Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (182)

Search Parameters:
Keywords = fermented sausages

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 647 KiB  
Article
Effects of Burdock Addition and Different Starters on the Quality and Flavor Improvement of Duck Sausages
by Li Cui, Xuan Zhao, Xingye Song, Wenjing Zhou, Tao Wang, Wuyang Huang and Yuxing Guo
Biology 2025, 14(8), 996; https://doi.org/10.3390/biology14080996 (registering DOI) - 4 Aug 2025
Viewed by 189
Abstract
Burdock (Arctium lappa L.) is a medicinal and edible homologous plant whose roots contain many bioactive substances such as polysaccharides and phenolics. This study explored the integration of burdock powder and lactic acid bacteria fermentation to enhance the nutritional quality, sensory attributes, [...] Read more.
Burdock (Arctium lappa L.) is a medicinal and edible homologous plant whose roots contain many bioactive substances such as polysaccharides and phenolics. This study explored the integration of burdock powder and lactic acid bacteria fermentation to enhance the nutritional quality, sensory attributes, and flavor profiles of duck sausages. Three bacterial strains, Lacticaseibacillus casei, L. helveticus, and L. plantarum, were selected based on sensory analysis, and their effects on sausage properties were evaluated through combined fermentation trials. The results demonstrated that duck sausages fermented with L. plantarum and L. helveticus and supplemented with 3% burdock powder (PHB group) exhibited > 1.5-fold higher antioxidant activity (ABTS at 85.2 μmol trolox/g and DPPH at 92.7 μmol trolox/g, respectively; p < 0.05) and 15% increase in total phenolic content (8.24 mg gallic acid/g) compared to non-fermented counterparts. The PHB formulation also enhanced color stability (lightness, redness, yellowness), textural characteristics (hardness, springiness, cohesiveness), and sensory acceptability. Volatile compound analysis revealed a reduction in off-odor aldehydes (hexanal, (E)-2-octenal, (E)-2-decenal, and (E,E)-2,4-decadienal) and increased production of desirable aromatic compounds like tetramethyl-pyrazine. These findings highlight the potential of combining lactic acid bacteria fermentation with burdock powder to develop functional duck sausages with improved nutritional and sensory properties. Full article
(This article belongs to the Special Issue Nutraceutical and Bioactive Compounds in Foods)
Show Figures

Figure 1

24 pages, 4143 KiB  
Article
Time-Delayed Cold Gelation of Low-Ester Pectin and Gluten with CaCO3 to Facilitate Manufacture of Raw-Fermented Vegan Sausage Analogs
by Maurice Koenig, Kai Ahlborn, Kurt Herrmann, Myriam Loeffler and Jochen Weiss
Appl. Sci. 2025, 15(15), 8510; https://doi.org/10.3390/app15158510 (registering DOI) - 31 Jul 2025
Viewed by 193
Abstract
To advance the development of protein-rich plant-based foods, a novel binder system for vegan sausage alternatives without the requirement of heat application was investigated. This enables long-term ripening of plant-based analogs similar to traditional fermented meat or dairy products, allowing for refined flavor [...] Read more.
To advance the development of protein-rich plant-based foods, a novel binder system for vegan sausage alternatives without the requirement of heat application was investigated. This enables long-term ripening of plant-based analogs similar to traditional fermented meat or dairy products, allowing for refined flavor and texture development. This was achieved by using a poorly water-soluble calcium source (calcium carbonate) to introduce calcium ions into a low-ester pectin—gluten matrix susceptible to crosslinking via divalent ions. The gelling reaction of pectin–gluten dispersions with Ca2+ ions was time-delayed due to the gradual production of lactic acid during fermentation. Firm, sliceable matrices were formed, in which particulate substances such as texturized proteins and solid vegetable fat could be integrated, hence forming an unheated raw-fermented plant-based salami-type sausage model matrix which remained safe for consumption over 21 days of ripening. Gluten as well as pectin had a significant influence on the functional properties of the matrices, especially water holding capacity (increasing with higher pectin or gluten content), hardness (increasing with higher pectin or gluten content), tensile strength (increasing with higher pectin or gluten content) and cohesiveness (decreasing with higher pectin or gluten content). A combination of three simultaneously occurring effects was observed, modulating the properties of the matrices, namely, (a) an increase in gel strength due to increased pectin concentration forming more brittle gels, (b) an increase in gel strength with increasing gluten content forming more elastic gels and (c) interactions of low-ester pectin with the gluten network, with pectin addition causing increased aggregation of gluten, leading to strengthened networks. Full article
(This article belongs to the Special Issue Processing and Application of Functional Food Ingredients)
Show Figures

