Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (464)

Search Parameters:
Keywords = fermion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 1210 KB  
Article
The Classical Origin of Spin: Vectors Versus Bivectors
by Bryan Sanctuary
Axioms 2025, 14(9), 668; https://doi.org/10.3390/axioms14090668 - 29 Aug 2025
Viewed by 60
Abstract
There are two ways of linearizing the Klein–Gordon equation: Dirac’s choice, which introduces a matter–antimatter pair, and a second approach using a bivector, which Dirac did not consider. In this paper, we show that a bivector provides the classical origin of quantum spin. [...] Read more.
There are two ways of linearizing the Klein–Gordon equation: Dirac’s choice, which introduces a matter–antimatter pair, and a second approach using a bivector, which Dirac did not consider. In this paper, we show that a bivector provides the classical origin of quantum spin. At high precessional frequencies, a symmetry transformation occurs in which classical reflection becomes quantum parity. We identify a classical spin-1 boson and demonstrate how bosons deliver energy, matter, and torque to a surface. The correspondence between classical and quantum domains allows spin to be identified as a quantum bivector, iσ. Using geometric algebra, we show that a classical boson has two blades, corresponding to magnetic quantum number states m=±1. We conclude that fermions are the blades of bosons, thereby unifying both into a single particle theory. We compare and contrast the Standard Model, which uses chiral vectors as fundamental, with the Bivector Standard Model, which uses bivectors, with two hands, as fundamental. Full article
(This article belongs to the Special Issue Mathematical Aspects of Quantum Field Theory and Quantization)
13 pages, 281 KB  
Article
Entropy Modifications of Charged Accelerating Anti-de Sitter Black Hole
by Cong Wang, Jie Zhang and Shu-Zheng Yang
Entropy 2025, 27(9), 900; https://doi.org/10.3390/e27090900 - 25 Aug 2025
Viewed by 340
Abstract
The Lorentz-breaking theory not only modifies the geometric structure of curved spacetime but also significantly alters the quantum dynamics of bosonic and fermionic fields in black hole spacetime, leading to observable physical effects on Hawking temperature and Bekenstein–Hawking entropy. This study establishes the [...] Read more.
The Lorentz-breaking theory not only modifies the geometric structure of curved spacetime but also significantly alters the quantum dynamics of bosonic and fermionic fields in black hole spacetime, leading to observable physical effects on Hawking temperature and Bekenstein–Hawking entropy. This study establishes the first systematic theoretical framework for entropy modifications of charged accelerating Anti-de Sitter black holes, incorporating gauge-invariant corrections derived from Lorentz-violating quantum field equations in curved spacetime. The obtained analytical expression coherently integrates semi-classical approximations with higher-order quantum perturbative contributions. Furthermore, the methodologies employed and the resultant conclusions are subjected to rigorous analysis, establishing their physical significance for advancing fundamental investigations into black hole entropy. Full article
12 pages, 352 KB  
Article
Scaling Approach to Doniach Phase Diagram: Application to CeRu2Ge2 and EuCu2(Ge1−xSix)2
by Veljko Zlatić and Ivica Aviani
Materials 2025, 18(16), 3755; https://doi.org/10.3390/ma18163755 - 11 Aug 2025
Viewed by 354
Abstract
We calculate the Doniach phase diagram of heavy-fermion systems containing Ce and Eu ions, using the scaling solution of the periodic Anderson model, and compare the results with the experimental data on CeRu2Ge2 and EuCu2(Ge1−xSi [...] Read more.
We calculate the Doniach phase diagram of heavy-fermion systems containing Ce and Eu ions, using the scaling solution of the periodic Anderson model, and compare the results with the experimental data on CeRu2Ge2 and EuCu2(Ge1−xSix)2. The temperature–pressure (T–p) phase diagram emerges from the competition between the pressure-dependent Kondo interaction and the temperature- and pressure-dependent RKKY interaction. Both are derived using scaling equations in the presence of crystal-field effects: Kondo temperature TK is related to the coupling constant g(p), where p is the control parameter, and the temperature-dependent renormalized coupling g(T,TK(g)). For comparison with the experiment, we assume a linear dependence of g on the control parameter, which could be pressure or composition. The Néel temperature TN(p) is obtained by comparing the free energies of the system in the antiferromagnetic and paramagnetic states. The resulting asymmetric TN(p) arises naturally from the exponential growth of TK(p) and a much slower polynomial growth of the RKKY interaction. Phase diagrams for CeRu2Ge2 and EuCu2(Ge1−xSix)2 successfully capture key experimental features: pressure-induced suppression of magnetic order, the peak of RKKY interaction energy, and crossover to a heavy-Fermi-liquid regime at high coupling strength. Our work provides the first quantitative, material-specific construction of Doniach diagrams, clarifies the entropy removal at low temperatures and offers predictive insight for future experiments under extreme conditions. Full article
(This article belongs to the Special Issue Advanced Materials and Processing Technologies)
Show Figures

