Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (217)

Search Parameters:
Keywords = fatty acid elongation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 3043 KiB  
Article
Physiological and Phytochemical Responses of Calendula officinalis L. to End-of-Day Red/Far-Red and Green Light
by Luisa F. Lozano-Castellanos, Giuseppina Pennisi, Luis Manuel Navas-Gracia, Francesco Orsini, Eva Sánchez-Hernández, Pablo Martín-Ramos and Adriana Correa-Guimaraes
Biology 2025, 14(8), 935; https://doi.org/10.3390/biology14080935 - 24 Jul 2025
Viewed by 317
Abstract
Calendula officinalis L. is a widely used medicinal plant whose secondary metabolism and morphology are influenced by light. This study evaluated the effects of 2 and 4 h end-of-day (EOD) red/far-red (R:FR) and green (G) light on the growth, physiology, and phytochemical profile [...] Read more.
Calendula officinalis L. is a widely used medicinal plant whose secondary metabolism and morphology are influenced by light. This study evaluated the effects of 2 and 4 h end-of-day (EOD) red/far-red (R:FR) and green (G) light on the growth, physiology, and phytochemical profile of hydroponically grown C. officinalis under a constant red/blue light background, compared with a red/blue control without EOD treatment. Morphological, physiological (gas exchange, chlorophyll fluorescence), biochemical (chlorophyll, anthocyanin), and chemical composition (attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and Gas Chromatography-Mass Spectrometry (GC-MS)) were evaluated. EOD G 2 h enhanced photosynthetic pigments, anthocyanins, and biomass, while control plants showed higher phenolic content. EOD R:FR induced stem elongation but reduced pigment and metabolite accumulation. GC-MS revealed organ-specific metabolic specialization, with flowers displaying greater chemical diversity than leaves. EOD G favored sesquiterpene diversity in flowers, while EOD R:FR increased nitrogen-containing compounds and unsaturated fatty acids. Vibrational data supported these shifts, with spectral signatures of esters, phenolics, and lipid-related structures. Bioactive compounds, including α-cadinol and carboxylic acids, were identified across treatments. These findings demonstrate that EOD light modulates physiological and metabolic traits in C. officinalis, highlighting EOD G as an enhancer of biomass and phytochemical richness for pharmaceutical applications under controlled conditions. Full article
Show Figures

Graphical abstract

16 pages, 2895 KiB  
Article
Comparing a Whole Grain Blend with Polished White Rice for Starch Digestibility and Gut Microbiota Fermentation in Diabetic Patients: An In Vitro Study
by Qian Du, Ruisheng Fu, Ming Zhao and Meihong Xu
Foods 2025, 14(15), 2557; https://doi.org/10.3390/foods14152557 - 22 Jul 2025
Viewed by 356
Abstract
The high glycemic index (GI) of polished white rice (WR) presents challenges for blood glucose control in diabetes. This study investigated the in vitro digestibility of a whole grain blend (WGB, composed of black, red, and brown rice) and its effects on the [...] Read more.
The high glycemic index (GI) of polished white rice (WR) presents challenges for blood glucose control in diabetes. This study investigated the in vitro digestibility of a whole grain blend (WGB, composed of black, red, and brown rice) and its effects on the gut microbiota in elderly diabetic individuals. WGB exhibited lower starch digestibility (69.76 ± 5.71% vs. 73.02 ± 6.16%) and a reduced estimated glycemic index (eGI, 73.43 ± 4.49 vs. 77.55 ± 2.64) than WR, likely due to its higher amylose content. WGB fermentation increased Bifidobacterium and Lactobacillaceae, reduced pro-inflammatory Bacteroides fragilis and Enterocloster bolteae, and released more arabinose and xylose. Additionally, WGB yielded higher isobutyrate, while WR contained more glucose and fructose in its structure, leading to increased acetate production and a more acidic environment. Functional analysis revealed that WGB upregulated pathways related to fatty acid elongation and fiber fermentation. These findings suggest WGB as a viable staple food alternative for diabetic patients, offering dual benefits in glycemic control and gut microbiota. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