Figure 1

17 pages, 1009 KiB  
Article
Analysis of Five Biogenic Amines in Foods on the Chinese Market and Estimation of Acute Histamine Exposure from Fermented Foods in the Chinese Population
by Pei Cao, Mengmeng Gao, Dongmei Huang, Xiaomin Xu, Zhujun Liu, Qing Liu, Yang Lu, Feng Pan, Zhaoxin Li, Jinfang Sun, Lei Zhang and Pingping Zhou
Foods 2025, 14(14), 2550; https://doi.org/10.3390/foods14142550 - 21 Jul 2025
Viewed by 309
Abstract
Biogenic amines (BAs) are frequently detected in seafood products, wines, and fermented foods, and they pose potential risks to human health. The current study analyzed the concentrations of five common BAs in seafood, fermented food, and complementary food for infants and children (fish [...] Read more.
Biogenic amines (BAs) are frequently detected in seafood products, wines, and fermented foods, and they pose potential risks to human health. The current study analyzed the concentrations of five common BAs in seafood, fermented food, and complementary food for infants and children (fish sausage, canned complementary food for infants containing fish and shrimp ingredients, and fish floss) in China and estimated the acute health risks of histamine (HIS) from fermented foods in Chinese consumers. Among all the samples analyzed, HIS exhibited the highest detection rate (51.9%), followed by PUT (50.1%), and the detection rate of TRY (12.5%) was the lowest. The total average concentration of the five BAs across major food categories revealed that fermented bean curd had the highest total concentration of BAs (816.8 mg/kg), followed by shrimp (383.2 mg/kg) and cheese (328.0 mg/kg). In contrast, samples of complementary food for infants and children contained the lowest concentrations of BAs; the total average concentration of the five BAs was 12.0 mg/kg. The point assessment results showed that acute dietary exposure to HIS was highest from cheese (76.2 mg/d), followed by fermented bean products (74.5 mg/d). Furthermore, the probability assessment indicated that the probability of acute health risks from exposure to HIS was 0.44% for fermented bean product consumers and 0.014% for cheese consumers, respectively. Thus, for the general consumer, the probability of acute health risks caused by HIS in seafood and fermented foods is low. However, individuals with high consumption of cheese and fermented bean products may need to be concerned. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

18 pages, 1720 KiB  
Article
In Vitro Preliminary Characterization of Lactiplantibacillus plantarum BG112 for Use as a Starter Culture for Industrial Dry-Fermented Meats
by María Inés Palacio, María Julia Ruiz, María Fernanda Vega and Analía Inés Etcheverría
Fermentation 2025, 11(7), 403; https://doi.org/10.3390/fermentation11070403 - 14 Jul 2025
Viewed by 436
Abstract
The objective of this study was to perform a preliminary in vitro characterization of Lactiplantibacillus plantarum BG112, assessing its safety and technological features for potential application as a culture starter for an industrial fermented dry meat product. In vitro assays assessed its viability, [...] Read more.
The objective of this study was to perform a preliminary in vitro characterization of Lactiplantibacillus plantarum BG112, assessing its safety and technological features for potential application as a culture starter for an industrial fermented dry meat product. In vitro assays assessed its viability, probiotic properties, and safety for use in food formulations. The strain was characterized through morphological and biochemical tests, carbohydrate fermentation profiling, and various in vitro assays based on FAO/WHO criteria for probiotic selection. These included proteolytic activity, auto-aggregation capacity, tolerance to simulated gastric juice and bile salts, antimicrobial activity, and resistance to sodium chloride, nitrite, and low pH. Safety evaluations were also performed by testing antibiotic susceptibility, hemolytic activity, and DNAse production. The results showed that L. plantarum BG112 exhibited strong tolerance to adverse environmental conditions typically found during sausage fermentation and ripening, along with significant inhibitory activity against pathogenic bacteria, such as Escherichia coli O157:H7, Salmonella Typhimurium, and Staphylococcus aureus. The strain also demonstrated no hemolytic or DNAse activity and presented a favorable antibiotic sensitivity profile, meeting key safety requirements for probiotic use. Further studies using meat matrices and in vivo models are needed to validate these findings. This study contributes to the early-stage selection of safe and technologically suitable strains for use in fermented meat products. These findings support the potential application of L. plantarum BG112 as a safe and effective starter culture in the development of high-value, premium fermented meat products, aligned with current consumer demand for health-enhancing and natural foods. Full article
Show Figures

