Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = ferrocenyl ligands

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2654 KB  
Article
Electrochemically Active Copper Complexes with Pyridine-Alkoxide Ligands
by Christopher K. Webber, Erica K. Richardson, Diane A. Dickie and T. Brent Gunnoe
Inorganics 2024, 12(8), 200; https://doi.org/10.3390/inorganics12080200 - 24 Jul 2024
Viewed by 1337
Abstract
Pyridine-alkoxide (pyalk) ligands that support transition metals have been studied for their use in electrocatalytic applications. Herein, we used the pyalk proligands diphenyl(pyridin-2-yl)methanol ([H]PhPyalk, L1), 1-(pyren-1-yl)-1-(pyridin-2-yl)ethan-1-ol ([H]PyrPyalk, L2), 1-(pyridine-2-yl)-1-(thiophen-2-yl)ethan-1-ol ([H]ThioPyalk, L3), and 1-(ferrocenyl)-1-(pyridin-2-yl)ethan-1-ol ([H] [...] Read more.
Pyridine-alkoxide (pyalk) ligands that support transition metals have been studied for their use in electrocatalytic applications. Herein, we used the pyalk proligands diphenyl(pyridin-2-yl)methanol ([H]PhPyalk, L1), 1-(pyren-1-yl)-1-(pyridin-2-yl)ethan-1-ol ([H]PyrPyalk, L2), 1-(pyridine-2-yl)-1-(thiophen-2-yl)ethan-1-ol ([H]ThioPyalk, L3), and 1-(ferrocenyl)-1-(pyridin-2-yl)ethan-1-ol ([H]FePyalk, L4) to synthesize CuII complexes that vary in nuclearity and secondary coordination sphere. Also, the proligand 1-(ferrocenyl)-1-(5-methoxy-pyridin-2-yl)ethan-1-ol ([H]FeOMePyalk, L5) was synthesized with a methoxy substituted pyridine; however, the isolation of a CuII complex ligated by L5 was not possible. Under variable reaction conditions, the pyalk ligands reacted with CuII precursors and formed either mononuclear or dinuclear CuII complexes depending on the amount of ligand added. The resulting complexes were characterized by single crystal X-ray diffraction, elemental analysis, and cyclic voltammetry. Full article
(This article belongs to the Special Issue Feature Papers in Organometallic Chemistry 2024)
Show Figures

Figure 1

21 pages, 2967 KB  
Article
Cleavage of [Pd2(PP)2(μ-Cl)2][BArF24]2 (PP = Bis(phosphino)ferrocene, BArF24 = Tetrakis(3,5-bis(trifluoromethyl)phenyl)borate) with Monodentate Phosphines
by Ian S. Leiby, Virginia Parparcén, Natalya Ding, Klara J. Kunz, Sadie A. Wolfarth, Jeremiah E. Stevens and Chip Nataro
Molecules 2024, 29(9), 2047; https://doi.org/10.3390/molecules29092047 - 29 Apr 2024
Cited by 1 | Viewed by 1636
Abstract
The addition of Na[BArF24] (BArF24 = tetrakis(3,5-bis(trifluoromethyl)phenyl)borate) to [Pd(PP)Cl2] (PP = 1,1′-bis(phosphino)ferrocene ligands) compounds results in the loss of a chloride ligand and the formation of the dimeric species [Pd2(PP)2(μ-Cl)2][BArF [...] Read more.
The addition of Na[BArF24] (BArF24 = tetrakis(3,5-bis(trifluoromethyl)phenyl)borate) to [Pd(PP)Cl2] (PP = 1,1′-bis(phosphino)ferrocene ligands) compounds results in the loss of a chloride ligand and the formation of the dimeric species [Pd2(PP)2(μ-Cl)2][BArF24]2. In most cases, the addition of a monodentate phosphine, PR3, to these dimeric species leads to cleaving of the dimer and formation of [Pd(PP)(PR3)Cl][BArF24]. While these reactions are readily observed via a significant color change, the 31P{1H} NMR spectra offer more significant support, as the singlet for the dimer is replaced with three doublets of doublets. The reaction seems to take place for a wide range of PR3 ligands, although there do appear to be steric limitations to the reaction. The compounds were thoroughly characterized by NMR, and X-ray crystal structures of several of the compounds were obtained. In addition, the ferrocenyl backbone of the 1,1′-bis(phosphino)ferrocene ligands provides an opportunity to examine the oxidative electrochemistry of these compounds. In general, the potential at which oxidations of these compounds occurs shows a dependence on the phosphine substituents. Full article
Show Figures