17 pages, 4823 KiB  
Article
Genome-Wide Analysis of KCS Gene Family in Ginkgo biloba L. and Functional Identification of KCS7 in Oleic Acid Synthesis
by Xingyu Zhang, Kaifang Fan, Zhi Feng, Zhi Yao, Jinyuan Li, Shuguang Zhang, Xiaoqin Mi, Fuwen Wu, Yiqiang Wang and Meng Li
Genes 2025, 16(7), 773; https://doi.org/10.3390/genes16070773 - 30 Jun 2025
Viewed by 358
Abstract
Background: β-ketolipoyl coenzyme A synthase (KCS) is an essential limiting catalyst involved in carbon chain elongation during fatty acid biosynthesis, characterized by strict substrate specificity. C18:1 (oleic acid) plays a vital role in cell membranes and is essential for nutrient storage and stress [...] Read more.
Background: β-ketolipoyl coenzyme A synthase (KCS) is an essential limiting catalyst involved in carbon chain elongation during fatty acid biosynthesis, characterized by strict substrate specificity. C18:1 (oleic acid) plays a vital role in cell membranes and is essential for nutrient storage and stress defense. There are indications of significant accumulation and rapid synthesis of C18:1 during the early growth stages of Ginkgo biloba L. episperm. The KCS gene family in G. biloba has yet to be analyzed, and the role of KCS in oleic acid synthesis remains unexplored. Methods: In this study, this issue was investigated using transcriptomic and metabolomic data, bioinformatics analysis to screen a key gene from the KCS gene family, and dual validation using yeast and Arabidopsis thaliana expression systems to probe its function. Results: A total of 11 members of the GbKCS gene family were identified, and the dynamics of these genes were analyzed during exocarp development in the G. biloba genome. Among them, the gene designated GbKCS7 showed a highly direct association with the content of C18:1. Heterologous expression of GbKCS7 in yeast increased C18:1N12 and C18:1 content by 3.18-fold and 2.07-fold, respectively. Overexpression of GbKCS7 in Arabidopsis showed that C18:1 was increased by 27.70% and 31.43% in GbKCS7-OE-1 and GbKCS7-OE-2 strains, correspondingly, in juxtaposition to the non-transgenic plants. In addition, the content of VLCFAs increased to varying degrees. Conclusions: These outcomes offer important insights for investigating the role of KCS genes in fatty acid synthesis to further improve G.biloba resistance. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

18 pages, 1248 KiB  
Article
Exploring the Role of Oleic Acid in Muscle Cell Differentiation: Mechanisms and Implications for Myogenesis and Metabolic Regulation in C2C12 Myoblasts
by Francesco Vari, Elisa Bisconti, Ilaria Serra, Eleonora Stanca, Marzia Friuli, Daniele Vergara and Anna Maria Giudetti
Biomedicines 2025, 13(7), 1568; https://doi.org/10.3390/biomedicines13071568 - 26 Jun 2025
Viewed by 523
Abstract
Background/Objectives: Myogenesis, the process by which myoblasts differentiate into multinucleated muscle fibers, is tightly regulated by transcription factors, signaling pathways, and metabolic cues. Among these, fatty acids have emerged as key regulators beyond their traditional role as energy substrates. Oleic acid, a [...] Read more.
Background/Objectives: Myogenesis, the process by which myoblasts differentiate into multinucleated muscle fibers, is tightly regulated by transcription factors, signaling pathways, and metabolic cues. Among these, fatty acids have emerged as key regulators beyond their traditional role as energy substrates. Oleic acid, a monounsaturated fatty acid, has been shown to modulate muscle differentiation, potentially influencing myogenic pathways. This study examines the role of oleic acid in promoting C2C12 myoblast differentiation and its associated molecular mechanisms, comparing it to standard horse serum (HS)-based differentiation protocols. Methods: C2C12 murine myoblasts were cultured under proliferative conditions and differentiated using DMEM supplemented with either 2% HS or oleic acid (C18:1, n-9). The molecular signaling pathway was evaluated by measuring the expression of p38 MAPK, β-catenin, GLUT4, and NDRG1. Results: Oleic acid promoted the differentiation of C2C12 cells, as evidenced by a progressively elongated morphology, as well as the induction of muscle-specific myogenin, myosin heavy chain (MHC), and MyoD. Moreover, oleic acid reduced the expression of Atrogin-1 and MuRF1 ubiquitin E3 ligase. BODIPY staining revealed the enhanced accumulation of lipid droplets in oleic acid-treated cells. The Western blot analysis demonstrated robust activation of p38 MAPK and β-catenin pathways in response to oleic acid, compared with HS. Additionally, oleic acid upregulated GLUT4 expression and increased the phosphorylation of insulin receptor and NDRG1, indicating an enhanced glucose uptake capacity. Conclusions: These findings demonstrate that oleic acid promotes C2C12 myoblast differentiation and improves glucose uptake via GLUT4. Oleic acid emerges as a promising metabolic regulator of myogenesis, offering potential therapeutic applications for muscle regeneration in muscle-related pathologies. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