Figure 1

20 pages, 1554 KB  
Article
Structure of Odd-A Ag Isotopes Studied via Algebraic Approaches
by Stanimir Kisyov and Stefan Lalkovski
Symmetry 2025, 17(8), 1276; https://doi.org/10.3390/sym17081276 - 8 Aug 2025
Viewed by 209
Abstract
The structure of the odd-A silver isotopes Ag103115 is discussed within the frame of the interacting boson–fermion model (IBFM). An overview of their key properties is presented, with a particular attention paid to the “J-1 anomaly”, represented [...] Read more.
The structure of the odd-A silver isotopes Ag103115 is discussed within the frame of the interacting boson–fermion model (IBFM). An overview of their key properties is presented, with a particular attention paid to the “J-1 anomaly”, represented by an abnormal ordering of the lowest 7/2+ and 9/2+ states. By examining previously published data and newly performed calculations, it is demonstrated that the experimentally known level schemes and electromagnetic properties of Ag103115 can be reproduced well within IBFM-1 by using a consistent set of model parameters. The contribution of different single-particle orbitals to the structure of the lowest-lying excited nuclear states in Ag103115 is discussed. Given that the J-1 anomaly brings down the 7/2+ level from the j3 multiplet to energies, which can be thermally populated in hot stellar environments, the importance of low-lying excited states in odd-A silver isotopes for astrophysical processes is outlined. Full article
(This article belongs to the Special Issue Feature Papers in 'Physics' Section 2025)
Show Figures

Figure 1

18 pages, 774 KB  
Article
Free-Fermion Models and Two-Dimensional Ising Models Under Zero Field and Imaginary Field i(π/2)kBT
by De-Zhang Li, Xin Wang and Xiao-Bao Yang
Entropy 2025, 27(8), 799; https://doi.org/10.3390/e27080799 - 27 Jul 2025
Viewed by 395
Abstract
The Ising model is famous in condensed matter and statistical physics. In this work we present a free-fermion formulation of the two-dimensional classical Ising models on honeycomb, triangular and Kagomé lattices. Each Ising model is studied in the cases of a zero field [...] Read more.
The Ising model is famous in condensed matter and statistical physics. In this work we present a free-fermion formulation of the two-dimensional classical Ising models on honeycomb, triangular and Kagomé lattices. Each Ising model is studied in the cases of a zero field and of an imaginary field i(π/2)kBT. We employ the decorated lattice technique, star-triangle transformation, and weak-graph expansion method to exactly map each Ising model in both cases into an eight-vertex model on the square lattice. The resulting vertex weights are shown to satisfy the free-fermion condition. In the zero-field case, each Ising model is an even free-fermion model. In the case of the imaginary field, the Ising model on the honeycomb lattice is an even free-fermion model, while the models on the triangular and Kagomé lattices are odd free-fermion models. We obtain the exact solution of the Kagomé lattice Ising model under the imaginary field i(π/2)kBT, a result not previously reported in the literature. We also show that the frustrated Ising models on the triangular and Kagomé lattices in the imaginary field still exhibit a non-zero residual entropy. Full article
(This article belongs to the Section Statistical Physics)
Show Figures