Graphical abstract

14 pages, 6941 KB  
Article
The Phosphinate Group in the Formation of 2D Coordination Polymer with Sm(III) Nodes: X-ray Structural, Electrochemical and Mössbauer Study
by Ruslan P. Shekurov, Mikhail N. Khrizanforov, Almaz A. Zagidullin, Almaz L. Zinnatullin, Kirill V. Kholin, Kamil A. Ivshin, Tatiana P. Gerasimova, Aisylu R. Sirazieva, Olga N. Kataeva, Farit G. Vagizov and Vasili A. Miluykov
Int. J. Mol. Sci. 2022, 23(24), 15569; https://doi.org/10.3390/ijms232415569 - 8 Dec 2022
Cited by 5 | Viewed by 2662
Abstract
A coordination polymer has been synthesized using ferrocene-based ligand-bearing phosphinic groups of 1,1′-ferrocene-diyl-bis(H-phosphinic acid)), and samarium (III). The coordination polymer’s structure was studied by both single-crystal and powder XRD, TG, IR, and Raman analyses. For the first time, the Mössbauer effect [...] Read more.
A coordination polymer has been synthesized using ferrocene-based ligand-bearing phosphinic groups of 1,1′-ferrocene-diyl-bis(H-phosphinic acid)), and samarium (III). The coordination polymer’s structure was studied by both single-crystal and powder XRD, TG, IR, and Raman analyses. For the first time, the Mössbauer effect studies were performed on ferrocenyl phosphinate and the polymer based on it. Additionally, the obtained polymer was studied by the method of cyclic and differential pulse voltammetry. It is shown that it has the most positive potential known among ferrocenyl phosphinate-based coordination polymers and metal–organic frameworks. Using the values of the oxidation potential, the polymer was oxidized and the ESR method verified the oxidized Fe(III) form in the solid state. Additionally, the effect of the size of the phosphorus atom substituent of the phosphinate group on the dimension of the resulting coordination compounds is shown. Full article
Show Figures

Figure 1

18 pages, 2479 KB  
Article
Nickel(II)-Based Building Blocks with Schiff Base Derivatives: Experimental Insights and DFT Calculations
by Néstor Novoa, Carolina Manzur, Thierry Roisnel, Samia Kahlal, Jean-Yves Saillard, David Carrillo and Jean-René Hamon
Molecules 2021, 26(17), 5316; https://doi.org/10.3390/molecules26175316 - 1 Sep 2021
Cited by 8 | Viewed by 3994
Abstract
We have recently reported a series of neutral square planar tridentate Schiff base (L) complexes of the general formula [(L)M(py)], showing relatively high first-order hyperpolarizabilities and NLO redox switching behavior. In the present study, new members of this family of compounds have been [...] Read more.
We have recently reported a series of neutral square planar tridentate Schiff base (L) complexes of the general formula [(L)M(py)], showing relatively high first-order hyperpolarizabilities and NLO redox switching behavior. In the present study, new members of this family of compounds have been prepared with the objective to investigate their potential as building blocks in the on-demand construction of D-π-A push–pull systems. Namely, ternary nickel(II) building blocks of general formula [(LA/D)Ni(4-pyX)] (4–7), where LA/D stands for an electron accepting or donating dianionic O,N,O-tridentate Schiff base ligand resulting from the monocondensation of 2-aminophenol or its 4-substituted nitro derivative and β-diketones R-C(=O)CH2C(=O)CH3 (R = methyl, anisyl, ferrocenyl), and 4-pyX is 4-iodopyridine or 4-ethynylpyridine, were synthesized and isolated in 60–78% yields. Unexpectedly, the Sonogashira cross-coupling reaction between the 4-iodopyridine derivative 6 and 4-ethynylpyridine led to the formation of the bis(4-pyridyl) acetylene bridged centrosymmetric dimer [{(LD)Ni}22-py-C≡C-py)] (8). Complexes 4–8 were characterized by elemental analysis, FT-IR and NMR spectroscopy, single crystal X-ray diffraction and computational methods. In each compound, the four-coordinate Ni(II) metal ion adopts a square planar geometry with two nitrogen and two oxygen atoms as donors occupying trans positions. In 8, the Ni…Ni separation is of 13.62(14) Å. Experimental results were proved and explained theoretically exploiting Density Functional Theory calculations. Full article
Show Figures