11 pages, 2128 KiB  
Article
Overexpression of BnaXTH22 Improving Resistance to Aluminum Toxicity in Rapeseed (Brassica napus L.)
by Paolan Yu, Depeng Han, Ming Chen, Lei Yang, Yazhen Li, Tianbao Huang, Wen Xiong, Yewei Cheng, Xiaosan Liu, Changyan Wan, Wei Zheng and Xiaojun Xiao
Int. J. Mol. Sci. 2025, 26(12), 5780; https://doi.org/10.3390/ijms26125780 - 16 Jun 2025
Viewed by 401
Abstract
The cell wall, acting as the first line of defense against aluminum (Al) toxicity, is the primary cellular structure that encounters and perceives Al3+. Xyloglucan endotransglucosylase/hydrolase (XTH) plays a pivotal role in mediating cell wall remodeling, a critical mechanism for Al [...] Read more.
The cell wall, acting as the first line of defense against aluminum (Al) toxicity, is the primary cellular structure that encounters and perceives Al3+. Xyloglucan endotransglucosylase/hydrolase (XTH) plays a pivotal role in mediating cell wall remodeling, a critical mechanism for Al toxicity tolerance. In our previous studies, the candidate gene BnaXTH22 was identified through GWAS and RNA-seq analyses. Under Al toxicity stress, overexpression lines (OEs) exhibited a significant increase in the relative elongation of taproots (9.44–13.32%) and total root length (8.15–12.89%) compared to the wild type (WT). Following Al treatment, OEs displayed reduced MDA content and lower relative electrical conductivity, alongside a significantly higher root activity than WT. Transcriptomic analysis revealed that differentially expressed genes in OE under Al toxicity were predominantly enriched in stress-related biological processes, including phenylpropanoid metabolism, fatty acid biosynthesis, and lignin biosynthesis. These results suggest that BnaXTH22 overexpression could enhance Al toxicity tolerance in rapeseed, potentially by modulating cell wall synthesis to bolster plant resistance. Full article
(This article belongs to the Special Issue Rapeseed: Genetic Breeding, Key Trait Mining and Genome)
Show Figures

Figure 1

14 pages, 1109 KiB  
Article
Sustainable Production of Medium-Chain Fatty Acids from Fresh Leachates in the District of Abidjan: Study of the Feasibility of the Process and Environmental Benefits
by Akeyt Richmond Hervé Koffi, Alessio Campitelli, Daniel Stanojkovski, Edi Guy-Alain Serges Yapo, Alane Romaric N’guessan, Franck Orlando Yebouet and N’Dédé Théodore Djeni
Fermentation 2025, 11(6), 330; https://doi.org/10.3390/fermentation11060330 - 8 Jun 2025
Viewed by 707
Abstract
Leachate management remains a major environmental challenge, especially in rapidly urbanizing cities of developing countries. Traditionally considered toxic and useless, it is a sustainable organic resource with the potential for high-value biochemical production through bioprocessing. This study investigated the characteristics of fresh leachates [...] Read more.
Leachate management remains a major environmental challenge, especially in rapidly urbanizing cities of developing countries. Traditionally considered toxic and useless, it is a sustainable organic resource with the potential for high-value biochemical production through bioprocessing. This study investigated the characteristics of fresh leachates from three solid waste transfer stations (SWTS) in the Abidjan district, Côte d’Ivoire, and assessed their potential as substrates for medium-chain fatty acid (MCFA) production via microbial chain elongation. The MCFA synthesis was carried out in anaerobic bioreactors operated under methanogenesis inhibition conditions. The leachates from Bingerville, Abobo-Dokui, and Yopougon exhibited acidic and high organic content, particularly volatile fatty acids (VFAs), key precursors for MCFA synthesis. High concentrations of microbial communities associated with chain elongation were observed, including Clostridium (sulphite-reducing), Lactobacillus, Bacillus, and Pseudomonas (greater than 5 log10 CFU/mL). MCFA production ranged from 5 to 10 g/L, mainly C6, C7, and C8, with compositional variation depending on the SWTS. Notably, leachates from higher-income areas demonstrated higher MCFA productivity compared to those from lower-income areas. These findings highlight the potential of fresh SWTS leachates in the Abidjan district for sustainable MCFA production, paving the way for industrial applications. Full article
(This article belongs to the Special Issue Fermentation of Organic Waste for High-Value-Added Product Production)
Show Figures