Figure 1

11 pages, 344 KiB  
Communication
Lactic Acid Bacteria Succession, Identification and Antilisterial Capacity in Traditionally Produced Dry-Fermented Chicken Sausage
by Nevijo Zdolec, Marta Kiš, Mladenka Vukšić, Hrvoje Mazija, Ivana Bazina and Snježana Kazazić
Processes 2025, 13(7), 2216; https://doi.org/10.3390/pr13072216 - 11 Jul 2025
Viewed by 362
Abstract
The production of fermented sausages from poultry meat using traditional technologies and natural maturation conditions is a major challenge. The aim of this study was to identify indigenous microbiota with antilisterial activity from an innovative, additive-free, traditionally fermented chicken sausage. Isolates (n [...] Read more.
The production of fermented sausages from poultry meat using traditional technologies and natural maturation conditions is a major challenge. The aim of this study was to identify indigenous microbiota with antilisterial activity from an innovative, additive-free, traditionally fermented chicken sausage. Isolates (n = 88) of lactic acid bacteria (LAB) were collected during maturation and subjected to MALDI-TOF mass spectrometry identification. The capacity to combat Listeria was screened against five strains using the agar well diffusion method in 63 selected LAB isolates. MALDI-TOF mass spectrometry identified four different LAB genera, namely Enterococcus, Lactococcus, Leuconostoc and Lactobacillus, the proportions of which differed significantly during the production phases (p < 0.001). Enterococcus faecalis was the most prevalent LAB species in the initial sausage dough. The presence of lactococci (Lactococcus lactis) and enterococci was detected during the 14- and 30-day ripening period and was gradually displaced by leuconostocs and lactobacilli. Lactobacilli appeared to be abundant during the central and late maturation phases, and consisted of only two species—Latilactobacillus sakei and Latilactobacillus curvatus. In total, 38 LAB isolates (60%) showed antilisterial activity toward at least one Listeria indicator strain. The proportions of antilisterial LAB differed significantly during sausage maturation. Inhibitory activity against all indicator Listeria was detected in the neutralized cell-free supernatants of five strains of Enterococcus faecalis, two L. sakei strains and one Leuconostoc mesenteroides strain. The antilisterial activity observed in the indigenous LAB revealed the possible role of L. sakei as a bioprotective culture, as well as the role of Ln. mesenteroides and E. faecalis as bacteriocin producers, for practical applications. Full article
Show Figures

