Collapse and Turbulence of Electro-Hydrodynamic Water Waves
Abstract
:1. Introduction
2. Model Equations
3. Numerical Model and Parameters
4. Simulation Results: Wave Breaking
5. Simulation Results: Strong Turbulence Regime
6. Discussion
- In the limit of a strong external field (gravity and capillarity forces are negligible) and in the absence of energy dissipation mechanism, the surface electro-hydrodynamic waves collapse in a finite time. The breaking of surface waves corresponds to the formation of a singularity in the second spatial derivative of the liquid surface (the curvature of the boundary increases infinitely).
- Inclusion of the viscosity prevents the formation of singularities in a finite time. Taking into account the external driving force, the system passes into a quasi-stationary mode of motion, when the pumping is completely compensated by dissipative effects.
- The measured probability density functions in the strong turbulence regime deviate significantly from the Gaussian distribution valid for random uncorrelated signals. The measured probability density has elongated tails, which are approximated by a power-law function. Such behavior of the distribution function indicates strong intermittency in the system, when extreme events such as shock waves play a dominant role.
- The shape of the fluid boundary in the strong turbulence regime is a set of second-order shocks randomly distributed along the liquid surface. Despite the fact that each individual shock is a coherent structure, the evolution of the shock wave ensemble becomes chaotic due to the random nature of the energy pumping.
- The calculated turbulence spectrum agrees with high accuracy with the estimate (9) obtained under the assumption of the dominant influence of curvature singularities. It should be noted that the observed spectrum is not derived from the assumption of smallness of nonlinear effects (weak turbulence) but is obtained on the basis of a fully nonlinear approach. Similar spectra of strong turbulence can be realized in acoustic shock waves, large-amplitude ocean and sea waves, and in developed vortex hydrodynamic turbulence [11,31,79,80,81,82].
7. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stokes, G.G. On the theory of oscillatory waves. Trans. Cam. Philos. Soc. 1847, 8, 441–455. [Google Scholar]
- Stokes, G.G. On the theory of oscillatory waves. Math. Phys. Pap. 1880, 1, 197–229. [Google Scholar]
- Dyachenko, S.A.; Lushnikov, P.M.; Korotkevich, A.O. Complex singularity of a Stokes wave. JETP Lett. 2014, 98, 675–679. [Google Scholar] [CrossRef]
- Dyachenko, S.A.; Lushnikov, P.M.; Korotkevich, A.O. Branch cuts of Stokes wave on deep water. Part I: Numerical solution and Padé approximation. Stud. Appl. Math. 2016, 137, 419–472. [Google Scholar] [CrossRef]
- Korotkevich, A.O.; Lushnikov, P.M.; Semenova, A.; Dyachenko, S.A. Superharmonic instability of Stokes waves. Stud. Appl. Math. 2023, 150, 119–134. [Google Scholar] [CrossRef]
- Dyachenko, S.A.; Hur, V.M. Stokes waves with constant vorticity: Folds, gaps and fluid bubbles. J. Fluid Mech. 2019, 878, 502–521. [Google Scholar] [CrossRef]
- Flamarion, M.V. Complex flow structures beneath rotational depression solitary waves in gravity-capillary flows. Wave Motion 2023, 117, 103108. [Google Scholar] [CrossRef]
