without negatively affecting its adsorption performance, achieving maximum adsorption capacities of 53.00 mg/g for Cr (VI) and 85.06 mg/g for Cu (II). Desorption and regeneration studies confirmed the reusability of the hydrogel for more than four cycles. Overall, the interaction between the hydrogel and silica resulted in excellent adsorption performance, improved mechanical properties, and long-term reusability, making this a promising hydrogel adsorbent for wastewater remediation. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

15 pages, 1374 KiB  
Article
Collapse and Turbulence of Electro-Hydrodynamic Water Waves
by Evgeny A. Kochurin
Water 2025, 17(2), 140; https://doi.org/10.3390/w17020140 - 7 Jan 2025
Cited by 3 | Viewed by 828
Abstract
This work numerically investigates the fully nonlinear evolution of the free surface of a deep non-conducting liquid in a strong tangential electric field based on the method of dynamic conformal transformations. Direct numerical simulation revealed two possible scenarios for the evolution of nonlinear [...] Read more.
This work numerically investigates the fully nonlinear evolution of the free surface of a deep non-conducting liquid in a strong tangential electric field based on the method of dynamic conformal transformations. Direct numerical simulation revealed two possible scenarios for the evolution of nonlinear surface electro-hydrodynamic waves: collapse at finite time (in the non-viscous case) and turbulence generated by strongly nonlinear shock-like waves (taking into account both dissipation and pumping of energy). In the process of wave breaking, regions with a steep wave front arise, in which the curvature of the boundary increases infinitely. The inclusion of viscosity prevents the formation of singularities, and the system transfers to a strongly turbulent mode of motion. The spectrum of surface disturbances is very well described by the Kuznetsov spectrum k4, which corresponds to the second-order singularities in the liquid boundary. The measured probability density functions demonstrate a high level of intermittency in the turbulent regime, i.e., extreme events such as shocks play a dominant role in the evolution of the system. The results of calculations such as the turbulence spectrum, type of surface singularity, and the presence of intermittency are in good qualitative agreement with recent experiments carried out by Ricard and Falcon for a ferrofluid in a magnetic field. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

20 pages, 697 KiB  
Article
Local Energy Minima and Density of Energy Barriers in Dense Clusters of Magnetic Nanoparticles
by Natalia L. Gorn, Elena K. Semenova and Dmitry Berkov
Inorganics 2024, 12(12), 329; https://doi.org/10.3390/inorganics12120329 - 17 Dec 2024
Viewed by 938
Abstract
In this paper, we focus on the properties of local energy minima and energy barriers in immobilized dense clusters of magnetic nanoparticles. Understanding of these features is highly interesting both for the fundamental physics of disordered systems with long-range interparticle interaction and for [...] Read more.
In this paper, we focus on the properties of local energy minima and energy barriers in immobilized dense clusters of magnetic nanoparticles. Understanding of these features is highly interesting both for the fundamental physics of disordered systems with long-range interparticle interaction and for numerous applications of modern ferrofluids consisting of such clusters. In particular, it is needed to predict the ac-susceptibility of these systems and their magnetization relaxation after a sudden change in the external field, because both processes occur via magnetization jumps over energy barriers that separate the energy minima. Due to the exponential increase in the corresponding jump time with barrier height (tswexp(ΔE/kT)), direct Langevin dynamics simulations of this process are not feasible. For this reason, we have developed efficient numerical methods both for finding as many energy minima as possible and for the reliable evaluation of energy barriers between them. Our results for the distribution of overlaps between the local energy minima imply that there is no spin-glass state in such clusters even when they consist of particles with a small anisotropy. Further, we show that the distributions of energy barrier heights are qualitatively different for clusters of particles with small, intermediate, and large anisotropies, which has important consequences for the magnetization dynamics of these systems. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Figure 1