Figure 1

25 pages, 39439 KiB  
Article
In Silico Discovery and Sensory Validation of Umami Peptides in Fermented Sausages: A Study Integrating Deep Learning and Molecular Modeling
by Haochen Geng, Chunming Xu, Huijun Ma, Youxu Dai, Ziyou Jiang, Mingyue Yang and Danyang Zhu
Foods 2025, 14(14), 2422; https://doi.org/10.3390/foods14142422 - 9 Jul 2025
Viewed by 376
Abstract
Deep learning has great potential in the field of functional peptide prediction. This study combines metagenomics and deep learning to efficiently discover potential umami peptides in fermented sausages. A candidate peptide library was generated using metagenomic data from fermented sausages, an integrated deep [...] Read more.
Deep learning has great potential in the field of functional peptide prediction. This study combines metagenomics and deep learning to efficiently discover potential umami peptides in fermented sausages. A candidate peptide library was generated using metagenomic data from fermented sausages, an integrated deep learning model was constructed for prediction, and SHAP (SHapley Additive exPlanations) interpretability analysis was performed to elucidate the key amino acid features and contributions of the model in predicting umami peptides, screening the top ten peptides with the highest predicted probability. Subsequently, molecular docking was performed to assess the binding stability of these peptides with the umami receptor T1R1/T1R3, selecting the three peptides DDSMAATGL, DGEEDASM, and DEEEVDI with the most stable binding for further study. Docking analysis revealed the important roles of the key receptor residues Glu301, Arg277, Lys328, and His71 in hydrogen bond formation. Molecular dynamics simulations validated the robust integrity of the peptide–receptor associations. Finally, sensory evaluation demonstrated that these three peptides possessed significant umami characteristics, with low umami thresholds (0.11, 0.37, and 0.44 mg/mL, respectively). This study, based on metagenomics and deep learning, provides a high-throughput strategy for the discovery and validation of functional peptides. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

17 pages, 4201 KiB  
Article
Comparative Effects of the Single and Binary Fermentations of Latilactobacillus sakei and Staphylococcus carnosus on the Growth and Metabolomic Profiles of Fermented Beef Sausages
by Xuan Li, Yangyi Zheng, Wenming Cui, Xueyuan Bai, Chaozhi Zhu and Gaiming Zhao
Microorganisms 2025, 13(7), 1523; https://doi.org/10.3390/microorganisms13071523 - 29 Jun 2025
Viewed by 311
Abstract
Latilactobacillus sakei (L. sakei) and Staphylococcus carnosus (S. carnosus) are common starters for fermented sausages. However, the mechanism underlying the effects of these two microorganisms on co-cultivation in sausages remains unclear. This study compared the changes in metabolomics following [...] Read more.
Latilactobacillus sakei (L. sakei) and Staphylococcus carnosus (S. carnosus) are common starters for fermented sausages. However, the mechanism underlying the effects of these two microorganisms on co-cultivation in sausages remains unclear. This study compared the changes in metabolomics following fermentation by L. sakei and S. carnosus individually and in combination. After two days of fermentation, the pH values of the LS (Latilactobacillus Single), SC (Staphylococcus Single), and LSSC (Latilactobacillus-Staphylococcus Combined) groups were 4.59, 5.19, and 4.86. By comparing the common differential metabolites among the three groups, it was found that the content of N2-acetyl-L-ornithine decreased after single fermentation with L. sakei, while the content of N2-acetyl-L-ornithine increased after single fermentation with S. carnosus and combined fermentation with L. sakei. Additionally, KEGG pathway analysis identified eight key metabolic pathways, including purine metabolism, starch and sucrose metabolism. In addition, it was found that L. sakei produced D-Galactose during fermentation, which could be utilized by S. carnosus. The co-fermentation of L. sakei and S. carnosus promoted the production of D-sorbitol. Our results suggest that the metabolic interactions between L. sakei and S. carnosus increase the number of functional metabolites in co-fermented sausages. These findings provide valuable insights and new research directions for the study of LAB and CNS interactions, as well as for the development of fermentation agents. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