- Flamarion, M.V.; Nachbin, A.; Ribeiro, R., Jr. Time-dependent Kelvin cat-eye structure due to current–topography interaction. J. Fluid Mech. 2020, 889, A11. [Google Scholar] [CrossRef]
- Flamarion, M.V.; Ribeiro, R., Jr. An iterative method to compute conformal mappings and their inverses in the context of water waves over topographies. Int. J. Numer. Methods Fluids 2021, 93, 3304–3311. [Google Scholar] [CrossRef]
- Flamarion, M.V.; Milewski, P.A.; Nachbin, A. Rotational waves generated by current-topography interaction. Stud. Appl. Math. 2019, 142, 433–464. [Google Scholar] [CrossRef]
- Kuznetsov, E.A. Turbulence spectra generated by singularities. JETP Lett. 2004, 80, 83. [Google Scholar] [CrossRef]
- Nazarenko, S. Wave Turbulence; Springer: Berlin, Germany, 2011. [Google Scholar]
- Zakharov, V.E.; L’vov, V.S.; Falkovich, G. Kolmogorov Spectra of Turbulence I: Wave Turbulence; Springer: Berlin, Germany, 1992. [Google Scholar]
- Newell, A.C.; Rumpf, B. Wave turbulence. Annu. Rev. Fluid Mech. 2011, 43, 59–78. [Google Scholar] [CrossRef]
- Zakharov, V.E. Weak turbulence in media with a decay spectrum. J. App. Mech. Tech. Phys. 1965, 6, 22. [Google Scholar] [CrossRef]
- Zakharov, V.E.; Sagdeev, R.Z. Spectrum of acoustic turbulence. Sov. Phys. Dokl. 1970, 15, 439. [Google Scholar]
- Zakharov, V.E.; Filonenko, N.N. Weak turbulence of capillary waves. J. App. Mech. Tech. Phys. 1967, 8, 37–40. [Google Scholar] [CrossRef]
- Hasselmann, K. Feynman diagrams and interaction rules of wave-wave scattering processes. Rev. Geophys. 1966, 4, 1–32. [Google Scholar] [CrossRef]
- Rosenhaus, V.; Smolkin, V. Feynman rules for forced wave turbulence. J. High. Energy Phys. 2023, 2023, 1–41. [Google Scholar] [CrossRef]
- Rosenhaus, V.; Smolkin, M. Wave turbulence and the kinetic equation beyond leading order. Phys. Rev. E 2024, 109, 064127. [Google Scholar] [CrossRef]
- Galtier, S. Turbulence in space plasmas and beyond. J. Phys. A Math. Theor. 2018, 51, 293001. [Google Scholar] [CrossRef]
- David, V.; Galtier, S.; Meyrand, R. Monofractality in the solar wind at electron scales: Insights from kinetic Alfvén waves turbulence. Phys. Rev. Lett. 2024, 132, 085201. [Google Scholar] [CrossRef]
- Galtier, S.; Nazarenko, S.V.; Newell, A.C.; Pouquet, A. A weak turbulence theory for incompressible magnetohydrodynamics. J. Plasma Phys. 2000, 63, 447–488. [Google Scholar] [CrossRef]
- Tronko, N.; Nazarenko, S.V.; Galtier, S. Weak turbulence in two-dimensional magnetohydrodynamics. Phys. Rev. E 2013, 87, 033103. [Google Scholar] [CrossRef]
- Griffin, A.; Krstulovic, G.; Lvov, V.S.; Nazarenko, S. Energy spectrum of two-dimensional acoustic turbulence. Phys. Rev. Lett. 2022, 128, 224501. [Google Scholar] [CrossRef] [PubMed]
- Shavit, M.; Falkovich, G. Singular measures and information capacity of turbulent cascades. Phys. Rev. Lett. 2020, 125, 104501. [Google Scholar] [CrossRef] [PubMed]
- Frahm, K.M.; Shepelyansky, D.L. Random matrix model of Kolmogorov-Zakharov turbulence. Phys. Rev. E 2024, 109, 044201. [Google Scholar] [CrossRef]
- Semisalov, B.V.; Medvedev, S.B.; Nazarenko, S.V.; Fedoruk, M.P. Numerical analysis of the kinetic equation describing isotropic 4-wave interactions in non-linear physical systems. Commun. Nonlinear Sci. Numer. Simul. 2024, 133, 107957. [Google Scholar] [CrossRef]
- Galtier, S. Fast magneto-acoustic wave turbulence and the Iroshnikov–Kraichnan spectrum. J. Plasma Phys. 2023, 89, 905890205. [Google Scholar] [CrossRef]