Figure 1

39 pages, 18943 KB  
Article
Ferrocenylimine Palladium (II) Complexes: Synthesis, Characterization and Application in Mizoroki-Heck and Suzuki-Miyaura Cross-Coupling Reactions
by Asanda C. Matsheku, Richard Tia, Munaka C. Maumela and Banothile C. E. Makhubela
Catalysts 2021, 11(7), 755; https://doi.org/10.3390/catal11070755 - 22 Jun 2021
Cited by 8 | Viewed by 4871
Abstract
Carbon-carbon cross-coupling reactions are essential synthetic tools for synthesizing polymers, natural products, agrochemicals, and pharmaceuticals. Therefore, new catalysts that function with greater efficiency and functional group tolerance are being researched. We have prepared new ferrocenylimine monodentate N and P donor ligands and N^N [...] Read more.
Carbon-carbon cross-coupling reactions are essential synthetic tools for synthesizing polymers, natural products, agrochemicals, and pharmaceuticals. Therefore, new catalysts that function with greater efficiency and functional group tolerance are being researched. We have prepared new ferrocenylimine monodentate N and P donor ligands and N^N and N^P bidentate chelating ligands (L1 to L4) employed in stabilizing palladium ions for application in Mizoroki-Heck and Suzuki-Miyaura cross-coupling reactions. The ferrocenylimine ligands were successfully synthesized by Schiff base condensation reactions of acetyl ferrocene with hydrazine monohydrate to afford ferrocenyl hydrazone (L1). Ligand L1 was further treated with aldehydes to give ferrocenyl(2-diphenylphosphino)imine (L3) and ferrocenyl(pyridyl)imine (L3), while phosphination of L1 with chlorodiphenylphosphine afforded L2. The ligands were used to prepare new palladium(II) complexes (C1 to C4) by complexation with [PdCl2(MeCN)2]. All the ligands and complexes were fully characterized using standard spectroscopic and analytical techniques, including 1H NMR and 13C NMR spectroscopy, FT-IR spectroscopy, mass spectrometry and elemental analysis. The complexes (C1 to C4) were tested for efficacies in catalyzing Mizoroki-Heck and Suzuki-Miyaura C-C cross-coupling reactions and proved to be suitable catalyst precursors. Ferrocenyl(2-diphenylphosphine)imino and ferrocenyl-methyl hydrazone palladium(II) complexes C2 and C3 showed the best activities at TONs of up to 201. The ferrocenyl palladium(II) (pre)catalysts demonstrated moderate activity in Mizoroki-Heck reactions involving substrates with substituents on the olefin and aryl halide (including 4-Cl, 4-CH3, -CO2Me and -CO2Et). Density Functional Theory was used to study the mechanism of the Mizoroki-Heck cross-coupling reactions and have led to confirmation of the widely accepted catalytic cycle. Catalyst precursors (C1 to C4) also displayed good activity and selectivity in Suzuki-Miyaura cross-coupling reactions, at 0.5 mol% catalyst loading, with good tolerance to functional groups present on the aryl halide and boronic acid substrates (such as 4-Cl, 4-CHO, 4-COOH, 3-NO2, 3,5-dimethoxy and 4-CH3). Full article
Show Figures