21 pages, 4042 KiB  
Article
Screening, Identification, and Application of Superior Starter Cultures for Fermented Sausage Production from Traditional Meat Products
by Zijie Dong, Longfei Wang, Yanzheng Ge, Yongqiang An, Xiaoxue Sun, Ke Xue, Haoyang Xie, Ran Wang, Junguang Li and Lishui Chen
Fermentation 2025, 11(6), 306; https://doi.org/10.3390/fermentation11060306 - 27 May 2025
Viewed by 687
Abstract
In this study, 43 strains of Staphylococcus spp. and 22 strains of lactic acid bacteria (LAB), isolated from six representative fermented meat products (domestic and international), were subjected to a comprehensive safety evaluation, including hemolytic activity, catalase test, hydrogen sulfide production, and antibiotic [...] Read more.
In this study, 43 strains of Staphylococcus spp. and 22 strains of lactic acid bacteria (LAB), isolated from six representative fermented meat products (domestic and international), were subjected to a comprehensive safety evaluation, including hemolytic activity, catalase test, hydrogen sulfide production, and antibiotic susceptibility screening. Nine strains were selected for secondary screening based on safety criteria, fermentation characteristics, and acid and salt tolerance tests. Two optimal strains were identified—Staphylococcus saprophyticus LH-5 and Latilactobacillus sakei OFN-11—demonstrating excellent compatibility and no mutual antagonism. Both strains were non hemolytic, catalase positive, susceptible to some of the antibiotic tested, and did not produce hydrogen sulfide, mucus, or gas. These favorable fermentation characteristics included lipase/protease production, amino acid decarboxylase negativity, and salt and acid tolerance. Application experiments in fermented sausages were analyzed for 55 volatile compounds, related to meaty, fruity, and fatty aroma profiles compared to commercial starter cultures. The formulation including the selected strains exhibited lower acidity than its commercial unterparts while maintaining superior sensory and physicochemical attributes. These findings suggest that the S. saprophyticus LH-5 and L. sakei OFN-11 consortium holds promising potential as a starter culture for fermented meat products, offering technological advantages to become a fermentation agent that meets the preferences of Chinese consumers. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

19 pages, 2378 KiB  
Article
In Vitro Assays to Evaluate the Effects of Mango By-Product Polyphenolic Extracts Against Bacterial Species Associated with Food Spoilage and Human Diseases and the Relationship with Their Genotypes
by Eva Dorta, Mónica González, María Gloria Lobo and Federico Laich
Appl. Sci. 2025, 15(11), 5845; https://doi.org/10.3390/app15115845 - 22 May 2025
Viewed by 509
Abstract
Mangifera indica L. by-products obtained by three extraction methods from three cultivars (Keitt, Sensation and Gomera-3) were tested for their antibacterial properties against 20 bacterial species. These species were selected based on their relevance to winemaking processes (Acetobacter, Gluconobacter and Gluconacetobacter [...] Read more.
Mangifera indica L. by-products obtained by three extraction methods from three cultivars (Keitt, Sensation and Gomera-3) were tested for their antibacterial properties against 20 bacterial species. These species were selected based on their relevance to winemaking processes (Acetobacter, Gluconobacter and Gluconacetobacter), fermented meat products (Staphylococcus) and human diseases (Pseudomonas, Escherichia, Shigella and Klebsiella). All mango by-product extracts showed antimicrobial activity in agar diffusion and broth microdilution experiments. However, differences in antimicrobial activity against acetic acid bacteria were detected between the peel extracts obtained from the two extraction processes. Furthermore, a wide range of minimum inhibitory concentration (MIC) data were found; Staphylococcus spp. (10 species) showed MICs between 1.0–240 mgGAE/mL and Acetobacter spp. (4 species) showed MICs between 1.7 and 200 mgGAE/mL. The most sensitive bacteria belonged to the staphylococcal species (MIC: 1 mgGAE/mL) and the most resistant was Gluconacetobacter saccharivorans (MIC > 400 mgGAE/mL). In general, there was no significant correlation between the phenolic compounds identified and the MIC values. The minimum bactericidal concentration (MBC) revealed that the mango extracts had a bacteriostatic effect. A simple and reliable method for the determination of MIC and MBC in microdilution assays with acetic acid bacteria was described. These results highlight the antibacterial properties of mango by-products against species associated with food spoilage microorganisms and human diseases. Full article
(This article belongs to the Special Issue Advances in Food Safety and Microbial Control)
Show Figures