Figure 1

22 pages, 1438 KB  
Article
The Transcription Machinery and the Driving Force of the Transcriptional Molecular Condensate: The Role of Phosphates
by Raúl Riera Aroche, Esli C. Sánchez Moreno, Yveth M. Ortiz García, Andrea C. Machado Sulbarán, Lizbeth Riera Leal, Luis R. Olivas Román and Annie Riera Leal
Curr. Issues Mol. Biol. 2025, 47(7), 571; https://doi.org/10.3390/cimb47070571 - 20 Jul 2025
Viewed by 480
Abstract
The dynamic phosphorylation of the human RNA Pol II CTD establishes a code applicable to all eukaryotic transcription processes. However, the ability of these specific post-translational modifications to convey molecular signals through structural changes remains unclear. We previously explained that each gene can [...] Read more.
The dynamic phosphorylation of the human RNA Pol II CTD establishes a code applicable to all eukaryotic transcription processes. However, the ability of these specific post-translational modifications to convey molecular signals through structural changes remains unclear. We previously explained that each gene can be modeled as a combination of n circuits connected in parallel. RNA Pol II accesses these circuits and, through a series of pulses, matches the resonance frequency of the DNA qubits, enabling it to extract genetic information and quantum teleport it. Negatively charged phosphates react under RNA Pol II catalysis, which increases the electron density on the deoxyribose acceptor carbon (2’C in the DNA sugar backbone). The phosphorylation effect on the stability of a carbon radical connects tyrosine to the nitrogenous base, while the subsequent pulses link the protein to molecular water through hydrogen bonds. The selective activation of inert C(sp3)–H bonds begins by reading the quantum information stored in the nitrogenous bases. The coupling of hydrogen proton transfer with electron transfer in water generates a supercurrent, which is explained by the correlation of pairs of the same type of fermions exchanging a boson. All these changes lead to the formation of a molecular protein–DNA–water transcriptional condensate. Full article
Show Figures

Figure 1

22 pages, 388 KB  
Article
Gauge-Invariant Slavnov–Taylor Decomposition for Trilinear Vertices
by Andrea Quadri
Universe 2025, 11(7), 228; https://doi.org/10.3390/universe11070228 - 11 Jul 2025
Viewed by 178
Abstract
We continue the analysis of the gauge-invariant decomposition of amplitudes in spontaneously broken massive gauge theories by performing the characterization of separately gauge-invariant subsectors for amplitudes involving trilinear interaction vertices for an Abelian theory with chiral fermions. We show that the use of [...] Read more.
We continue the analysis of the gauge-invariant decomposition of amplitudes in spontaneously broken massive gauge theories by performing the characterization of separately gauge-invariant subsectors for amplitudes involving trilinear interaction vertices for an Abelian theory with chiral fermions. We show that the use of Frohlich–Morchio–Strocchi gauge-invariant dynamical (i.e., propagating inside loops) fields yields a very powerful handle on the cancellations among unphysical degrees of freedom (the longitudinal mode of the massive gauge field, the Goldstone scalar and the ghosts). The resulting cancellations are encoded into separate Slavnov–Taylor invariant sectors for 1-PI amplitudes. The construction works to all orders in perturbation theory. This decomposition suggests a novel strategy for the determination of finite counter-terms required to restore the Slavnov–Taylor identities in chiral theories in the absence of an invariant regularization scheme. Full article
(This article belongs to the Section Field Theory)
Show Figures

Figure 1

63 pages, 988 KB  
Article
Effective Lagrangian for the Macroscopic Motion of Weyl Fermions in 3He-A
by Maik Selch and Mikhail Zubkov
Symmetry 2025, 17(7), 1045; https://doi.org/10.3390/sym17071045 - 2 Jul 2025
Viewed by 212
Abstract
We consider the macroscopic motion of the normal component of superfluid 3He-A in global thermodynamic equilibrium within the context of the Zubarev statistical operator method. We formulate the corresponding effective theory in the language of the functional integral. The effective Lagrangian comprising [...] Read more.
We consider the macroscopic motion of the normal component of superfluid 3He-A in global thermodynamic equilibrium within the context of the Zubarev statistical operator method. We formulate the corresponding effective theory in the language of the functional integral. The effective Lagrangian comprising macroscopic motion of fermionic excitations is calculated explicitly for the emergent relativistic fermions of the superfluid 3He-A phase immersed in a non-trivial bosonic background due to a space- and time-dependent matrix-valued vierbein featuring nonzero torsion as well as the Nieh–Yan anomaly. We do not consider the dynamics of the superfluid component itself and thereby its backreaction effects due to normal component macroscopic flow. It is treated as an external background within which the emergent relativistic fermions of the normal component move. The matrix-valued vierbein formulation comprises an additional two-dimensional internal spin space for the two axially charged Weyl fermions living at the Fermi points, which may be replaced by one featuring a Dirac fermion doublet with a real-valued vierbein, an axial Abelian gauge field, and a spin connection gauge field mixing the Dirac and internal spin spaces. We carry out this change of description in detail and determine the constraints on the superfluid background as well as the the normal component motion as determined from the Zubarev statistical operator formalism in global thermodynamic equilibrium. As an application of the developed theory, we consider macroscopic rotation around the axis of pure integer mass vortices. The corresponding thermodynamic quantities of the normal component are analyzed. Our formulation incorporates both superfluid background flow and macroscopic motion flow of the normal component and thereby enables an analysis of their interrelation. Full article
(This article belongs to the Special Issue Topological Aspects of Quantum Gravity and Quantum Information Theory)
Show Figures