Figure 1

16 pages, 1698 KiB  
Article
Dark Fermentation of Sizing Process Waste: A Sustainable Solution for Hydrogen Production and Industrial Waste Management
by Marlena Domińska, Martyna Gloc, Magdalena Olak-Kucharczyk and Katarzyna Paździor
Water 2025, 17(11), 1716; https://doi.org/10.3390/w17111716 - 5 Jun 2025
Viewed by 496
Abstract
The possibility of hydrogen (H2) production from sizing waste, specifically starch-based substrates, was investigated through dark fermentation. Modified starch substrates produced less (up to 54% without heating and 18% after heating) H2 than natural ones. However, heating modified starch samples [...] Read more.
The possibility of hydrogen (H2) production from sizing waste, specifically starch-based substrates, was investigated through dark fermentation. Modified starch substrates produced less (up to 54% without heating and 18% after heating) H2 than natural ones. However, heating modified starch samples led to 18% higher H2 production than unheated ones, suggesting that high temperatures activate more favorable metabolic pathways. The highest H2 production (215 mL/gTVS_substrate) was observed with unheated natural starch, where the classic butyric–acetic fermentation pathway predominated. This variant also generated the highest CO2 levels (250 mL/gTVS_substrate), confirming the correlation between H2 and CO2 production in these pathways. Modified starch substrates shifted fermentation towards fatty acid chain elongation, reducing CO2 production. The proportion of CO2 in the fermentation gases correlated strongly with H2 production across all variants. A decrease in total volatile solids (TVS) indicated effective organic matter conversion, while varying dissolved organic carbon (DOC) levels suggested different degradation rates. Nitrogen analysis (TN) revealed that the differences between variants were due to varying nitrogen processing mechanisms by microorganisms. These results highlight the potential of sizing waste as a substrate for bioH2 production and offer insights for optimizing the process and developing industrial technologies for bioH2 and other valuable products. Full article
(This article belongs to the Special Issue Novel Methods in Wastewater and Stormwater Treatment)
Show Figures

Figure 1

17 pages, 1971 KiB  
Article
Sustainable Microwave-Assisted Extraction of Hemp Seed Oil as Functional Additive into Polybutylene Succinate (PBS) Films for Food Packaging
by Giovanni Dal Poggetto, Mattia Di Maro, Luca Gargiulo, Donatella Duraccio, Gabriella Santagata and Giovanna Gomez d’Ayala
Polymers 2025, 17(10), 1376; https://doi.org/10.3390/polym17101376 - 16 May 2025
Viewed by 467
Abstract
In this study, microwave-assisted extraction (MAE) was performed to recover antioxidant hemp seed oil (HSO) with the purpose of developing polybutylene succinate (PBS)/HSO-based films for active packaging to improve food shelf-life. It was found that MAE achieved comparable yields, structural characteristics, and antioxidant [...] Read more.
In this study, microwave-assisted extraction (MAE) was performed to recover antioxidant hemp seed oil (HSO) with the purpose of developing polybutylene succinate (PBS)/HSO-based films for active packaging to improve food shelf-life. It was found that MAE achieved comparable yields, structural characteristics, and antioxidant activity to Soxhlet extraction, but in significantly less time (2.5 min vs. 6 h). PBS-based films with 0.5 and 1 wt% HSO were prepared by compression molding. Morphological investigation of the PBS-HSO films highlighted uniform oil droplet dispersion and good compatibility. HSO reduced PBS crystallinity but did not affect the α-form of PBS. Thermal analysis showed reductions in Tm and Tc, whereas Tg remained unchanged at −17 °C. PBS containing 1 wt% HSO exhibited a 42% decrease in Young’s modulus, 47% reduction in elongation at break, and 47% decrease in tensile strength due to the plasticizing effect of the oil and, which reduced the intermolecular forces and facilitated polymer chain disentanglement, in agreement with the FTIR analysis, which showed a distinct broadening of the carbonyl stretching region associated with the amorphous phase (1720–1730 cm−1) in the PBS-HSO films compared to neat PBS. Migration tests showed that the films are unsuitable for fatty foods but safe for aqueous, acidic, and alcoholic foods. Full article
Show Figures