Graphical abstract

15 pages, 2826 KB  
Article
Synthesis, Spectroscopy, Electrochemistry and DFT of Electron-Rich Ferrocenylsubphthalocyanines
by Pieter J. Swarts and Jeanet Conradie
Molecules 2020, 25(11), 2575; https://doi.org/10.3390/molecules25112575 - 1 Jun 2020
Cited by 5 | Viewed by 3274
Abstract
A series of novel ferrocenylsubphthalocyanine dyads Y-BSubPc(H)12 with ferrocenyl-carboxylic acids Y-H = (FcCH2CO2-H), (Fc(CH2)3CO2-H) or (FcCO(CH2)2CO2-H) in the axial position were synthesized from the parent Cl-BSubPc(H) [...] Read more.
A series of novel ferrocenylsubphthalocyanine dyads Y-BSubPc(H)12 with ferrocenyl-carboxylic acids Y-H = (FcCH2CO2-H), (Fc(CH2)3CO2-H) or (FcCO(CH2)2CO2-H) in the axial position were synthesized from the parent Cl-BSubPc(H)12 via an activated triflate-SubPc intermediate. UV/Vis data revealed that the axial ferrocenyl-containing ligand did not influence the Q-band maxima compared to Cl-BSubPc(H)12. A combined electrochemical and density functional theory (DFT) study showed that Fe group of the ferrocenyl-containing axial ligand is involved in the first reversible oxidation process, followed by a second oxidation localized on the macrocycle of the subphthalocyanine. Both observed reductions were ring-based. It was found that the novel Fc(CH2)3CO2BSubPc(H)12 exhibited the lowest first macrocycle-based reduction potential (−1.871 V vs. Fc/Fc+) reported for SubPcs till date. The oxidation and reduction values of Fc(CH2)nCO2BSubPc(H)12 (n = 0–3), FcCO(CH2)2CO2BSubPc(H)12, and Cl-BSubPc(H)12 illustrated the electronic influence of the carboxyl group, the different alkyl chains and the ferrocenyl group in the axial ligand on the ring-based oxidation and reduction values of the SubPcs. Full article
Show Figures

Graphical abstract

20 pages, 3093 KB  
Article
Synthesis, Spectroscopy and Electrochemistry in Relation to DFT Computed Energies of Ferrocene- and Ruthenocene-Containing β-Diketonato Iridium(III) Heteroleptic Complexes. Structure of [(2-Pyridylphenyl)2Ir(RcCOCHCOCH3]
by Blenerhassitt E. Buitendach, Jeanet Conradie, Frederick P. Malan, J. W. (Hans) Niemantsverdriet and Jannie C. Swarts
Molecules 2019, 24(21), 3923; https://doi.org/10.3390/molecules24213923 - 30 Oct 2019
Cited by 11 | Viewed by 3772
Abstract
A series of new ferrocene- and ruthenocene-containing iridium(III) heteroleptic complexes of the type [(ppy)2Ir(RCOCHCOR′)], with ppy = 2-pyridylphenyl, R = Fc = FeII5-C5H4)(η5-C5H5) and R′ = CH [...] Read more.
A series of new ferrocene- and ruthenocene-containing iridium(III) heteroleptic complexes of the type [(ppy)2Ir(RCOCHCOR′)], with ppy = 2-pyridylphenyl, R = Fc = FeII5-C5H4)(η5-C5H5) and R′ = CH3 (1) or Fc (2), as well as R = Rc = RuII5-C5H4)(η5-C5H5) and R′ = CH3 (3), Rc (4) or Fc (5) was synthesized via the reaction of appropriate metallocene-containing β-diketonato ligands with [(ppy)2(μ-Cl)Ir]2. The single crystal structure of 3 (monoclinic, P21/n, Z = 4) is described. Complexes 15 absorb light strongly in the region 280−480 nm the metallocenyl β-diketonato substituents quench phosphorescence in 15. Cyclic and square wave voltammetric studies in CH2Cl2/[N(nBu)4][B(C6F5)4] allowed observation of a reversible IrIII/IV redox couple as well as well-resolved ferrocenyl (Fc) and ruthenocenyl (Rc) one-electron transfer steps in 15. The sequence of redox events is in the order Fc oxidation, then IrIII oxidation and finally ruthenocene oxidation, all in one-electron transfer steps. Generation of IrIV quenched phosphorescence in 6, [(ppy)2Ir(H3CCOCHCOCH3)]. This study made it possible to predict the IrIII/IV formal reduction potential from Gordy scale group electronegativities, χR and/or ΣχR′ of β-diketonato pendent side groups as well as from DFT-calculated energies of the highest occupied molecular orbital of the species involved in the IrIII/IV oxidation at a 98% accuracy level. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Graphical abstract