Figure 1

26 pages, 491 KB  
Article
Remarkable Scale Relation, Approximate SU(5), Fluctuating Lattice
by Holger B. Nielsen
Universe 2025, 11(7), 211; https://doi.org/10.3390/universe11070211 - 26 Jun 2025
Viewed by 224
Abstract
In this study, we discuss a series of eight energy scales, some of which are our own speculations, and fit the logarithms of these energies as a straight line versus a quantity related to the dimensionalities of action terms in a way to [...] Read more.
In this study, we discuss a series of eight energy scales, some of which are our own speculations, and fit the logarithms of these energies as a straight line versus a quantity related to the dimensionalities of action terms in a way to be defined in the article. These terms in the action are related to the energy scales in question. So, for example, the dimensionality of the Einstein–Hilbert action coefficient is one related to the Planck scale. In fact, we suppose that, in the cases described with quantum field theory, there is, for each of our energy scales, a pair of associated terms in the Lagrangian density, one “kinetic” and one “mass or current” term. To plot the energy scales, we use the ratio of the dimensionality of, say, the “non-kinetic” term to the dimensionality of the “kinetic” one. For an explanation of our phenomenological finding that the logarithm of the energies depends, as a straight line, on the dimensionality defined integer q, we give an ontological—i.e., it really exists in nature in our model—“fluctuating lattice” with a very broad distribution of, say, the link size a. We take the Gaussian in the logarithm, ln(a). A fluctuating lattice is very natural in a theory with general relativity, since it corresponds to fluctuations in the gauge depth of the field of general relativity. The lowest on our energy scales are intriguing, as they are not described by quantum field theory like the others but by actions for a single particle or single string, respectively. The string scale fits well with hadronic strings, and the particle scale is presumably the mass scale of Standard Model group monopoles, the bound state of a couple of which might be the dimuon resonance (or statistical fluctuation) found in LHC with a mass of 28 GeV. Full article
(This article belongs to the Section High Energy Nuclear and Particle Physics)
Show Figures

Figure 1

28 pages, 847 KB  
Article
The Standard Model Symmetry and Qubit Entanglement
by Jochen Szangolies
Entropy 2025, 27(6), 569; https://doi.org/10.3390/e27060569 - 27 May 2025
Viewed by 1088
Abstract
Research at the intersection of quantum gravity and quantum information theory has seen significant success in describing the emergence of spacetime and gravity from quantum states whose entanglement entropy approximately obeys an area law. In a different direction, the Kaluza–Klein proposal aims to [...] Read more.
Research at the intersection of quantum gravity and quantum information theory has seen significant success in describing the emergence of spacetime and gravity from quantum states whose entanglement entropy approximately obeys an area law. In a different direction, the Kaluza–Klein proposal aims to recover gauge symmetries by means of dimensional reduction in higher-dimensional gravitational theories. Integrating both of these, gravitational and gauge degrees of freedom in 3+1 dimensions may be obtained upon dimensional reduction in higher-dimensional emergent gravity. To this end, we show that entangled systems of two and three qubits can be associated with 5+1- and 9+1-dimensional spacetimes, respectively, which are reduced to 3+1 dimensions upon singling out a preferred complex direction. Depending on the interpretation of the residual symmetry, either the Standard Model gauge group, SU(3)×SU(2)×U(1)/Z6, or the symmetry of Minkowski spacetime together with the gauge symmetry of a right-handed ‘half-generation’ of fermions can be recovered. Thus, there seems to be a natural way to accommodate the chirality of the weak force in the given construction. This motivates a picture in which spacetime emerges from the area law contribution to the entanglement entropy, while gauge and matter degrees of freedom are obtained due to area-law-violating terms. Furthermore, we highlight the possibility of using this construction in quantum simulations of Standard Model fields. Full article
(This article belongs to the Special Issue Foundational Aspects of Gauge Field Theory)
Show Figures