Figure 1

31 pages, 8222 KiB  
Article
Multifunctional 3D-Printable Photocurable Elastomer with Self-Healing Capability Derived from Waste Cooking Oil
by Pengyu Wang, Jiahui Sun, Mengyu Liu, Chuanyang Tang, Yang Yang, Guanzhi Ding, Qing Liu and Shuoping Chen
Molecules 2025, 30(8), 1824; https://doi.org/10.3390/molecules30081824 - 18 Apr 2025
Viewed by 532
Abstract
This study presents a sustainable approach to transform waste cooking oil (WCO) into a multifunctional 3D-printable photocurable elastomer with integrated self-healing capabilities. A linear monomer, WCO-based methacrylate fatty acid ethyl ester (WMFAEE), was synthesized via a sequential strategy of transesterification, epoxidation, and ring-opening [...] Read more.
This study presents a sustainable approach to transform waste cooking oil (WCO) into a multifunctional 3D-printable photocurable elastomer with integrated self-healing capabilities. A linear monomer, WCO-based methacrylate fatty acid ethyl ester (WMFAEE), was synthesized via a sequential strategy of transesterification, epoxidation, and ring-opening esterification. By copolymerizing WMFAEE with hydroxypropyl acrylate (HPA), a novel photocurable elastomer was developed, which could be amenable to molding using an LCD light-curing 3D printer. The resulting WMFAEE-HPA elastomer exhibits exceptional mechanical flexibility (elongation at break: 645.09%) and autonomous room-temperature self-healing properties, achieving 57.82% recovery of elongation after 24 h at 25 °C. Furthermore, the material demonstrates weldability (19.97% retained elongation after 12 h at 80 °C) and physical reprocessability (7.75% elongation retention after initial reprocessing). Additional functionalities include pressure-sensitive adhesion (interfacial toughness: 70.06 J/m2 on glass), thermally triggered shape memory behavior (fixed at −25 °C with reversible deformation/recovery at ambient conditions), and notable biodegradability (13.25% mass loss after 45-day soil burial). Molecular simulations reveal that the unique structure of the WMFAEE monomer enables a dual mechanism of autonomous self-healing at room temperature without external stimuli: chain diffusion and entanglement-driven gap closure, followed by hydrogen bond-mediated network reorganization. Furthermore, the synergy between monomer chain diffusion/entanglement and dynamic hydrogen bond reorganization allows the WMFAEE-HPA system to achieve a balance of multifunctional integration. Moreover, the integration of these multifunctional attributes highlights the potential of this WCO-derived photocurable elastomer for various possible 3D printing applications, such as flexible electronics, adaptive robotics, environmentally benign adhesives, and so on. It also establishes a paradigm for converting low-cost biowastes into high-performance smart materials through precision molecular engineering. Full article
Show Figures

