Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (649)

Search Parameters:
Keywords = feedstock selection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1164 KB  
Review
Lignin Valorization from Lignocellulosic Biomass: Extraction, Depolymerization, and Applications in the Circular Bioeconomy
by Tomas Makaveckas, Aušra Šimonėlienė and Vilma Šipailaitė-Ramoškienė
Sustainability 2025, 17(21), 9913; https://doi.org/10.3390/su17219913 - 6 Nov 2025
Viewed by 496
Abstract
Lignocellulosic biomass—the non-edible fraction of plants composed of cellulose, hemicellulose, and lignin—is the most abundant renewable carbon resource and a key lever for shifting from fossil to bio-based production. Agro-industrial residues (straws, cobs, shells, bagasse, brewery spent grains, etc.) offer low-cost, widely available [...] Read more.
Lignocellulosic biomass—the non-edible fraction of plants composed of cellulose, hemicellulose, and lignin—is the most abundant renewable carbon resource and a key lever for shifting from fossil to bio-based production. Agro-industrial residues (straws, cobs, shells, bagasse, brewery spent grains, etc.) offer low-cost, widely available feedstocks but are difficult to process because their polymers form a tightly integrated, three-dimensional matrix. Within this matrix, lignin provides rigidity, hydrophobicity, and defense, yet its heterogeneity and recalcitrance impede saccharification and upgrading. Today, most technical lignin from pulping and emerging biorefineries is burned for energy, despite growing opportunities to valorize it directly as a macromolecule (e.g., adhesives, foams, carbon precursors, UV/antioxidant additives) or via depolymerization to low-molecular-weight aromatics for fuels and chemicals. Extraction route and severity strongly condition lignin structure linkages (coumaryl-, coniferyl-, and sinapyl-alcohol ratios), determining reactivity, solubility, and product selectivity. Advances in selective fractionation, reductive/oxidative catalysis, and hybrid chemo-biological routes are improving yields while limiting condensation. Remaining barriers include feedstock variability, solvent and catalyst recovery, hydrogen and energy intensity, and market adoption (e.g., low-emission adhesives). Elevating lignin from fuel to product within integrated biorefineries can unlock significant environmental and economic benefits. Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

27 pages, 10625 KB  
Article
Two-Stage Organic Acid Leaching of Industrially Sourced LFP- and NMC-Containing Black Mass
by Marc Simon Henderson, Chau Chun Beh, Elsayed A. Oraby and Jacques Eksteen
Batteries 2025, 11(11), 401; https://doi.org/10.3390/batteries11110401 - 31 Oct 2025
Viewed by 360
Abstract
Over the next 5–10 years, the feedstock to lithium-ion battery recycling facilities will shift from Co- and Ni-rich chemistries to lower-value battery chemistries, such as lithium iron phosphate (LFP). Traditional recycling processes use toxic and corrosive inorganic acids for leaching, generating toxic waste [...] Read more.
Over the next 5–10 years, the feedstock to lithium-ion battery recycling facilities will shift from Co- and Ni-rich chemistries to lower-value battery chemistries, such as lithium iron phosphate (LFP). Traditional recycling processes use toxic and corrosive inorganic acids for leaching, generating toxic waste streams. The low-value feedstocks will be LFP-rich with contamination from lithium cobalt oxide (LCO) and lithium–nickel–manganese–cobalt oxide (NMC) battery chemistries. Overall, the lower-value feedstock coupled with the need to reduce environmentally damaging waste streams requires the development of robust, green leaching processes capable of selectively targeting the LFP and LCO/NMC battery chemistries. This research concluded that a first-stage oxalic acid leach could selectively extract Al, Li, and P from the industrially sourced LFP-rich black mass. When operating at the optimal conditions (0.5 M oxalic acid, 5% solids, pH 0.8, and an agitation speed of 600 rpm), >99% of the Li and P and >97% of the Al were selectively extracted after 2 h, while Mn, Fe, Cu, Ni, and Co extractions were kept relatively low, namely, at 19%, <3%, <1%, 0%, and 0%. This research also explored a second-stage leach to treat the first-stage leach residue using ascorbic acid, citric acid, and glycine. It was concluded that when leaching with glycine (30 g/L glycine, a temperature of 40 °C, an agitation speed of 600 rpm, and 2% solids at pH 9.6), that >97% of the Co, >77% of the Ni, and 41% of the Mn were extracted, while the co-extraction percentages of Cu, Fe, and Al were <27%, <4%, and <2%. Full article
Show Figures