Figure 1

19 pages, 1406 KiB  
Article
Soy Protein Isolate Supplementation Favorably Regulates the Fermentation Characteristics of Debaryomyces hansenii and Flavor Profile in a Sausage Model
by Wenwen Duan, Qiujin Zhu and Jing Wan
Foods 2025, 14(11), 1840; https://doi.org/10.3390/foods14111840 - 22 May 2025
Viewed by 726
Abstract
The metabolic activity of fermentative microorganisms plays a critical role in determining the flavor profile of fermented meat products. Modulating carbon and nitrogen sources represents a promising strategy for enhancing product quality. In this study, Debaryomyces hansenii strains isolated from dry-cured ham were [...] Read more.
The metabolic activity of fermentative microorganisms plays a critical role in determining the flavor profile of fermented meat products. Modulating carbon and nitrogen sources represents a promising strategy for enhancing product quality. In this study, Debaryomyces hansenii strains isolated from dry-cured ham were assessed in a sterile sausage model to evaluate the effects of different carbon sources (sucrose, corn starch) and nitrogen sources (leucine, soy protein isolate) on colony growth, enzyme activity, and physicochemical properties. These nutritional factors significantly affected the fermentation performance of D. hansenii. Corn starch and soy protein isolate increased colony count by 14.94% and 90%, respectively, and enhanced protease activity by 2-fold and 4.5-fold. Both treatments maintained high lipase activity (>50 U/g). Both supplements improved the water-holding capacity and decreased the water activity. Carbon sources reduced the medium pH, whereas nitrogen sources contributed to the maintenance of pH stability. A further analysis indicated that corn starch promoted the accumulation of aldehydes and ketones, which intensified the sourness and suppressed the saltiness. In contrast, soy protein isolate increased the abundance of free amino acids associated with umami and sweetness, and stimulated the formation of esters, ketones, and pyrazines, thereby enhancing flavor richness and umami intensity. Both ingredients also reduced saturated fatty acid levels and increased the unsaturated to saturated fatty acid ratio. Soy protein isolate exhibited a more pronounced effect on D. hansenii fermentation. This study provides a technical reference for enhancing the flavor characteristics of fermented meat products via the adjustment of carbon and nitrogen sources to regulate D. hansenii fermentation. Full article
(This article belongs to the Special Issue Food Microorganism Contribution to Fermented Foods)
Show Figures

Graphical abstract

10 pages, 980 KiB  
Article
The Fate of Yersinia pseudotuberculosis in Raw Fermented Meat Products
by Radka Hulánková and Irena Svobodová
Appl. Sci. 2025, 15(10), 5324; https://doi.org/10.3390/app15105324 - 9 May 2025
Viewed by 437
Abstract
Yersinia pseudotuberculosis is a foodborne pathogen with an animal reservoir, thus being able to spread via contaminated meat. The survival of Y. pseudotuberculosis during the ripening and storage of artificially contaminated spreadable fermented sausage (Teewurst) and dry fermented sausage was studied, with initial [...] Read more.
Yersinia pseudotuberculosis is a foodborne pathogen with an animal reservoir, thus being able to spread via contaminated meat. The survival of Y. pseudotuberculosis during the ripening and storage of artificially contaminated spreadable fermented sausage (Teewurst) and dry fermented sausage was studied, with initial counts of 8 log, 6 log, and 3 log CFU/g. While the pathogen was completely inhibited in all batches of dry fermented sausage after 4 d of ripening and was thus absent in the final product, it survived much better in the spreadable sausage, characterized by a higher pH and fat content. The counts in the Teewurst final product (after 2 d of ripening) dropped from 8 log, 6 log, and 3 log CFU/g to approx. 6.3, 2.4, and 1.4 log CFU/g, respectively. For the initial concentrations 6 log and 3 log CFU/g, at least 1 out of six samples was still positive after 20 d of cold storage. On the other hand, in the batches with the highest initial counts (8 log CFU/g), all the samples were positive at the end of the experiment (37 d). The rapid decline in pH caused by the starter culture was an effective barrier for Y. pseudotuberculosis in dry fermented sausages, but the pathogen was able to persist in Teewurst. Full article
Show Figures