- Kochurin, E.A.; Kuznetsov, E.A. Direct numerical simulation of acoustic turbulence: Zakharov–Sagdeev spectrum. JETP Lett. 2022, 116, 863–868. [Google Scholar] [CrossRef]
- Kadomtsev, B.B.; Petviashvili, V.I. On acoustic turbulence. Dokl. Akad. Nauk SSSR 1973, 208, 794–796. [Google Scholar]
- Gupta, P.; Scalo, C. Spectral energy cascade and decay in nonlinear acoustic waves. Phys. Rev. E 2018, 98, 033117. [Google Scholar] [CrossRef]
- Alam, S.; Sahu, P.K.; Verma, M.K. Universal functions for Burgers turbulence. Phys. Rev. Fluids 2022, 7, 074605. [Google Scholar] [CrossRef]
- Kolmakov, G.V.; Efimov, V.B.; Ganshin, A.N.; McClintock, P.V.; Mezhov-Deglin, L.P. Formation of a direct Kolmogorov-like cascade of second-sound waves in He II. Phys. Rev. Lett. 2006, 97, 155301. [Google Scholar] [CrossRef] [PubMed]
- Kochurin, E.A.; Kuznetsov, E.A. Three-Dimensional Acoustic Turbulence: Weak Versus Strong. Phys. Rev. Lett. 2024, 133, 207201. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, D.T. Film flows in the presence of electric fields. Annu. Rev. Fluid Mech. 2019, 51, 155–187. [Google Scholar] [CrossRef]
- Medvedev, D.A.; Kupershtokh, A.L. Electric control of dielectric droplets and films. Phys. Fluids 2021, 33, 122103. [Google Scholar] [CrossRef]
- Kupershtokh, A.L.; Medvedev, D.A.; Alyanov, A.V. Heat flux from the surface in the process of the rupture of a thin liquid film by an electric field. Phys. Fluids 2023, 35, 102006. [Google Scholar] [CrossRef]
- Akbari, M.; Mortazavi, S. Three-dimensional numerical simulation of deformation of a single drop under uniform electric field. J. Appl. Fluid Mech. 2017, 10, 693–702. [Google Scholar] [CrossRef]
- Samanta, A. Effect of electric field on an oscillatory film flow. Phys. Fluids 2019, 31, 034109. [Google Scholar] [CrossRef]
- Zubarev, N.M.; Zubareva, O.V. Nondispersive propagation of waves with finite amplitudes on the surface of a dielectric liquid in a tangential electric field. Tech. Phys. Lett. 2006, 32, 886–888. [Google Scholar] [CrossRef]
- Doak, A.; Gao, T.; Vanden-Broeck, J.M. Global bifurcation of capillary-gravity dark solitary waves on the surface of a conducting fluid under normal electric fields. Q. J. Mech. Appl. Math. 2022, 75, 215–234. [Google Scholar] [CrossRef]
- Gao, T.; Doak, A.; Vanden-Broeck, J.M.; Wang, Z. Capillary–gravity waves on a dielectric fluid of finite depth under normal electric field. Eur. J. Mech. B Fluids 2019, 77, 98–107. [Google Scholar] [CrossRef]
- Guan, X.; Wang, Z. Interfacial electrohydrodynamic solitary waves under horizontal electric fields. J. Fluid Mech. 2022, 940, A15. [Google Scholar] [CrossRef]
- Flamarion, M.V.; Gao, T.; Ribeiro, R., Jr.; Doak, A. Flow structure beneath periodic waves with constant vorticity under normal electric fields. Phys. Fluids 2022, 34, 127119. [Google Scholar] [CrossRef]
- Boyer, F.; Falcon, E. Wave turbulence on the surface of a ferrofluid in a magnetic field. Phys. Rev. Lett. 2008, 101, 244502. [Google Scholar] [CrossRef] [PubMed]
- Dorbolo, S.; Falcon, E. Wave turbulence on the surface of a ferrofluid in a horizontal magnetic field. Phys. Rev. E 2011, 83, 046303. [Google Scholar] [CrossRef]
- Kochurin, E.; Ricard, G.; Zubarev, N.; Falcon, E. Three-dimensional direct numerical simulation of free-surface magnetohydrodynamic wave turbulence. Phys. Rev. E 2022, 105, L063101. [Google Scholar] [CrossRef]