Graphical abstract

22 pages, 2027 KB  
Article
Energy, Economic and Environmental (3E) Assessment of Wind Powered Electricity Generation with Hydrogen Storage in Vesleskarvet, Antarctica
by Temitope R. Ayodele, Thapelo C. Mosetlhe, Adedayo A. Yusuff and Ayodeji S. O. Ogunjuyigbe
Energies 2025, 18(21), 5748; https://doi.org/10.3390/en18215748 - 31 Oct 2025
Viewed by 158
Abstract
Clean and sustainable electricity could be generated from hydrogen produced from renewable energy resources. This paper performs an assessment of Energy, Economic and Environmental (3E) potentials of hydrogen fuel cells for electricity generation in Vesleskarvet. This site is a remote area located in [...] Read more.
Clean and sustainable electricity could be generated from hydrogen produced from renewable energy resources. This paper performs an assessment of Energy, Economic and Environmental (3E) potentials of hydrogen fuel cells for electricity generation in Vesleskarvet. This site is a remote area located in Antarctica and is being used as the base for South African National Antarctic Programme (SANAE IV). The hydrogen used as feedstock to the fuel cell was generated from the wind energy resource of Vesleskarvet using water electrolysis technique. Four large wind turbines—DE Wind D7, ServionSE MM100, Alstom E110 and Gamesa G128 designated as WT1, WT2, WT3 and WT4, respectively—were selected to determine which of them best matches the wind characteristics of the site for hydrogen production. Key results reveal that the capacity factor of the wind turbines is 62.78%, 58.37%, 63.80% and 57.94%, respectively. WT4 has the best annual hydrogen productions potential of about 307 tons per annum with the cost of electricity of 2.47 USD/kWh and payback period of 5.4 years. The wind turbine will prevent the use of 1.76 × 106 litters of diesel fuel resulting in a reduction of CO2 and CO emission of 4.83 × 106 and 1.37 × 104, respectively. Full article
(This article belongs to the Special Issue Applications of Fuel Cell Systems)
Show Figures

Figure 1

19 pages, 2039 KB  
Article
Decarbonising Sustainable Aviation Fuel (SAF) Pathways: Emerging Perspectives on Hydrogen Integration
by Madhumita Gogoi Saikia, Marco Baratieri and Lorenzo Menin
Energies 2025, 18(21), 5742; https://doi.org/10.3390/en18215742 - 31 Oct 2025
Viewed by 315
Abstract
The growing demand for air connectivity, coupled with the forecasted increase in passengers by 2040, implies an exigency in the aviation sector to adopt sustainable approaches for net zero emission by 2050. Sustainable Aviation Fuel (SAF) is currently the most promising short-term solution; [...] Read more.
The growing demand for air connectivity, coupled with the forecasted increase in passengers by 2040, implies an exigency in the aviation sector to adopt sustainable approaches for net zero emission by 2050. Sustainable Aviation Fuel (SAF) is currently the most promising short-term solution; however, ensuring its overall sustainability depends on reducing the life cycle carbon footprints. A key challenge prevails in hydrogen usage as a reactant for the approved ASTM routes of SAF. The processing, conversion and refinement of feed entailing hydrodeoxygenation (HDO), decarboxylation, hydrogenation, isomerisation and hydrocracking requires substantial hydrogen input. This hydrogen is sourced either in situ or ex situ, with the supply chain encompassing renewables or non-renewables origins. Addressing this hydrogen usage and recognising the emission implications thereof has therefore become a novel research priority. Aside from the preferred adoption of renewable water electrolysis to generate hydrogen, other promising pathways encompass hydrothermal gasification, biomass gasification (with or without carbon capture) and biomethane with steam methane reforming (with or without carbon capture) owing to the lower greenhouse emissions, the convincing status of the technology readiness level and the lower acidification potential. Equally imperative are measures for reducing hydrogen demand in SAF pathways. Strategies involve identifying the appropriate catalyst (monometallic and bimetallic sulphide catalyst), increasing the catalyst life in the deoxygenation process, deploying low-cost iso-propanol (hydrogen donor), developing the aerobic fermentation of sugar to 1,4 dimethyl cyclooctane with the intermediate formation of isoprene and advancing aqueous phase reforming or single-stage hydro processing. Other supportive alternatives include implementing the catalytic and co-pyrolysis of waste oil with solid feedstocks and selecting highly saturated feedstock. Thus, future progress demands coordinated innovation and research endeavours to bolster the seamless integration of the cutting-edge hydrogen production processes with the SAF infrastructure. Rigorous techno-economic and life cycle assessments, alongside technological breakthroughs and biomass characterisation, are indispensable for ensuring scalability and sustainability. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