Figure 1

9 pages, 5171 KB  
Article
Squeezed Fermion Back-to-Back Correlation for Expanding Sources
by Yong Zhang
Universe 2025, 11(6), 166; https://doi.org/10.3390/universe11060166 - 22 May 2025
Viewed by 273
Abstract
The interaction between particles and their surrounding medium can induce a squeezed back-to-back correlation between particles and antiparticles. In this paper, the squeezed fermion back-to-back correlation (fBBC) for expanding sources is studied. The formulas of the fBBC correlation function of fermion–antifermion pairs for [...] Read more.
The interaction between particles and their surrounding medium can induce a squeezed back-to-back correlation between particles and antiparticles. In this paper, the squeezed fermion back-to-back correlation (fBBC) for expanding sources is studied. The formulas of the fBBC correlation function of fermion–antifermion pairs for expanding sources are given. The expanding flow leads to a decrease in the fBBC of proton–antiproton pairs and Λ-Λ¯ pairs in the high-momentum region, an increase in the fBBC in the low-momentum region, and a narrowing width of the fBBC varies with in-medium mass in the low-momentum region. Even though the expanding flow influences fBBC, the fBBC of proton–antiproton pairs and Λ-Λ¯ pairs can still offer possible observation signals as the collision energy varies from a few GeV to 200 GeV. Full article
(This article belongs to the Section High Energy Nuclear and Particle Physics)
Show Figures

Figure 1

18 pages, 1670 KB  
Article
Non-Bosonic Damping of Spin Waves in van der Waals Ferromagnetic Monolayers
by Michael G. Cottam and Bushra Hussain
Nanomaterials 2025, 15(10), 768; https://doi.org/10.3390/nano15100768 - 20 May 2025
Viewed by 357
Abstract
The spin wave renormalization processes in two-dimensional van der Waals ferromagnetic monolayers are investigated using an established non-bosonic diagram technique based on the drone-fermion perturbation method. The aim is to evaluate the damping of the long-wavelength spin wave modes at temperatures below the [...] Read more.
The spin wave renormalization processes in two-dimensional van der Waals ferromagnetic monolayers are investigated using an established non-bosonic diagram technique based on the drone-fermion perturbation method. The aim is to evaluate the damping of the long-wavelength spin wave modes at temperatures below the Curie temperature. In addition to the multi-magnon scattering processes, which typically dominate at low temperatures, an additional mechanism is found here that becomes important at elevated temperatures. This spin disorder damping mechanism, which was mainly studied previously in bulk magnetic materials and thicker films, features a spin wave or magnon being scattered by the magnetic disorder that is present when a longitudinal spin component undergoes large thermal fluctuations. The magnetic ordering in the monolayers is stabilized by an out-of-plane single-ion or Ising-type anisotropy, which influences the damping properties. Numerical results are derived for monolayer films of the van der Waals ferromagnet Cr2Ge2Te6. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Graphical abstract

35 pages, 7169 KB  
Article
Symmetries in High-Temperature Lattice QCD with (u, d, s, c, b) Optimal Domain-Wall Quarks
by Ting-Wai Chiu
Symmetry 2025, 17(5), 700; https://doi.org/10.3390/sym17050700 - 3 May 2025
Cited by 1 | Viewed by 384
Abstract
We investigate the spatial z-correlators of meson operators in Nf=2+1+1+1 lattice QCD with optimal domain-wall quarks across eight temperatures ranging from 325 to 3250 MeV. The meson operators include a complete set of [...] Read more.
We investigate the spatial z-correlators of meson operators in Nf=2+1+1+1 lattice QCD with optimal domain-wall quarks across eight temperatures ranging from 325 to 3250 MeV. The meson operators include a complete set of Dirac bilinears for ten flavor combinations. Our findings reveal a hierarchical restoration of chiral symmetry in QCD with (u,d,s,c,b) quarks, progressing sequentially from SU(2)L×SU(2)R×U(1)A to SU(3)L×SU(3)R×U(1)A, then to SU(4)L×SU(4)R×U(1)A, and finally to SU(5)L×SU(5)R×U(1)A as the temperature increases. Additionally, we explore the emergence of the SU(2)CS chiral-spin symmetry and compare the temperature windows for all flavor combinations. Our results indicate that the temperature windows for the emergent SU(2)CS symmetry are primarily dominated by the u¯b and s¯b sectors. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