15 pages, 4531 KB  
Article
Synthesis and Coordination Behavior of a Flexible Bis(phosphinoferrocene) Ligand
by Jiří Schulz, Zdeněk Leitner, Ivana Císařová and Petr Štěpnička
Molecules 2018, 23(8), 2054; https://doi.org/10.3390/molecules23082054 - 16 Aug 2018
Cited by 3 | Viewed by 3822
Abstract
A symmetrical flexible bis(phosphinoferrocene) derivative, viz. bis[1′-(diphenylphosphino)ferrocenyl]methane (1), was prepared and studied as a ligand in Pd(II) and Au(I) complexes. The reactions of 1 with [PdCl2(cod)] (cod = cycloocta-1,5-diene) and [Pd(μ-Cl)(LNC)]2 (LNC = [2-(dimethylamino-κN [...] Read more.
A symmetrical flexible bis(phosphinoferrocene) derivative, viz. bis[1′-(diphenylphosphino)ferrocenyl]methane (1), was prepared and studied as a ligand in Pd(II) and Au(I) complexes. The reactions of 1 with [PdCl2(cod)] (cod = cycloocta-1,5-diene) and [Pd(μ-Cl)(LNC)]2 (LNC = [2-(dimethylamino-κN)methyl]phenyl-κC1) produced bis(phosphine) complex trans-[PdCl2(12P,P′)] (4), wherein the ligand spans trans positions in the square-planar coordination sphere of Pd(II) and the tetranuclear, P,P-bridged complex [(μ(P,P′)-1){PdCl(LNC)}2] (5), respectively. In reactions with the Au(I) precursors [AuCl(tht)] and [Au(tht)2][SbF6] (tht = tetrahydrothiophene), ligand 1 gave rise to tetranuclear Au2Fe2 complex [(μ(P,P′)-1)(AuCl)2] (6) and to symmetrical macrocyclic tetramer [Au4(μ(P,P′)-1)4][SbF6]4 (7). All compounds were characterized by spectroscopic methods. In addition, the structures of compound 1, its synthetic precursor bis[1′-(diphenylphosphino)ferrocenyl]methanone (3), and all aforementioned Pd(II) and Au(I) complexes were determined by single-crystal X-ray diffraction analysis (some in solvated form). Full article
(This article belongs to the Special Issue Ferrocene and Ferrocene-Containing Compounds)
Show Figures

Graphical abstract

12 pages, 1908 KB  
Article
Enantiomerically Enriched 1,2-P,N-Bidentate Ferrocenyl Ligands for 1,3-Dipolar Cycloaddition and Transfer Hydrogenation Reactions
by Irina A. Utepova, Polina O. Serebrennikova, Marina S. Streltsova, Alexandra A. Musikhina, Tatiana G. Fedorchenko, Oleg N. Chupakhin and Andrey P. Antonchick
Molecules 2018, 23(6), 1311; https://doi.org/10.3390/molecules23061311 - 30 May 2018
Cited by 8 | Viewed by 4271
Abstract
Novel complexes of 1,2-P,N-bidentate ferrocenyl ligands with AgOAc or with [RuCl2(PPh3)3] as catalysts have been studied in asymmetric synthesis. The catalytic activity of these systems have been studied in [3+2]-cycloaddition of azomethine ylides with olefins and the asymmetric transfer hydrogenation of ketones. Full article
(This article belongs to the Special Issue Ferrocene and Ferrocene-Containing Compounds)
Show Figures

Figure 1

16 pages, 2749 KB  
Article
Pentacoordinated Chloro-Iron(III) Complexes with Unsymmetrically Substituted N2O2 Quadridentate Schiff-Base Ligands: Syntheses, Structures, Magnetic and Redox Properties
by Jonathan Cisterna, Vania Artigas, Mauricio Fuentealba, Paul Hamon, Carolina Manzur, Jean-René Hamon and David Carrillo
Inorganics 2018, 6(1), 5; https://doi.org/10.3390/inorganics6010005 - 29 Dec 2017
Cited by 15 | Viewed by 5137
Abstract
Since their development in the 1930s, Schiff-base complexes have played an important role in the field of coordination chemistry. Here, we report the synthetic, spectral, structural, magnetic and electrochemical studies of two new pentacoordinated neutral chloro-iron(III) complexes (3,5) supported [...] Read more.
Since their development in the 1930s, Schiff-base complexes have played an important role in the field of coordination chemistry. Here, we report the synthetic, spectral, structural, magnetic and electrochemical studies of two new pentacoordinated neutral chloro-iron(III) complexes (3,5) supported by dianionic [N2O2]2− tetradentate Schiff-base ligands unsymmetrically substituted by either a pair of acceptor (F and NO2) or donor (ferrocenyl and OCH3) groups. The electron-withdrawing Schiff-base proligand 2 and the complexes 3 and 5 were prepared in good yields (79–86%). Complex 3 was readily obtained upon reaction of 2 with anhydrous iron chloride under basic conditions, while the bimetallic derivative 5 was synthesized by condensation of the free amino group of the ferrocenyl-containing O,N,N-tridentate half-unit 4 with 5-methoxysalicylaldehyde in the presence of FeCl3. The three new compounds were characterized by elemental analysis, FT-IR, UV–Vis, mass spectrometry and in the case of 2 by multinuclear NMR spectroscopy. The crystal structures of 3 and 5 revealed that in the two five-coordinate monomers, the iron atom showed distorted square-pyramidal geometry, with the N and O atoms of the Schiff-base ligand occupying the basal sites and the chlorine atom at the apex of the pyramid. Magnetic measurements showed a high-spin configuration (S = 5/2) for the Fe(III) ion in 3 and 5. Reduction associated with the Fe(III)/Fe(II) redox couple occurred at −0.464 and −0.764 V vs. Ag/Ag+, and oxidation taking place at the Schiff-base ligand was observed at 1.300 and 0.942 V vs. Ag/Ag+ for 3 and 5, respectively. A high-electronic delocalization of the Schiff-base ligand substituted by fluoro and nitro groups stabilizes the Fe(II) oxidation state and shifts the redox potential anodically. Full article
(This article belongs to the Special Issue Schiff-Base Metal Complexes)
Show Figures