34 pages, 3672 KB  
Article
Feed Variability Effect on Performance of a Commercial Residue Hydrocracker
by Dicho Stratiev, Rosen Dinkov, Ivelina Shiskova, Angel Nedelchev, Iliyan Kolev, Georgi Argirov, Sotir Sotirov, Evdokia Sotirova, Veselina Bureva, Krassimir Atanassov, Dobromir Yordanov, Svetoslav Nenov and Denis Stratiev
Processes 2025, 13(11), 3486; https://doi.org/10.3390/pr13113486 - 30 Oct 2025
Viewed by 272
Abstract
Feed quality has been found to be related to both reactivity and sediment formation propensity in the residue hydrocracking process defining the conversion level. In this research, unlike other investigations, which examine hydrocrackability of individual vacuum residues, 529 mixtures of 33 vacuum residues [...] Read more.
Feed quality has been found to be related to both reactivity and sediment formation propensity in the residue hydrocracking process defining the conversion level. In this research, unlike other investigations, which examine hydrocrackability of individual vacuum residues, 529 mixtures of 33 vacuum residues were investigated for their hydrocrackability in a commercial H-Oil ebullated bed reactor unit. Intercriteria and regression analyses, together with singular value decomposition (SVD) and deep learning neural network techniques were employed to analyze data and model the vacuum residue conversion in the H-Oil unit. It was found that SVD model provided the best fit of H-Oil conversion training data (standard error of 0.95 wt.%). However, due to overfitting, the SVD model failed to predict H-Oil conversion on unseen data (standard error of 5.1 wt.%). The deep learning neural network exhibited standard error for all data (training, validation and testing) of 1.99 wt.%, while for the test data it was 2.35 wt.%. The linear regression model showed a standard error of 3.9 wt.% for the training data and 7.5 wt.% for the test data. Eleven properties of the vacuum residue (density, microcarbon residue, sulfur, nitrogen, saturate, aromatic, resin, C5-asphaltene, C7-asphaltene, Na, and Ni+V content) seem to be sufficiently informative for the purposes of modeling and predicting H-Oil conversion, thus enabling the assessment of the suitability of a given vacuum residue to be used as a feedstock for the H-Oil process. The best predicting model was found to be the deep learning neural network, which can be used for the purpose of the crude selection process. Full article
(This article belongs to the Special Issue Synthesis, Catalysis and Applications of Organic Chemistry)
Show Figures