15 pages, 3616 KiB  
Article
Polarizing Magnetic Field Effect on Some Electrical Properties of a Ferrofluid in Microwave Field
by Catalin N. Marin, Paul C. Fannin and Iosif Malaescu
Magnetochemistry 2024, 10(11), 88; https://doi.org/10.3390/magnetochemistry10110088 - 9 Nov 2024
Cited by 1 | Viewed by 1293
Abstract
The complex dielectric permittivity, ε (f, H) = ε′ (f, H) − i ε″ (f, H), in the microwave frequency range f, of (0.1–3) GHz and polarizing field values H, [...] Read more.
The complex dielectric permittivity, ε (f, H) = ε′ (f, H) − i ε″ (f, H), in the microwave frequency range f, of (0.1–3) GHz and polarizing field values H, in the range of (0–135) kA/m, was measured for a kerosene-based ferrofluid with magnetite particles. A relaxation process attributed to interfacial type relaxation was highlighted, determining for the first time in the microwave field, the activation energy of the dielectric relaxation process in the presence of the magnetic field, EA(H), in relation to the activation energy in zero field, EA(H = 0). Based on the complex permittivity measurements and the Claussius–Mossotti equation, the dependencies on frequency (f), and magnetic field (H), of the polarizability (α) and electrical conductivity (σ), were determined. From the dependence of α(f,H), the electric dipolar moment, p, of the particles in the ferrofluid, was determined. The conductivity spectrum, σ(f,H), was found to be in agreement with Jonscher’s universal law and the electrical conduction mechanism in the ferrofluid was explained using both Mott’s VRH (variable range hopping) model and CBH (correlated barrier hopping) model. Based on these models and conductivity measurements, the hopping distance, Rh, of the charge carriers and the maximum barrier height, Wm, for the investigated ferrofluid was determined for the first time in the microwave field. Knowledge of these electrical properties of the ferrofluid in the microwave field is useful for explaining the mechanisms of polarization and control of electrical conductivity with an external magnetic field, in order to use ferrofluids in various technological applications in microwave field. Full article
(This article belongs to the Special Issue Ferrofluids - Electromagnetic Properties and Applications)
Show Figures

Figure 1

20 pages, 6849 KiB  
Article
Surface-Modified Iron Oxide Nanoparticles with Natural Biopolymers for Magnetic Hyperthermia: Effect of Reducing Agents and Type of Biopolymers
by Abdollah Hajalilou, Liliana P. Ferreira, M. E. Melo Jorge, César P. Reis and Maria Margarida Cruz
J. Compos. Sci. 2024, 8(10), 425; https://doi.org/10.3390/jcs8100425 - 14 Oct 2024
Cited by 14 | Viewed by 1842
Abstract
Magnetic fluid hyperthermia, a minimally invasive localized therapy that uses heat generated by magnetic nanoparticles under an AC magnetic field, is a complementary approach for cancer treatment that is excellent due to its advantages of being noninvasive and addressing only the affected region. [...] Read more.
Magnetic fluid hyperthermia, a minimally invasive localized therapy that uses heat generated by magnetic nanoparticles under an AC magnetic field, is a complementary approach for cancer treatment that is excellent due to its advantages of being noninvasive and addressing only the affected region. Still, its use as a stand-alone therapy is hindered by the simultaneous requirement of nanoparticle biocompatibility, good heating efficiency, and physiological safe dose. To overcome these limits, the biocompatible magnetic nanoparticles’ heating efficiency must be optimized. Iron oxide nanoparticles are accepted as the more biocompatible magnetic nanoparticles available. Therefore, in this work, superparamagnetic iron oxide nanoparticles were synthesized by a low-cost coprecipitation method and modified with starch and gum to increase their heating efficiency and compatibility with living tissues. Two different reducing agents, sodium hydroxide (NaOH) and ammonium hydroxide (NH4OH), were used to compare their influence. The X-ray diffraction results indicate the formation of a single magnetite/maghemite phase in all cases, with the particle size distribution depending on the coating and reducing agent. Citric acid functionalized water-based ferrofluids were also prepared to study the heating efficiency of the nanoparticles under a magnetic field with a 274 kHz frequency and a 14 kAm−1 amplitude. The samples prepared with NaOH display a higher specific loss power (SLP) compared to the ones prepared with NH4OH. The SLP value of 72 Wg−1 for the magnetic nanoparticles coated with a combination of starch and gum arabic, corresponding to an intrinsic loss power (ILP) of 2.60 nWg−1, indicates that they are potential materials for magnetic hyperthermia therapy. Full article
(This article belongs to the Section Polymer Composites)
Show Figures