Graphical abstract

14 pages, 4905 KB  
Article
Four Novel Zn (II) Coordination Polymers Based on 4′-Ferrocenyl-3,2′:6′,3′′-Terpyridine: Engineering a Switch from 1D Helical Polymer Chain to 2D Network by Coordination Anion Modulation
by Lufei Xiao, Dajun Wu, Xuchun Wang, Wei Du, Jun Zhang, Shengli Li, Hongping Zhou, Jieying Wu and Yupeng Tian
Materials 2017, 10(12), 1360; https://doi.org/10.3390/ma10121360 - 27 Nov 2017
Cited by 4 | Viewed by 4095
Abstract
Four novel ZnII coordination polymers, [(ZnCl2)2(L)2]n (1), [(ZnBr2)2(L)2]n (2), and [(ZnI2)2(L)2]n (3) and {[Zn(SCN)2 [...] Read more.
Four novel ZnII coordination polymers, [(ZnCl2)2(L)2]n (1), [(ZnBr2)2(L)2]n (2), and [(ZnI2)2(L)2]n (3) and {[Zn(SCN)2]1.5(L)3}n (4), have been synthesized based on 4′-ferrocenyl-3,2′:6′,3′′-terpyridine with ZnII ions and different coordination anions under similar ambient conditions. Their structures have been confirmed using single crystal X-ray diffraction analysis, showing that complexes 13 are one-dimensional (1D) double-stranded metal ion helical polymer chains and complex 4 is of a two-dimensional (2D) network. The structural transformations of them from a 1D polymer chain to a 2D network under the influence of the coordination anions has been systematic investigated. Furthermore, the optical band gaps have been measured by optical diffuse reflectance spectroscopy, revealing that the ligand and the complexes should have semiconductor properties. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Graphical abstract