Figure 1

29 pages, 4285 KB  
Review
Advanced Techniques for Thorium Recovery from Mineral Deposits: A Comprehensive Review
by Tolganay Atamanova, Bakhytzhan Lesbayev, Sandugash Tanirbergenova, Zhanna Alsar, Aisultan Kalybay, Zulkhair Mansurov, Meiram Atamanov and Zinetula Insepov
Appl. Sci. 2025, 15(21), 11403; https://doi.org/10.3390/app152111403 - 24 Oct 2025
Viewed by 709
Abstract
Thorium has emerged as a promising alternative to uranium in nuclear energy systems due to its higher natural abundance, favorable conversion to fissile 233U, and reduced generation of long-lived transuranic waste. This review provides a comprehensive overview of advanced techniques for thorium [...] Read more.
Thorium has emerged as a promising alternative to uranium in nuclear energy systems due to its higher natural abundance, favorable conversion to fissile 233U, and reduced generation of long-lived transuranic waste. This review provides a comprehensive overview of advanced techniques for thorium recovery from primary ores and secondary resources. The main mineralogical carriers—including monazite, thorianite, thorite, and cheralite as well as industrial by-products such as rare-earth processing tailings—are critically examined with respect to their occurrence and processing potential. Physical enrichment methods (gravity, magnetic, and electrostatic separation) and hydrometallurgical approaches (acidic and alkaline leaching) are analyzed in detail, highlighting their efficiencies, limitations, and environmental implications. Particular emphasis is placed on modern separation strategies such as solvent extraction with organophosphorus reagents, diglycolamides, and ionic liquids, as well as extraction chromatography, nanocomposite sorbents, ion-imprinted polymers, and electrosorption on carbon-based electrodes. These techniques demonstrate significant progress in enhancing selectivity, reducing reagent consumption, and enabling recovery from low-grade and secondary feedstocks. Environmental and radiological aspects, including waste minimization, immobilization, and regulatory frameworks, are discussed as integral components of sustainable thorium management. Finally, perspectives on hybrid technologies, digital process optimization, and economic feasibility are outlined, underscoring the need for interdisciplinary approaches that combine chemistry, materials science, and environmental engineering. Collectively, the analysis highlights the transition from conventional practices to integrated, scalable, and environmentally responsible technologies for thorium recovery. Full article
(This article belongs to the Special Issue Current Advances in Nuclear Energy and Nuclear Physics)
Show Figures

Figure 1

17 pages, 3263 KB  
Article
Hydrogenolysis of Biomass-Based Furfuryl Alcohol into 1,2-Pentanediol over Magnesium Oxide-Supported Pt-Y Bimetallic Catalysts
by Kuo Zhou, Jialin Xu, Shengrong Guo and Hongjun Wu
Catalysts 2025, 15(11), 1005; https://doi.org/10.3390/catal15111005 - 22 Oct 2025
Viewed by 598
Abstract
The catalytic synthesis of 1,2-pentanediol from biomass-derived feedstocks is of remarkable significance for addressing current environmental challenges and energy crises. In this paper, a series of Pt-based catalysts were prepared and evaluated in the hydrogenolysis of furfuryl alcohol. The 5Pt0.5Y/MgO provided a 1,2-pentanediol [...] Read more.
The catalytic synthesis of 1,2-pentanediol from biomass-derived feedstocks is of remarkable significance for addressing current environmental challenges and energy crises. In this paper, a series of Pt-based catalysts were prepared and evaluated in the hydrogenolysis of furfuryl alcohol. The 5Pt0.5Y/MgO provided a 1,2-pentanediol yield of 68.9% and a tetrahydrofurfuryl alcohol yield of 19.8% with 98.1% conversion of furfuryl alcohol, at 200 °C and 2 MPa H2 for 10 h. The promotional effect of yttrium on the catalytic performance was investigated through catalytic reaction and comprehensive characterization. It was found that the reducibility of Pt species was suppressed by the introduction of Y species, resulting in reduced activity compared to the 5Pt/MgO catalyst. However, the addition of Y notably shifted the reaction pathway towards 1,2-pentanediol formation at the expense of tetrahydrofurfuryl alcohol selectivity. This increase in 1,2-pentanediol selectivity was attributed to a higher concentration of medium-strength basic sites on the Y-modified Pt catalyst. Furthermore, the strong interaction between Y2O3, Pt particles, and the MgO support led to high Pt dispersion and stability on the MgO surface, consequently yielding satisfactory recyclability. Full article
Show Figures