- Dmitriev, I.A.; Kochurin, E.A.; Zubarev, N.M. Numerical study of free-surface electro-hydrodynamic wave turbulence. IEEE Trans. Dielectr. Electr. Insul. 2023, 30, 1408–1413. [Google Scholar] [CrossRef]
- Kochurin, E.A. Anisotropy of free-surface wave turbulence induced by a horizontal magnetic (electric) field. Chaos Solitons Fractals 2025, 191, 115828. [Google Scholar] [CrossRef]
- Ricard, G.; Falcon, E. Transition from wave turbulence to acousticlike shock-wave regime. Phys. Rev. Fluids 2023, 8, 014804. [Google Scholar] [CrossRef]
- Ricard, G.; Falcon, E. Experimental evidence of random shock-wave intermittency. Phys. Rev. E 2023, 108, 045106. [Google Scholar] [CrossRef]
- Melcher, J.R.; Schwarz, W.J., Jr. Interfacial relaxation overstability in a tangential electric field. Phys. Fluids 1968, 11, 2604–2616. [Google Scholar] [CrossRef]
- Kochurin, E.A. Formation of weak singularities on the surface of a dielectric fluid in a tangential electric field. Tech. Phys. Lett. 2019, 45, 65–68. [Google Scholar] [CrossRef]
- Kochurin, E.A.; Zubareva, O.V.; Zubarev, N.M. Wave breaking on the surface of a dielectric liquid in a horizontal electric field. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 1222–1228. [Google Scholar] [CrossRef]
- Maryott, A.A.; Smith, E.R. Table of Dielectric Constants of Pure Liquids (Vol. 514); US Government Printing Office: Washington, DC, USA, 1951. [Google Scholar]
- Zubarev, N.M. Nonlinear waves on the surface of a dielectric liquid in a strong tangential electric field. Phys. Lett. A 2004, 333, 284–288. [Google Scholar] [CrossRef]
- Zubarev, N.M. Nonlinear waves on the surface of a dielectric liquid in a horizontal electric field in 3D geometry: Exact solutions. JETP Lett. 2009, 89, 271–274. [Google Scholar] [CrossRef]
- Ovsjannikov, L.V. To the shallow water theory foundation. Arch. Mech. 1974, 26, 6. [Google Scholar]
- Dyachenko, A.I.; Kuznetsov, E.A.; Spector, M.D.; Zakharov, V.E. Analytical description of the free surface dynamics of an ideal fluid (canonical formalism and conformal mapping). Phys. Lett. A 1996, 221, 73–79. [Google Scholar] [CrossRef]
- Zakharov, V.E.; Dyachenko, A.I.; Vasilyev, O.A. New method for numerical simulation of a nonstationary potential flow of incompressible fluid with a free surface. Eur. J. Mech. B Fluids 2002, 21, 283. [Google Scholar] [CrossRef]
- Kochurin, E.A.; Zubarev, N.M. Gravity-capillary waves on the free surface of a liquid dielectric in a tangential electric field. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 1723–1730. [Google Scholar] [CrossRef]
- Kochurin, E.A.; Zubarev, N.M. Reduced equations of motion of the interface of dielectric liquids in vertical electric and gravitational fields. Phys. Fluids 2012, 24, 072101. [Google Scholar] [CrossRef]
- Gao, T.; Wang, Z.; Papageorgiou, D. Singularities of capillary-gravity waves on dielectric fluid under normal electric fields. SIAM J. Appl. Math. 2024, 84, 523–542. [Google Scholar] [CrossRef]
- Dommermuth, D.G.; Yue, D.K. A high-order spectral method for the study of nonlinear gravity waves. J. Fluid Mech. 1987, 184, 267–288. [Google Scholar] [CrossRef]
- Bayındır, C. Compressive spectral method for the simulation of the nonlinear gravity waves. Sci. Rep. 2016, 6, 22100. [Google Scholar] [CrossRef]
- Akylas, T.R.; Cho, Y. On the stability of lumps and wave collapse in water waves. Philos. Trans. A Math. Phys. Eng. Sci. 2008, 366, 2761–2774. [Google Scholar] [CrossRef]