27 pages, 452 KB  
Article
Quantum Electrodynamics from Quantum Cellular Automata, and the Tension Between Symmetry, Locality, and Positive Energy
by Todd A. Brun and Leonard Mlodinow
Entropy 2025, 27(5), 492; https://doi.org/10.3390/e27050492 - 1 May 2025
Viewed by 844
Abstract
Recent work has demonstrated a correspondence that bridges quantum information processing and high-energy physics: discrete quantum cellular automata (QCA) can, in the continuum limit, reproduce quantum field theories (QFTs). This QCA/QFT correspondence raises fundamental questions about how matter/energy, information, and the nature of [...] Read more.
Recent work has demonstrated a correspondence that bridges quantum information processing and high-energy physics: discrete quantum cellular automata (QCA) can, in the continuum limit, reproduce quantum field theories (QFTs). This QCA/QFT correspondence raises fundamental questions about how matter/energy, information, and the nature of spacetime are related. Here, we show that free QED is equivalent to the continuous-space-and-time limit of Fermi and Bose QCA theories on the cubic lattice derived from quantum random walks satisfying simple symmetry and unitarity conditions. In doing so, we define the Fermi and Bose theories in a unified manner using the usual fermion internal space and a boson internal space that is six-dimensional. We show that the reduction to a two-dimensional boson internal space (two helicity states arising from spin-1 plus the photon transversality condition) comes from restricting the QCA theory to positive energies. We briefly examine common symmetries of QCAs and how time-reversal symmetry demands the existence of negative-energy solutions. These solutions produce a tension in coupling the Fermi and Bose theories, in which the strong locality of QCAs seems to require a non-zero amplitude to produce negative-energy states, leading to an unphysical cascade of negative-energy particles. However, we show in a 1D model that, by extending interactions over a larger (but finite) range, it is possible to exponentially suppress the production of negative-energy particles to the point where they can be neglected. Full article
(This article belongs to the Special Issue Recent Advances and Challenges in Quantum Cellular Automata)
Show Figures

Figure 1

35 pages, 5269 KB  
Article
The Quantum Transport of Dirac Fermions in Selected Graphene Nanosystems Away from the Charge Neutrality Point
by Adam Rycerz
Materials 2025, 18(9), 2036; https://doi.org/10.3390/ma18092036 - 29 Apr 2025
Viewed by 741
Abstract
The peculiar electronic properties of graphene, including the universal dc conductivity and the pseudodiffusive shot noise, are usually found in a small vicinity close to the charge neutrality point, away from which the electron’s effective mass raises, and nanostructures in graphene start to [...] Read more.
The peculiar electronic properties of graphene, including the universal dc conductivity and the pseudodiffusive shot noise, are usually found in a small vicinity close to the charge neutrality point, away from which the electron’s effective mass raises, and nanostructures in graphene start to behave similarly to familiar Sharvin contacts in semiconducting heterostructures. Recently, it was pointed out that as long as abrupt potential steps separate the sample area from the leads, some graphene-specific features can be identified relatively far from the charge neutrality point. These features include greater conductance reduction and shot noise enhancement compared to the standard Sharvin values. The purpose of this paper is twofold: First, we extend the previous analysis based on the effective Dirac equation, and derive the formulas that allow the calculation of the arbitrary charge transfer cumulant for doped graphene. Second, the results of the analytic considerations are compared with numerical simulations of quantum transport on the honeycomb lattice for selected nanosystems for which considerations starting from the Dirac equation cannot be directly adapted. For a wedge-shaped constriction with zigzag edges, the transport characteristics can be tuned from graphene-specific (sub-Sharvin) values to standard Sharvin values by varying the electrostatic potential profile in the narrowest section. A similar scenario is followed by the half-Corbino disk. In contrast, a circular quantum dot with two narrow openings showing a mixed behavior appears: the conductance is close to the Sharvin value, while the Fano factor approaches the value characterizing the symmetric chaotic cavity. Carving a hole in the quantum dot to eliminate direct trajectories between the openings reduces the conductance to sub-Sharvin value, but the Fano factor is unaffected. Our results suggest that experimental attempts to verify the predictions for the sub-Sharvin transport regime should focus on systems with relatively wide openings, where the scattering at the sample edges is insignificant next to the scattering at the sample–lead interfaces. Full article
(This article belongs to the Special Issue Quantum Transport in Novel 2D Materials and Structures)
Show Figures

Figure 1

Back to TopTop