Graphical abstract

37 pages, 4536 KB  
Review
Characterization and Sustainable Valorization of Brewers’ Spent Grain for Metal Ion and Organic Substance Removal
by Tomasz Kalak
Sustainability 2025, 17(20), 9288; https://doi.org/10.3390/su17209288 - 19 Oct 2025
Viewed by 1279
Abstract
Brewers’ spent grain (BSG) is the dominant solid side stream from wort separation, generating about 20 kg wet BSG per 100 L of beer and contributing hundreds of millions of tons annually worldwide, and thus a strategic feedstock for circular solutions in the [...] Read more.
Brewers’ spent grain (BSG) is the dominant solid side stream from wort separation, generating about 20 kg wet BSG per 100 L of beer and contributing hundreds of millions of tons annually worldwide, and thus a strategic feedstock for circular solutions in the brewing sector. This study situates BSG within that sustainability context and assesses its performance for removing metal ions and organic contaminants. A critical literature review with selected techniques (SEM, NIR/MIR, TGA) has been combined. SEM reveals a rough, fibrous–lamellar microtexture with high pore density, large pore-area fractions, submicron median equivalent diameters, and elevated edge density, consistent with accessible surface and mass-transfer pathways. Compiled adsorption evidence shows that raw and engineered BSG effectively capture diverse cations, including Cu(II), Cr(III/VI), Pb(II), Mn(II), U(VI) and selected rare-earth elements (REEs), demonstrable reusability, and fixed-bed breakthrough on the order of tens to hundreds of hours. Preservation options (drying, cooling/freezing, thermal inactivation, oxygen control) that enable safe storage and logistics for deployment have also been outlined. Overall, BSG emerges as a reliable, scalable biosorbent, with SEM-derived descriptors providing practical tools for performance prediction, while spectroscopic and thermal methods support material monitoring and process integration within a brewery’s circular economy. Full article
(This article belongs to the Special Issue Recycling Materials for the Circular Economy—2nd Edition)
Show Figures

Figure 1

21 pages, 1379 KB  
Article
A Robust AHP–TOPSIS Framework for Optimal Biodiesel Blend Selection Based on Emission Profiles, Fuel Properties and Blend Prices
by Yorgo Farah, Jean Claude Assaf, Nabil Semaan and Jane Estephane
Energies 2025, 18(20), 5398; https://doi.org/10.3390/en18205398 - 13 Oct 2025
Viewed by 590
Abstract
This study evaluates eight biodiesel blend types and determines the overall optimal blend by applying two established multi-criteria decision-making methods: the Analytic Hierarchy Process (AHP) and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). The selected blends represent widely produced [...] Read more.
This study evaluates eight biodiesel blend types and determines the overall optimal blend by applying two established multi-criteria decision-making methods: the Analytic Hierarchy Process (AHP) and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). The selected blends represent widely produced and utilized feedstocks that are reported in the previous literature. In the proposed methodology, AHP is employed to determine the weights for both emissions-related subcriteria, quantified through Global Warming Potential scores and property-related subcriteria, thereby reducing the subjectivity often encountered in earlier studies. Furthermore, two boundary alternatives, defined as the “Best” and “Worst” based on international standards, are introduced to enhance the robustness of the normalization procedure. The weights determined via AHP are subsequently integrated into the TOPSIS framework to rank the biodiesel alternatives. This combined AHP-TOPSIS approach addresses a gap in the literature, as no previous study has compared the best performing blends from different sources to identify a single optimal alternative. The results indicate that a 20% sunflower biodiesel blend (SN20) achieves the highest ranking. Sensitivity analyses, including the incorporation of an additional economic criterion, consistently reaffirm SN20’s superior performance. This study offers a transparent and reproducible method that can guide future biodiesel blend evaluations and reduce subjectivity in comparative assessment. Full article
Show Figures