Graphical abstract

18 pages, 11094 KiB  
Article
Simulation and Experimental Design of Magnetic Fluid Seal Safety Valve for Pressure Vessel
by Zhenggui Li, Ziyue Wang, Changrong Shen, Wangxu Li, Yanxiong Jiao, Chuanshi Cheng, Jie Min and Yuanyuan Li
Processes 2024, 12(9), 2040; https://doi.org/10.3390/pr12092040 - 21 Sep 2024
Cited by 1 | Viewed by 1572
Abstract
This article focuses on the safety valve of pressure vessels, and a new ferrofluid sealing device for pressure vessel safety valves is developed based on a special magnetic circuit. A combined method of numerical calculation and experimental analysis is used to study the [...] Read more.
This article focuses on the safety valve of pressure vessels, and a new ferrofluid sealing device for pressure vessel safety valves is developed based on a special magnetic circuit. A combined method of numerical calculation and experimental analysis is used to study the relationship between seal clearance, number of seals, pole slot width, pole tooth height, pole tooth width, and the sealing pressure of the ferrofluid sealing device. The research results show that seal clearance and pole tooth width have a significant impact on the sealing performance, and as the dimensions increase, the sealing pressure decreases. As the number of seals, pole tooth height, and slot width increase, the sealing performance initially improves and then decreases. This phenomenon is attributed to the increase in magnetic reluctance in the magnetic circuit. In experimental studies, when the excitation current of the electromagnet is 240 mA and the coil turns number 30, the sealing capacity is 61.22 kPa. When the excitation current is 200 mA and the coil turns number 80, the sealing capacity is 168.24 kPa. The experiments demonstrate the compensating ability of magnetic fluid seals in combination with safety valve seals, confirming that combined seals have higher reliability compared to conventional mechanical seals. Full article
(This article belongs to the Special Issue Modeling, Simulation and Control in Energy Systems)
Show Figures

Figure 1

19 pages, 5575 KiB  
Article
Impact of Navier’s Slip and MHD on a Hybrid Nanofluid Flow over a Porous Stretching/Shrinking Sheet with Heat Transfer
by Thippaiah Maranna, Gadhigeppa Myacher Sachin, Ulavathi Shettar Mahabaleshwar, Laura M. Pérez and Igor V. Shevchuk
Fluids 2024, 9(8), 180; https://doi.org/10.3390/fluids9080180 - 10 Aug 2024
Cited by 10 | Viewed by 1803
Abstract
The main objective of this study is to explore the inventive conception of the magnetohydrodynamic flow of a hybrid nanofluid over-porous stretching/shrinking sheet with the effect of radiation and mass suction/injection. The hybrid nanofluid advances both the manufactured nanofluid of the current region [...] Read more.
The main objective of this study is to explore the inventive conception of the magnetohydrodynamic flow of a hybrid nanofluid over-porous stretching/shrinking sheet with the effect of radiation and mass suction/injection. The hybrid nanofluid advances both the manufactured nanofluid of the current region and the base fluid. For the current investigation, hybrid nanofluids comprising two different kinds of nanoparticles, aluminium oxide and ferrofluid, contained in water as a base fluid, are considered. A collection of highly nonlinear partial differential equations is used to model the whole physical problem. These equations are then transformed into highly nonlinear ordinary differential equations using an appropriate similarity technique. The transformed differential equations are nonlinear, and thus it is difficult to analytically solve considering temperature increases. Then, the outcome is described in incomplete gamma function form. The considered physical parameters namely, magnetic field, Inverse Darcy number, velocity slip, suction/injection, temperature jump effects on velocity, temperature, skin friction and Nusselt number profiles are reviewed using plots. The results reveal that magnetic field, and Inverse Darcy number values increase as the momentum boundary layer decreases. Moreover, higher values of heat sources and thermal radiation enhance the thermal boundary layer. The present problem has various applications in manufacturing and technological devices such as cooling systems, condensers, microelectronics, digital cooling, car radiators, nuclear power stations, nano-drag shipments, automobile production, and tumour treatments. Full article
Show Figures