Graphical abstract

19 pages, 3536 KiB  
Article
Molecular Characterization and Nutritional Regulation of Two Fatty Acid Elongase (elovl8) Genes in Chinese Perch (Siniperca chuatsi)
by Yu He, Zhengyong Wen, Luo Zhou, Wanhong Zeng, Panita Prathomya, Tilin Yi and Qiong Shi
Biomolecules 2025, 15(4), 567; https://doi.org/10.3390/biom15040567 - 11 Apr 2025
Viewed by 690
Abstract
Proteins for elongation of very long-chain fatty acids (ELOVLs) are critical for the synthesis of long-chain polyunsaturated fatty acids (LC-PUFAs), and they are one group of the rate-limiting enzymes responsible for the initial condensation reaction within the fatty acid elongation. Elovl8 is a [...] Read more.
Proteins for elongation of very long-chain fatty acids (ELOVLs) are critical for the synthesis of long-chain polyunsaturated fatty acids (LC-PUFAs), and they are one group of the rate-limiting enzymes responsible for the initial condensation reaction within the fatty acid elongation. Elovl8 is a newly identified member of the ELOVL protein family, and its evolutionary and functional characterizations are still rarely reported. Here, we identified two elovl8 paralogues (named Scelovl8 and Scelovl8b) from Chinese perch (Siniperca chuatsi), and then their molecular and evolutionary characteristics, as well as potential roles involved in LC-PUFA biosynthesis, were examined. The ORFs of both Scelovl8a and Scelovl8b genes were 810 bp and 789 bp in length, encoding proteins of 270 and 263 amino acids, respectively. Multiple protein sequence comparisons indicated that elovl8 genes were highly conserved in teleosts, showing similar structural function domains. Meanwhile, phylogenetic analysis showed that the elovl8 gene family was clustered into two subclades of elovl8a and elovl8b, and Scelovl8a and Scelovl8b shared close relationships with banded archerfish elovl8a and striped bass elovl8b, respectively. Genetic synteny and gene structure analyses further confirmed that elovl8b is more conserved in comparison to elovl8a in teleosts. In addition, Scelovl8a was found to be highly expressed in the liver, while Scelovl8b was most abundant in the gills. Long-term food deprivation and refeeding are verified to regulate the transcription of Scelovl8a and Scelovl8b, and intraperitoneal injection of fish oil (FO) and vegetable oil (VO) significantly modified their gene expression as well. In summary, our results in this study indicate that elovl8 genes were conservatively unique to teleosts, and both elovl8 genes might be involved in the endogenous biosynthesis of LC-PUFAs in Chinese perch. These findings not only expand our knowledge on the evolutionary and functional characteristics of both elovl8 genes but also lay a solid basis for investigating regulatory mechanisms of LC-PUFA biosynthesis in various teleosts. Full article
(This article belongs to the Special Issue Vertebrate Comparative Genomics)
Show Figures

Figure 1

20 pages, 11184 KiB  
Article
Mechanisms of Exogenous Brassinosteroids and Abscisic Acid in Regulating Maize Cold Stress Tolerance
by Tao Yang, Zelong Zhuang, Jianwen Bian, Zhenping Ren, Wanling Ta and Yunling Peng
Int. J. Mol. Sci. 2025, 26(7), 3326; https://doi.org/10.3390/ijms26073326 - 2 Apr 2025
Cited by 1 | Viewed by 603
Abstract
Exogenous abscisic acid (ABA) and brassinosteroid (BR) play important roles in alleviating cold stress in maize. In this study, two maize inbred lines with differing cold tolerance were treated with exogenous ABA, BR, and their combined solution under cold stress conditions at 10 [...] Read more.
Exogenous abscisic acid (ABA) and brassinosteroid (BR) play important roles in alleviating cold stress in maize. In this study, two maize inbred lines with differing cold tolerance were treated with exogenous ABA, BR, and their combined solution under cold stress conditions at 10 °C to investigate the effects of these treatments on the physiological characteristics of maize seedlings. The results indicated that cold stress significantly inhibited the growth of maize seedlings. Exogenous hormone treatments enhanced antioxidant enzyme activities and promoted the synthesis of osmolytes, thereby alleviating cold stress; however, the combined treatment (AR) did not significantly improve maize cold tolerance. Transcriptomic analysis revealed that pathways including plant hormone signal transduction, fatty acid elongation, and phenylpropanoid biosynthesis were involved in the interaction between ABA and BR. Weighted gene co-expression network analysis (WGCNA) identified four key candidate genes responsive to exogenous ABA and BR under cold stress, namely Zm00001eb343270, Zm00001eb401890, Zm00001eb206790, and Zm00001eb199820. Based on the gene annotation results, we speculate that ubiquitin-conjugating enzyme E2 O, tubulin–tyrosine ligase-like protein 12, the negative regulator of systemic acquired resistance SNI1, and mRNA stability regulators in response to DNA damage may be involved in regulating maize cold tolerance. These findings provide further evidence for the regulatory mechanisms by which exogenous ABA and BR affect maize cold tolerance and elucidate their interaction under cold stress. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