Figure 1

22 pages, 4743 KB  
Article
Investigation into the Multiphase Product Distribution and Evolution During Biomass Pyrolysis Using Wheat Straw and Pine Sawdust
by Jishuo Li, Kaili Xu, Xiwen Yao and Xingyu Luo
Energies 2025, 18(20), 5397; https://doi.org/10.3390/en18205397 - 13 Oct 2025
Viewed by 304
Abstract
Understanding the formation mechanisms of three-phase products during biomass pyrolysis is essential for optimizing thermochemical conversion and enhancing the efficient utilization of renewable resources. In this study, wheat straw (WS) and pine sawdust (PS) were selected as representative feedstocks to investigate the thermal [...] Read more.
Understanding the formation mechanisms of three-phase products during biomass pyrolysis is essential for optimizing thermochemical conversion and enhancing the efficient utilization of renewable resources. In this study, wheat straw (WS) and pine sawdust (PS) were selected as representative feedstocks to investigate the thermal decomposition behavior and evolution characteristics of gas, liquid (tar), and solid (char) products during pyrolysis. Thermogravimetric analysis and kinetic modeling revealed that PS exhibited higher activation energy (75.44 kJ/mol) than WS (65.63 kJ/mol), indicating greater thermal resistance. Tar yield increased initially and then declined with temperature, peaking at 700 °C (37.79% for PS and 32.82% for WS), while the composition shifted from oxygenated compounds to polycyclic aromatic hydrocarbons as temperature rose. FTIR analysis demonstrated that most functional group transformations in char occurred below 400 °C, with aromatic structures forming above 300 °C and stabilizing beyond 700 °C. Gas product evolution showed that WS produced higher CO and H2 yields due to its composition, with CH4 generated in relatively lower amounts. These findings provide insights into biomass pyrolysis mechanisms and offer a theoretical basis for targeted regulation of product distributions in bioenergy applications. Full article
Show Figures

Figure 1

25 pages, 2212 KB  
Review
Review of Biomass Gasifiers: A Multi-Criteria Approach
by Julián Cardona-Giraldo, Laura C. G. Velandia, Daniel Marin, Alejandro Argel, Samira García-Freites, Marco Sanjuan, David Acosta, Adriana Aristizabal, Santiago Builes and Maria L. Botero
Gases 2025, 5(4), 22; https://doi.org/10.3390/gases5040022 - 13 Oct 2025
Viewed by 995
Abstract
Gasification of residual biomass has emerged as an efficient thermochemical conversion process, applicable to a wide range of uses, such as electricity generation; chemical manufacturing; and the production of liquid biofuels, BioSNG (biomass-based synthetic natural gas), and hydrogen. Thus, gasification of biomass residues [...] Read more.
Gasification of residual biomass has emerged as an efficient thermochemical conversion process, applicable to a wide range of uses, such as electricity generation; chemical manufacturing; and the production of liquid biofuels, BioSNG (biomass-based synthetic natural gas), and hydrogen. Thus, gasification of biomass residues not only constitutes an important contribution toward decarbonizing the economy but also promotes the efficient utilization of renewable resources. Although a variety of gasification technologies are available, there are no clear guidelines for selecting the type of gasifier appropriate depending on the feedstock and the desired downstream products. Herein, we propose a gasifier classification model based on an extensive literature review, combined with a multi-criteria decision-making approach. A comprehensive and up-to-date literature review was conducted to gain a thorough understanding of the current state of knowledge in biomass gasification. The different features of the different types of gasifiers, in the context of biomass gasification, are presented and compared. The gasifiers were reviewed and evaluated considering criteria such as processing capacity, syngas quality, process performance, feedstock flexibility, operational and capital costs, environmental impact, and specific equipment features. A multi-criteria classification methodology was evaluated for assessing biomass gasifiers. A case study of such methodology was a applied to determine the best gasifiers for BioSNG inclusion in the natural gas distribution system in a small-scale scenario. Validation was conducted by comparing the matrix findings with commercially implemented gasification projects worldwide. Full article
(This article belongs to the Section Natural Gas)
Show Figures