Figure 1

17 pages, 7216 KiB  
Article
A Double-Rotating Ferrofluid Vane Micropump with an Embedded Fixed Magnet
by Ye Wang, Zhenggui Li, Decai Li, Fang Chen, Qin Zhao, Jie Qing, Xin Li, Chao Yang, Xinyue He and Yi Zhao
Actuators 2024, 13(8), 308; https://doi.org/10.3390/act13080308 - 9 Aug 2024
Viewed by 1538
Abstract
This paper introduces the prototype design, magnetic field analysis and experimental test of a double-rotating ferrofluid vane micropump with an embedded fixed magnet. The micropump is based on the working principle of a positive-displacement pump, as well as the magnetic characteristics and flow [...] Read more.
This paper introduces the prototype design, magnetic field analysis and experimental test of a double-rotating ferrofluid vane micropump with an embedded fixed magnet. The micropump is based on the working principle of a positive-displacement pump, as well as the magnetic characteristics and flow properties of magnetic fluid. Through the numerical analysis of the pump cavity magnetic field and the experimental test, the structural parameters of the micropump are optimized reasonably. The pumping flow and pumping height of the micropump were characterized at different driving speeds. The maximum pumping flow rate is approximately 410 μL/min, and the maximum pumping height is approximately 111.4 mm water column. The micropump retains the advantages of simple structure, easy manufacture, flexible control, self-sealing, self-lubrication, low heat production, etc., and can block the pumped liquid backflow. The resulting double-rotating ferrofluid blades can improve pumping efficiency and pumping capacity, and can improve pumping reliability and stability to a certain extent. Full article
(This article belongs to the Section Miniaturized and Micro Actuators)
Show Figures

Figure 1

11 pages, 2162 KiB  
Article
Non-Debye Behavior of the Néel and Brown Relaxation in Interacting Magnetic Nanoparticle Ensembles
by Cristian E. Botez and Jeffrey Knoop
Materials 2024, 17(16), 3957; https://doi.org/10.3390/ma17163957 - 9 Aug 2024
Cited by 2 | Viewed by 1330
Abstract
We used ac-susceptibility measurements to study the superspin relaxation in Fe3O4/Isopar M nanomagnetic fluids of different concentrations. Temperature-resolved data collected at different frequencies, χ″ vs. T|f, reveal magnetic events both below and above the freezing point of [...] Read more.
We used ac-susceptibility measurements to study the superspin relaxation in Fe3O4/Isopar M nanomagnetic fluids of different concentrations. Temperature-resolved data collected at different frequencies, χ″ vs. T|f, reveal magnetic events both below and above the freezing point of the carrier fluid (TF = 197 K): χ″ shows peaks at temperatures Tp1 and Tp2 around 75 K and 225 K, respectively. Below TF, the Néel mechanism is entirely responsible for the superspin relaxation (as the carrier fluid is frozen), and we found that the temperature dependence of the relaxation time, τN(Tp1), is well described by the Dorman–Bessais–Fiorani (DBF) model: τNT=τrexpEB+EadkB T. Above TF, both the internal (Néel) and the Brownian superspin relaxation mechanisms are active. Yet, we found evidence that the effective relaxation times, τeff, corresponding to the Tp2 peaks observed in the denser samples do not follow the typical Debye behavior described by the Rosensweig formula 1τeff=1τN+1τB. First, τeff is 5 × 10−5 s at 225 K, almost three orders of magnitude more that its Néel counterpart, τN~8 × 10−8 s, estimated by extrapolating the above-mentioned DBF analysis. Thus, 1τN1τeff, which is clearly not consistent with the Rosensweig formula. Second, the observed temperature dependence of the effective relaxation time, τeff(Tp2), is excellently described by τB1T=Tγ0expEkBTT0, a model solely based on the hydrodynamic Brown relaxation, τB(T)=3ηTVHkBT, combined with an activation law for the temperature variation of the viscosity, ηT=η0expE/kB(TT0. The best fit yields γ0=3ηVHkB = 1.6 × 10−5 s·K, E′/kB = 312 K, and T0′ = 178 K. Finally, the higher temperature Tp2 peaks vanish in the more diluted samples (δ ≤ 0.02). This indicates that the formation of larger hydrodynamic particles via aggregation, which is responsible for the observed Brownian relaxation in dense samples, is inhibited by dilution. Our findings, corroborating previous results from Monte Carlo calculations, are important because they might lead to new strategies to synthesize functional magnetic ferrofluids for biomedical applications. Full article
(This article belongs to the Special Issue Functional Nanoparticle Materials: From Synthesis to Application)
Show Figures