19 pages, 3428 KB  
Article
4,2’:6’,4”- and 3,2’:6’,3”-Terpyridines: The Conflict between Well-Defined Vectorial Properties and Serendipity in the Assembly of 1D-, 2D- and 3D-Architectures
by Y. Maximilian Klein, Alessandro Prescimone, Edwin C. Constable and Catherine E. Housecroft
Materials 2017, 10(7), 728; https://doi.org/10.3390/ma10070728 - 30 Jun 2017
Cited by 12 | Viewed by 4397
Abstract
A comparative investigation of the coordination assemblies formed between Co(NCS)2 and two monotopic 4,2’:6’,4’’-terpyridine (4,2’:6’,4”-tpy) ligands or two related ditopic ligands is reported. Crystals were grown by layering MeOH solutions of Co(NCS)2 over a CHCl3 or 1,2-C6H4 [...] Read more.
A comparative investigation of the coordination assemblies formed between Co(NCS)2 and two monotopic 4,2’:6’,4’’-terpyridine (4,2’:6’,4”-tpy) ligands or two related ditopic ligands is reported. Crystals were grown by layering MeOH solutions of Co(NCS)2 over a CHCl3 or 1,2-C6H4Cl2 solution of the respective ligand at room temperature. With 4’-(2-methylpyrimidin-5-yl)-4,2’:6’,4”-terpyridine (6), the 1D-coordination polymer {[Co2(NCS)4(MeOH)4(6)2]∙2MeOH∙8H2O}n assembles with 6 coordinating only through the outer N-donors of the 4,2’:6’,4”-tpy unit; coordination by the MeOH solvent blocks two cobalt coordination sites preventing propagation in a higher-dimensional network. A combination of Co(NCS)2 and 1-(4,2‘:6’,4”-terpyridin-4’-yl)ferrocene (7) leads to {[Co(NCS)2(7)2]∙4CHCl3}n which contains a (4,4) net; the 2D-sheets associate through π-stacking interactions between ferrocenyl and pyridyl units. A 3D-framework is achieved through use of the ditopic ligand 1,4-bis(npropoxy)-2,5-bis(4,2’:6’,4”-terpyridin-4’-yl)benzene (8) which acts as a 4-connecting node in {[Co(NCS)2(8)2].2C6H4Cl2}n; the combination of metal and ligand planar 4-connecting nodes results in a {65.8} cds net. For a comparison with the coordinating abilities of the previously reported 1,4-bis(noctoxy)-2,5-bis(4,2’:6’,4”-terpyridin-4’-yl)benzene (3), a more flexible analogue 9 was prepared. {[Co(NCS)2(9)]∙2CHCl3}n contains a (4,4) net defined by both metal and ligand planar 4-connecting nodes. The noctoxy tails of 9 protrude from each side of the (4,4) net and thread through adjacent sheets; the arene-attached noctoxy chains associate through a combination of van der Waals and C–H...π interactions. Full article
(This article belongs to the Special Issue Metal Organic Framework Materials)
Show Figures

Graphical abstract

17 pages, 11113 KB  
Article
Mitochondria Targeting with Luminescent Rhenium(I) Complexes
by Joanna Skiba, Tytus Bernaś, Damian Trzybiński, Krzysztof Woźniak, Giarita Ferraro, Daniela Marasco, Antonello Merlino, Marsel Z. Shafikov, Rafał Czerwieniec and Konrad Kowalski
Molecules 2017, 22(5), 809; https://doi.org/10.3390/molecules22050809 - 15 May 2017
Cited by 28 | Viewed by 7220
Abstract
Two new neutral fac-[Re(CO)3(phen)L] compounds (1,2), with phen = 1,10-phenanthroline and L = O2C(CH2)5CH3 or O2C(CH2)4C≡CH, were synthetized in one-pot procedures from fac [...] Read more.
Two new neutral fac-[Re(CO)3(phen)L] compounds (1,2), with phen = 1,10-phenanthroline and L = O2C(CH2)5CH3 or O2C(CH2)4C≡CH, were synthetized in one-pot procedures from fac-[Re(CO)3(phen)Cl] and the corresponding carboxylic acids, and were fully characterized by IR and UV-Vis absorption spectroscopy, 1H- and 13C-NMR, mass spectrometry and X-ray crystallography. The compounds, which display orange luminescence, were used as probes for living cancer HeLa cell staining. Confocal microscopy revealed accumulation of both dyes in mitochondria. To investigate the mechanism of mitochondrial staining, a new non-emissive compound, fac-[Re(CO)3(phen)L], with L = O2C(CH2)3((C5H5)Fe(C5H4), i.e., containing a ferrocenyl moiety, was synthetized and characterized (3). 3 shows the same mitochondrial accumulation pattern as 1 and 2. Emission of 3 can only be possible when ferrocene-containing ligand dissociates from the metal center to produce a species containing the luminescent fac­[Re(CO)3(phen)]+ core. The release of ligands from the Re center was verified in vitro through the conjugation with model proteins. These findings suggest that the mitochondria accumulation of compounds 13 is due to the formation of luminescent fac-[Re(CO)3(phen)]+ products, which react with cellular matrix molecules giving secondary products and are uptaken into the negatively charged mitochondrial membranes. Thus, reported compounds feature a rare dissociation-driven mechanism of action with great potential for biological applications. Full article
(This article belongs to the Section Organometallic Chemistry)
Show Figures