Graphical abstract

16 pages, 1993 KB  
Article
Determination of the Pyrolytic Characteristics of Various Biomass Pellets
by Sefai Bilgin, Hasan Yılmaz, Mehmet Topakcı, Gürkan Alp Kağan Gürdil, Murad Çanakcı and Davut Karayel
Sustainability 2025, 17(20), 9003; https://doi.org/10.3390/su17209003 - 11 Oct 2025
Viewed by 437
Abstract
Biomass pellets are widely used for combustion but can also serve as sustainable feedstocks for pyrolysis. This study examined wood (WP), palm-pruning (PP), reed (RD), and daphne (DP) pellets. We present a compact framework linking composition (proximate/ultimate and lignocellulosic fractions) with TG/DTG, FTIR, [...] Read more.
Biomass pellets are widely used for combustion but can also serve as sustainable feedstocks for pyrolysis. This study examined wood (WP), palm-pruning (PP), reed (RD), and daphne (DP) pellets. We present a compact framework linking composition (proximate/ultimate and lignocellulosic fractions) with TG/DTG, FTIR, TGA-derived indices (CPI, Ddev, Rw), Tpmax and Rav to predict product selectivity and temperature ranges. TG/DTG showed the following sequence: hemicellulose (≈200–315 °C) first, cellulose (≈315–400 °C) with a sharp maximum, and lignin ≈200–600 °C. Low-ash WP and DP had sharper, higher peaks, favoring concentrated devolatilization and condensables. Mineral-rich PP and RD began earlier and showed depressed peaks from AAEM catalysis, shifting toward gases and ash-richer chars. Composition shaped these patterns: higher cellulose increased Rav and CPI; links to Tpmax were moderated by ash. Lignin strengthened a high-T shoulder, while hemicellulose promoted early deacetylation (RD’s 1730 cm−1 acetyl C=O) and release of CO2 and acids. Correlations (|r| ≥ 0.70) supported these links: VM with total (m) and second stage mass loss; cellulose with Rav and CPI (Tpmax moderated by ash); lignin and O/C with Tf and last stage mass loss; ash negatively with Ti, Tpmax, and m. The obtained results guide the sustainable valorization of biomass pellets by selecting temperatures for liquids, H2/CO-rich gases or low-ash aromatic chars. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Graphical abstract

22 pages, 3781 KB  
Article
Selective Nickel Leaching and Preparation of Battery-Grade Nickel Carbonate from Copper-Rich Industrial Intermediate
by Janaka Jayamini Wijenayake, Michael S. Moats, Lloyd Masuzyo Mseteka and Lana Alagha
Processes 2025, 13(10), 3235; https://doi.org/10.3390/pr13103235 - 11 Oct 2025
Viewed by 692
Abstract
The rising demand for electric vehicles (EVs) has driven a significant increase in nickel consumption, a critical element in EV battery production. An industrially viable hydrometallurgical process was developed for the selective recovery of nickel from a copper-rich industrial intermediate, containing approximately 70 [...] Read more.
The rising demand for electric vehicles (EVs) has driven a significant increase in nickel consumption, a critical element in EV battery production. An industrially viable hydrometallurgical process was developed for the selective recovery of nickel from a copper-rich industrial intermediate, containing approximately 70 wt.% Cu and 6 wt.% Ni, predominantly as sulfides alongside minor impurities. Approximately 90% of nickel was selectively extracted via single-stage atmospheric pressure leaching using HCl and H2O2 at 95 °C for 12 h, with the majority of copper retained in the leach residue, which can be utilized as a valuable feedstock for copper smelters. The selectivity of nickel over copper was analyzed in detail through corresponding Pourbaix diagrams, and an appropriate leaching mechanism was proposed. The leachate was subsequently purified through a sequence of cementation, selective precipitation, and solvent extraction steps to remove residual copper, iron, and cobalt, achieving an overall separation efficiency of 99% with nickel losses below 2%. In the final stage, nickel carbonate was precipitated with >99% purity using sodium carbonate, potentially suitable for battery applications. The optimal conditions at each stage were determined through batch-type laboratory-scale experiments, which may need to be verified by continuous pilot-scale testing in the future. This process offers dual advantages by meeting the growing nickel demand for battery applications while simultaneously providing additional copper feedstocks for smelters. Full article
Show Figures