Figure 1

14 pages, 1327 KiB  
Article
Microfluidic Detection of SPIONs and Co-Ferrite Ferrofluid Using Amorphous Wire Magneto-Impedance Sensor
by Gabriele Barrera, Federica Celegato, Marta Vassallo, Daniele Martella, Marco Coïsson, Elena S. Olivetti, Luca Martino, Hüseyin Sözeri, Alessandra Manzin and Paola Tiberto
Sensors 2024, 24(15), 4902; https://doi.org/10.3390/s24154902 - 28 Jul 2024
Cited by 5 | Viewed by 2091
Abstract
The detection of magnetic nanoparticles in a liquid medium and the quantification of their concentration have the potential to improve the efficiency of several relevant applications in different fields, including medicine, environmental remediation, and mechanical engineering. To this end, sensors based on the [...] Read more.
The detection of magnetic nanoparticles in a liquid medium and the quantification of their concentration have the potential to improve the efficiency of several relevant applications in different fields, including medicine, environmental remediation, and mechanical engineering. To this end, sensors based on the magneto-impedance effect have attracted much attention due to their high sensitivity to the stray magnetic field generated by magnetic nanoparticles, their simple fabrication process, and their relatively low cost. To improve the sensitivity of these sensors, a multidisciplinary approach is required to study a wide range of soft magnetic materials as sensing elements and to customize the magnetic properties of nanoparticles. The combination of magneto-impedance sensors with ad hoc microfluidic systems favors the design of integrated portable devices with high specificity towards magnetic ferrofluids, allowing the use of very small sample volumes and making measurements faster and more reliable. In this work, a magneto-impedance sensor based on an amorphous Fe73.5Nb3Cu1Si13.5B9 wire as the sensing element is integrated into a customized millifluidic chip. The sensor detects the presence of magnetic nanoparticles in the ferrofluid and distinguishes the different stray fields generated by single-domain superparamagnetic iron oxide nanoparticles or magnetically blocked Co-ferrite nanoparticles. Full article
(This article belongs to the Special Issue Challenges and Future Trends of Magnetic Sensors)
Show Figures

Figure 1

13 pages, 8496 KiB  
Article
The Fluorescent Cell Line SW620-GFP Is a Valuable Model to Monitor Magnetic Hyperthermia
by Saray Rosales, Rodolfo Hernández-Gutiérrez, Alma Oaxaca, Zaira López, Norberto Casillas, Peter Knauth, Luis H. Quintero, José A. Paz, Francisco Cholico, Celso Velásquez and Mario E. Cano
Bioengineering 2024, 11(7), 638; https://doi.org/10.3390/bioengineering11070638 - 21 Jun 2024
Cited by 1 | Viewed by 1890
Abstract
In this work, the cell line SW620-GFP has been used in a complete magnetic hyperthermia assay, from the preparation of the ferrofluid with folate-coated iron oxide nanoparticles to in vivo experiments. The physical and chemical characterization of the nanoparticles evidenced their superparamagnetic behaviour, [...] Read more.
In this work, the cell line SW620-GFP has been used in a complete magnetic hyperthermia assay, from the preparation of the ferrofluid with folate-coated iron oxide nanoparticles to in vivo experiments. The physical and chemical characterization of the nanoparticles evidenced their superparamagnetic behaviour, an average diameter of 12 ± 4 nm, a 2 nm coat thickness, and a high-power loss density. The main innovation of the work is the exclusive capability of viable SW620-GFP cells to emit fluorescence, enabling fast analysis of both, cell viability in vitro with an epifluorescence microscope and tumour size and shape in vivo in a non-invasive manner using the iBox technology. Moreover, with this imaging technique, it was possible to demonstrate the successful tumour size reduction in mice applying magnetic hyperthermia three times a week over 3 weeks. Full article
(This article belongs to the Section Nanobiotechnology and Biofabrication)
Show Figures

Figure 1

Back to TopTop