Figure 1

21 pages, 3637 KiB  
Article
Beneficial Effects of Lactobacillus delbrueckii subsp. lactis N102 and Lactobacillus sakei H1-5 Added as Starter Strains on the Metabolome, Safety and Quality of Dry-Fermented Sausages
by Yushan Jiao, Min Cai, Wensheng Tang, Zhengkai Wang and Yingli Liu
Foods 2025, 14(10), 1675; https://doi.org/10.3390/foods14101675 - 9 May 2025
Viewed by 556
Abstract
This study investigated the beneficial effects of individual and co-inoculation with Lactobacillus delbrueckii subsp. lactis N102 and Lactobacillus sakei H1-5 on improving safety parameters, sensory characteristics, and non-volatile metabolite profiles in dry-fermented sausages. Comprehensive analyses were conducted throughout the 20-day maturation period (0, [...] Read more.
This study investigated the beneficial effects of individual and co-inoculation with Lactobacillus delbrueckii subsp. lactis N102 and Lactobacillus sakei H1-5 on improving safety parameters, sensory characteristics, and non-volatile metabolite profiles in dry-fermented sausages. Comprehensive analyses were conducted throughout the 20-day maturation period (0, 6, 13, 16, and 20 days), including physicochemical monitoring (moisture content, malondialdehyde (MDA) levels, biogenic amine concentrations, and sodium nitrite residues); sensory evaluation (color parameters and textural properties); and 1H NMR-based metabolomic profiling. Key findings revealed strain-specific advantages: the N102 inoculation significantly delayed lipid oxidation, achieving the lowest final MDA concentration (4.5 mg/kg) among all groups. Meanwhile, H1-5 supplementation notably improved color attributes (a*/b* ratio = 1.34). The co-inoculation strategy demonstrated synergistic effects through (1) accelerated acidification (pH 5.3 by day 6); (2) enhanced textural properties (significantly increased hardness and elasticity vs. control); (3) optimized water distribution (free water reduced to 0.56% with 64.73% immobilized water); and (4) a significant reduction in sodium nitrite residues (70% decrease) and complete elimination of phenylethylamine (total biogenic amines: 702.94 mg/kg). 1H NMR metabolomics identified 30 non-volatile metabolites, and the co-inoculation significantly increased the amount of essential amino acids (leucine, isoleucine), flavor-related compounds (glutamic acid, succinic acid), and bioactive substances (gooseberry, creatine). These metabolites enhanced antioxidant capacity, freshness, and nutritional value. Our findings demonstrate that strategic co-cultivation of food-grade lactobacilli can synergistically enhance both the techno-functional properties and biochemical composition of fermented meat products, providing a viable approach for quality optimization in industrial applications. Full article
Show Figures

Figure 1

15 pages, 4468 KiB  
Article
Comparative Analysis of the Microbial Community Profiles of Sichuan and Guizhou Smoke-Cured Sausages Using a High-Throughput Sequencing Approach
by Xiangyong Zeng, Chaoyang Wei, Dounan Li, Wentao Cao and Qiang Lin
Microorganisms 2025, 13(5), 1096; https://doi.org/10.3390/microorganisms13051096 - 8 May 2025
Viewed by 438
Abstract
Autochthonous microorganisms play critical roles in shaping the quality of Chinese sausages and may be influenced by local climate and/or processing conditions. The present study aimed to reveal the interprovincial differences in microbial community between Sichuan and Guizhou sausages, as well as driving [...] Read more.
Autochthonous microorganisms play critical roles in shaping the quality of Chinese sausages and may be influenced by local climate and/or processing conditions. The present study aimed to reveal the interprovincial differences in microbial community between Sichuan and Guizhou sausages, as well as driving factors based on high-throughput sequencing and bioinformatic analysis. The results indicated that Cobetia, Debaryomycetaceae, Kurtzmaniella, and Candida zeylanoides served as biomarkers for Sichuan sausages. In contrast, Enterococcus, unclassified Cyanobacteriales, Lactobacillales, Aspergillus vitricola, Mortierella, Fusarium, and Penicillium were identified as biomarkers for Guizhou sausages. Furthermore, salt content and moisture level showed positive correlations with Cobetia, Staphylococcus, Debaryomyces, and Kurtzmaniella, mainly found in Sichuan sausages. Conversely, pH and water activity (Aw) were positively associated with potential pathogenic bacteria (e.g., Vibrio, Cyanobacteria, Enterococcus, and Aeromonas) and fungi (e.g., Aspergillus, Fusarium, and Penicillium), which were mainly distributed in Guizhou sausages. Notably, microbial composition discrepancies between Sichuan and Guizhou sausages were primarily driven by processing conditions rather than regional climate factors. Collectively, these findings provide valuable insight for developing novel specific starters. Full article
(This article belongs to the Special Issue Microbial Fermentation, Food and Food Sustainability)
Show Figures