- McAllister, M.L.; Draycott, S.; Calvert, R.; Davey, T.; Dias, F.; van den Bremer, T.S. Three-dimensional wave breaking. Nature 2024, 633, 601–607. [Google Scholar] [CrossRef]
- Suret, P.; Randoux, S.; Gelash, A.; Agafontsev, D.; Doyon, B.; El, G. Soliton gas: Theory, numerics, and experiments. Phys. Rev. E 2024, 109, 061001. [Google Scholar] [CrossRef]
- Flamarion, M.V.; Pelinovsky, E.; Didenkulova, E. Investigating overtaking collisions of solitary waves in the Schamel equation. Chaos Solitons Fractals 2023, 174, 113870. [Google Scholar] [CrossRef]
- Flamarion, M.V. Solitary wave collisions for the Whitham equation. Comput. Appl. Math. 2022, 41, 356. [Google Scholar] [CrossRef]
- Flamarion, M.V.; Pelinovsky, E. Interaction of interfacial waves with an external force: The Benjamin-Ono equation framework. Symmetry 2023, 15, 1478. [Google Scholar] [CrossRef]
- Flamarion, M.V.; Pelinovsky, E. Soliton interactions with an external forcing: The modified Korteweg–de Vries framework. Chaos Solitons Fractals 2022, 165, 112889. [Google Scholar] [CrossRef]
- Flamarion, M.V.; Pelinovsky, E.; Didenkulova, E. Non-integrable soliton gas: The Schamel equation framework. Chaos Solitons Fractals 2024, 180, 114495. [Google Scholar] [CrossRef]
- Kochurin, E.A. Simulation of the Wave Turbulence of a Liquid Surface Using the Dynamic Conformal Transformation Method. JETP Lett. 2023, 118, 893–898. [Google Scholar] [CrossRef]
- Kochurin, E.A. Wave turbulence of a liquid surface in an external tangential electric field. JETP Lett. 2019, 109, 303–308. [Google Scholar] [CrossRef]
- Kochurin, E.A. Numerical simulation of the wave turbulence on the surface of a ferrofluid in a horizontal magnetic field. J. Magn. Magn. Mater. 2020, 503, 166607. [Google Scholar] [CrossRef]
- Benney, D.J.; Saffman, P.G. Nonlinear interactions of random waves in a dispersive medium. Proc. R. Soc. Lond. 1966, 289, 301–320. [Google Scholar]
- Agafontsev, D.S.; Kuznetsov, E.A.; Mailybaev, A.A.; Sereshchenko, E.V. Compressible vortex structures and their role in the onset of hydrodynamic turbulence. Phys.-Uspekhi. 2022, 65, 189. [Google Scholar] [CrossRef]
- Agafontsev, D.S.; Kuznetsov, E.A.; Mailybaev, A.A. Development of high vorticity structures and geometrical properties of the vortex line representation. Phys. Fluids 2018, 30, 095104. [Google Scholar] [CrossRef]
- Kuznetsov, E.A.; Sereshchenko, E.V. Isotropization of two-dimensional hydrodynamic turbulence in the direct cascade. JETP Lett. 2017, 105, 83–88. [Google Scholar] [CrossRef]
- Kuznetsov, E.A.; Sereshchenko, E.V. Anisotropic characteristics of the Kraichnan direct cascade in two-dimensional hydrodynamic turbulence. JETP Lett. 2015, 102, 760–765. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kochurin, E.A. Collapse and Turbulence of Electro-Hydrodynamic Water Waves. Water 2025, 17, 140. https://doi.org/10.3390/w17020140
Kochurin EA. Collapse and Turbulence of Electro-Hydrodynamic Water Waves. Water. 2025; 17(2):140. https://doi.org/10.3390/w17020140
Chicago/Turabian StyleKochurin, Evgeny A. 2025. "Collapse and Turbulence of Electro-Hydrodynamic Water Waves" Water 17, no. 2: 140. https://doi.org/10.3390/w17020140
APA StyleKochurin, E. A. (2025). Collapse and Turbulence of Electro-Hydrodynamic Water Waves. Water, 17(2), 140. https://doi.org/10.3390/w17020140