Figure 1

14 pages, 1362 KB  
Article
Synthesis of Glyceric Acid by Mixed-Metal Oxide-Supported AuPt Alloy Catalyst in Mild Conditions
by Zhiqing Wang, Jianchuan Jin, Aiqian Jin, Shiyu Li, Xinyue Chen, Tongjie Hu, Lingqin Shen and Hengbo Yin
Catalysts 2025, 15(10), 963; https://doi.org/10.3390/catal15100963 - 8 Oct 2025
Viewed by 529
Abstract
Thermal valorization of surplus biomass-derived feedstocks such as glycerol into high-value chemicals represents a sustainable strategy for biomass utilization and decarbonization of chemical manufacturing. However, conventional glycerol conversion processes are often restricted to low-value C1 products owing to rapid C–C bond cleavage during [...] Read more.
Thermal valorization of surplus biomass-derived feedstocks such as glycerol into high-value chemicals represents a sustainable strategy for biomass utilization and decarbonization of chemical manufacturing. However, conventional glycerol conversion processes are often restricted to low-value C1 products owing to rapid C–C bond cleavage during thermo-oxidation. Herein, we report highly efficient Au-Pt bimetallic alloy catalysts supported on mixed-oxide catalysts that enable the selective oxidation of glycerol under ambient conditions in the absence of a base. The synergistic interaction between Au and Pt promotes preferential oxidation of the terminal hydroxyl groups while preserving the C3 backbone, thereby affording the desirable C3 product, glyceric acid. The single-factor experiments and response surface analysis demonstrated that the Au-Pt bimetallic alloy catalysts supported on the mixed oxide MgO-Al2O3 exhibited a glycerol conversion of up to 82.0% and a glyceric acid selectivity of 62.1% under favorable reaction conditions. Kinetic studies further indicated that the activation energy of this catalyst in the reaction system is 32.7 kJ/mol. Full article
Show Figures

Graphical abstract

27 pages, 4754 KB  
Article
Microwave-Assisted Acid Hydrolysis of PA6 Wastes in PA6 Process: Kinetics, Activation Energies, and Monomer Recovery
by Mega Pristiani, Damayanti Damayanti and Ho-Shing Wu
Processes 2025, 13(10), 3175; https://doi.org/10.3390/pr13103175 - 6 Oct 2025
Viewed by 577
Abstract
Efficient recycling of polyamide 6 (PA6) requires selective depolymerization routes that recover monomers under moderate conditions. This study investigates microwave-assisted acid hydrolysis of four PA6 waste streams, two oligomer-rich residues (WS-13, WS-24), an industrial fiber (C-fiber), and a commercial resin (C-resin) to elucidate [...] Read more.
Efficient recycling of polyamide 6 (PA6) requires selective depolymerization routes that recover monomers under moderate conditions. This study investigates microwave-assisted acid hydrolysis of four PA6 waste streams, two oligomer-rich residues (WS-13, WS-24), an industrial fiber (C-fiber), and a commercial resin (C-resin) to elucidate degradation kinetics, activation energies, and product yields. Thermogravimetric analysis revealed multi-step solid-state decomposition, while microwave hydrolysis (125–200 °C, 15–60 min, 400 W) demonstrated strong dependence on acid type. HCl achieved complete conversion, whereas phosphoric and formic acids exceeded 95%. Kinetic analysis under H3PO4 followed pseudo-first-order behavior, with rate constants (0.015–0.141 min−1 at 200 °C) and activation energies reflecting feedstock structure: 53.1 kJ mol−1 (WS-13), 56.5 kJ mol−1 (WS-24), 87.1 kJ mol−1 (C-resin), and 99.9 kJ mol−1 (C-fiber). Monomer yields varied by substrate: WS-13 achieved 62.4% at 200 °C and 45 min (ACA 46%, CPL 16%), WS-24 yielded 62.0% (primarily ACA), C-fiber reached 69.7% (ACA-dominant), and C-resin produced 53.8%. These results show that oligomer-rich wastes are kinetically favored for rapid hydrolysis at lower energy cost, while C-fiber maximizes aminocaproic acid recovery. Overall, microwave-assisted hydrolysis provides a selective, energy-efficient pathway for PA6 circularity, offering design parameters for reactor operation and process optimization. Full article
(This article belongs to the Special Issue 1st SUSTENS Meeting: Advances in Sustainable Engineering Systems)
Show Figures

Figure 1

Back to TopTop