Figure 1

26 pages, 2947 KiB  
Article
The Behavior of Listeria monocytogenes During the Shelf Life of Wiener Sausages, as an Effect of Fermented Parsley Root Juice and Hawthorn Berry Phenolics
by Georgeta Ștefan, Gheorghe Valentin Goran, Corina Nicoleta Predescu, Maria Rodica Gurău and Stelian Bărăităreanu
Foods 2025, 14(9), 1513; https://doi.org/10.3390/foods14091513 - 26 Apr 2025
Viewed by 542
Abstract
The behavior of Listeria monocytogenes (L. monocytogenes) throughout the shelf life of ready-to-eat foodstuffs represents a major concern in relation to human diet and human health. The aim of the study was to evaluate the behavior of L. monocytogenes in Wiener [...] Read more.
The behavior of Listeria monocytogenes (L. monocytogenes) throughout the shelf life of ready-to-eat foodstuffs represents a major concern in relation to human diet and human health. The aim of the study was to evaluate the behavior of L. monocytogenes in Wiener sausage, as an RTE meat product, throughout 15 days of storage (0–7 °C) under the action of fermented juice from parsley (Petroselinum crispum var. tuberosum) roots and common hawthorn (Crataegus monogyna) berry phenolics, compared with the effect of the food additives sodium nitrite and sodium ascorbate used in the standard formulation. For this purpose, one experimental formulation (F1) and one standard formulation (F2) of Wiener sausages were designed using the following preservatives and antioxidants: 50 ppm fermented parsley root juice (as a nitrite source) and 50 ppm hawthorn berry phenolics were used in F1, and 50 ppm sodium nitrite (as food additive E 250) and 50 ppm sodium ascorbate (as food additive E 301) were used in F2. The ability to support L. monocytogenes growth was assessed by a challenge test throughout the 15 days of storage. Based on the results of the assessment, the natural ingredients fermented parsley root juice and hawthorn berry phenolics could act as preservatives that ensure microbiological safety during the shelf life of the product. The nitrite and phenolic compounds of these natural ingredients showed antimicrobial activity against foodborne pathogens, including L. monocytogenes. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

19 pages, 1804 KiB  
Article
Protective Effect of Lactic Acid Bacteria Isolated from Ripened Foods Against Listeria monocytogenes in Plant-Based Fermented Dry-Cured Sausages
by José M. Martín-Miguélez, Cristina Castaño, Josué Delgado, Lary Souza Olegario and Alberto González-Mohino
Foods 2025, 14(9), 1491; https://doi.org/10.3390/foods14091491 - 24 Apr 2025
Cited by 1 | Viewed by 527
Abstract
The aim of the study was to use a commonly employed technology in the meat industry, the inoculation of a biocontrol starter, in the processing of a plant-based fermented dry-cured sausage analog to improve its safety against possible Listeria monocytogenes contamination. Challenge tests [...] Read more.
The aim of the study was to use a commonly employed technology in the meat industry, the inoculation of a biocontrol starter, in the processing of a plant-based fermented dry-cured sausage analog to improve its safety against possible Listeria monocytogenes contamination. Challenge tests were used to select suitable lactic acid bacteria (LAB) for the analog under industrial production conditions. First, 20 LAB strains were tested in vitro and five of them were further tested by stuffing the ingredients under industrial conditions. The L. monocytogenes counts highlighted Latilactobacillus sakei 205 as the most protective one, achieving a reduction of 2.6 log CFU/g. Further, a triangular test and Check-All-That-Apply test were performed to understand the organoleptic differences that could be expected in the final product. The batch inoculated with Llb. sakei 205 did not show any sensory differences from the commercial batch. Therefore, Llb. sakei 205 was identified as a potential protective starter due to the microbiological and sensory results. This pioneering study applied biocontrol starters to plant-based meat analogs, aligning with clean-label trends. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Graphical abstract

Back to TopTop