Graphical abstract

13 pages, 3251 KB  
Article
Manganese(I)-Based CORMs with 5-Substituted 3-(2-Pyridyl)Pyrazole Ligands
by Ralf Mede, Steve Gläser, Benedikt Suchland, Björn Schowtka, Miles Mandel, Helmar Görls, Sven Krieck, Alexander Schiller and Matthias Westerhausen
Inorganics 2017, 5(1), 8; https://doi.org/10.3390/inorganics5010008 - 25 Jan 2017
Cited by 14 | Viewed by 8069
Abstract
The reaction of [(OC)5MnBr] with substituted 3-(2-pyridyl)pyrazoles) 2-PyPzRH (1a-l) in methanol or diethyl ether yields the yellow to orange manganese(I) complexes [(OC)3Mn(Br)(2-PyPzRH)] (2a-l), the substituents R being [...] Read more.
The reaction of [(OC)5MnBr] with substituted 3-(2-pyridyl)pyrazoles) 2-PyPzRH (1a-l) in methanol or diethyl ether yields the yellow to orange manganese(I) complexes [(OC)3Mn(Br)(2-PyPzRH)] (2a-l), the substituents R being phenyl (a), 1-naphthyl (b), 2-anthracenyl (c), 1-pyrenyl (d), 4-bromophenyl (e), 3-bromophenyl (f), duryl (g), 2-pyridyl (h), 2-furanyl (i), 2-thienyl (j), ferrocenyl (k), and 1-adamantyl (l). The carbonyl ligands are arranged facially, leading to three chemically different CO ligands due to different trans-positioned Lewis donors. The diversity of the substituent R demonstrates that this photoCORM backbone can easily be varied with a negligible influence on the central (OC)3MnBr fragment, because the structural parameters and the spectroscopic data of this unit are very similar for all these derivatives. Even the ferrocenyl complex 2k shows a redox potential for the ferrocenyl subunit which is identical to the value of the free 5-ferrocenyl-3-(2-pyridyl)pyrazole (1k). The ease of variation of the starting 5-substituted 3-(2-pyridyl)pyrazoles) offers a modular system to attach diverse substituents at the periphery of the photoCORM complex. Full article
(This article belongs to the Special Issue CO-Releasing Molecules)
Show Figures

Graphical abstract

15 pages, 2540 KB  
Article
Properties of Manganese(III) Ferrocenyl-β-Diketonato Complexes Revealed by Charge Transfer and Multiplet Splitting in the Mn 2p and Fe 2p X-Ray Photoelectron Envelopes
by Blenerhassitt E. Buitendach, Elizabeth Erasmus, J. W. (Hans) Niemantsverdriet and Jannie C. Swarts
Molecules 2016, 21(11), 1427; https://doi.org/10.3390/molecules21111427 - 26 Oct 2016
Cited by 30 | Viewed by 9543
Abstract
A series of ferrocenyl-functionalized β-diketonato manganese(III) complexes, [Mn(FcCOCHCOR)3] with R = CF3, CH3, Ph (phenyl) and Fc (ferrocenyl) was subjected to a systematic XPS study of the Mn 2p3/2 and Fe 2p3/2 core-level photoelectron lines [...] Read more.
A series of ferrocenyl-functionalized β-diketonato manganese(III) complexes, [Mn(FcCOCHCOR)3] with R = CF3, CH3, Ph (phenyl) and Fc (ferrocenyl) was subjected to a systematic XPS study of the Mn 2p3/2 and Fe 2p3/2 core-level photoelectron lines and their satellite structures. A charge-transfer process from the β-diketonato ligand to the Mn(III) metal center is responsible for the prominent shake-up satellite peaks of the Mn 2p photoelectron lines and the shake-down satellite peaks of the Fe 2p photoelectron lines. Multiplet splitting simulations of the photoelectron lines of the Mn(III) center of [Mn(FcCOCHCOR)3] resemble the calculated Mn 2p3/2 envelope of Mn3+ ions well, indicating the Mn(III) centers are in the high spin state. XPS spectra of complexes with unsymmetrical β-diketonato ligands (i.e., R not Fc) were described with two sets of multiplet splitting peaks representing fac and the more stable mer isomers respectively. Stronger electron-donating ligands stabilize fac more than mer isomers. The sum of group electronegativities, ΣχR, of the β-diketonato pendant side groups influences the binding energies of the multiplet splitting and charge transfer peaks in both Mn and Fe 2p3/2 photoelectron lines, the ratio of satellite to main peak intensities, and the degree of covalence of the Mn–O bond. Full article
(This article belongs to the Section Organometallic Chemistry)
Show Figures

Graphical abstract

Back to TopTop