21 pages, 4724 KiB  
Article
Endometrial Cancer Is Associated with Altered Metabolism and Composition of Fatty Acids
by Yelyzaveta Razghonova, Adriana Mika, Monika Czapiewska, Agata Stanczak, Paulina Zygowska, Dariusz Grzegorz Wydra, Tomasz Sledzinski and Anna Abacjew-Chmylko
Int. J. Mol. Sci. 2025, 26(7), 3322; https://doi.org/10.3390/ijms26073322 - 2 Apr 2025
Cited by 1 | Viewed by 831
Abstract
Endometrial cancer (EC) is a complex gynecologic malignancy that requires a deeper understanding of its molecular basis to improve therapeutic strategies. In this study, we investigated the role of fatty acid (FA) reprogramming in the progression of EC. We analyzed FA profiles to [...] Read more.
Endometrial cancer (EC) is a complex gynecologic malignancy that requires a deeper understanding of its molecular basis to improve therapeutic strategies. In this study, we investigated the role of fatty acid (FA) reprogramming in the progression of EC. We analyzed FA profiles to identify the stage-specific changes and gene expression profiles of key enzymes involved in FA synthesis, desaturation, elongation, transport, and oxidation at different stages of EC. Our results show that EC tissues have lower levels of saturated FA and branched-chain FA, higher levels of very long-chain FA, n-3 polyunsaturated FA (PUFA), and monounsaturated FA, with the exception of myristoleic acid. The differences in n-6 PUFA were inconsistent. Gene expression analysis revealed the upregulation of key enzymes controlling de novo FA synthesis, including ACACA, FASN, SCD1, and ELOVL1. In contrast, the expression of genes related to FA transport in the cell and β-oxidation was downregulated. The expression of some genes related to PUFA metabolism was upregulated, while others were downregulated. These results demonstrate a reprogramming of lipid metabolism in EC tissues and suggest potential targets for novel therapeutic interventions in EC. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

14 pages, 8900 KiB  
Article
Genome-Wide Identification of β-Ketoacyl CoA Synthase Gene Family in Melon (Cucumis melo L.) and Its Expression Analysis in Autotoxicity, Saline-Alkali, and Microplastic Exposure Environments
by Lizhen Zhang, Mingcheng Wang, Xianhuan Tang, Xinyue Yang, Zhizhong Zhang and Jinghua Wu
Curr. Issues Mol. Biol. 2025, 47(3), 195; https://doi.org/10.3390/cimb47030195 - 16 Mar 2025
Viewed by 678
Abstract
β-ketoacyl CoA synthase (KCS) is a key enzyme in the synthesis of long-chain fatty acids. It affects plant stress resistance by regulating the chain length of fatty acid elongation products, the wax deposition in plant epidermis, and the formation of suberization layers. Through [...] Read more.
β-ketoacyl CoA synthase (KCS) is a key enzyme in the synthesis of long-chain fatty acids. It affects plant stress resistance by regulating the chain length of fatty acid elongation products, the wax deposition in plant epidermis, and the formation of suberization layers. Through a comprehensive, genome-wide analysis, we identified members of the melon KCS (CmKCS) family and characterized their sequence features, phylogenetic relationships, and expression profiles under three abiotic stress conditions, employing bioinformatics tools and methods. Fifteen CmKCSs were identified in the melon genome and found to be unevenly distributed across eight chromosomes. The subcellular localization of most members is located on the cytoplasmic membrane and chloroplasts. The CmKCS family amplifies its members in a tandem repeat manner, which is more closely related to the cucumber KCS and has similar gene functions. Subfamilies I, IV, and VI exhibit variations in conserved domain sequences, which may indicate specific functional differentiation. The promoter region harbors various cis-acting elements related to plant hormones and abiotic stress responses. Among these, the most abundant are elements responsive to abscisic acid, methyl jasmonate, salicylic acid, and anaerobic induction. CmKCS5, CmKCS6, CmKCS10, and CmKCS12 showed high expression in autotoxicity, saline-alkali stress, and microplastic exposure environments. These four CmKCSs may play important roles in melon development and stress response. In conclusion, this study provides a comprehensive analysis of the CmKCS gene family, revealing its potential roles in melon’s response to abiotic stresses and laying a foundation for further functional characterization of these genes in stress tolerance mechanisms. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

19 pages, 3286 KiB  
Article
Mitochondrial Proteome Reveals Metabolic Tuning by Restricted Insulin Signaling to Promote Longevity in Caenorhabditis elegans
by Xuanxuan Guo, Jiuwei Lu, Long Miao and Enzhi Shen
Biology 2025, 14(3), 279; https://doi.org/10.3390/biology14030279 - 9 Mar 2025
Viewed by 1655
Abstract
Aging is a time-dependent process of functional decline influenced by genetic and environmental factors. Age-related mitochondrial changes remain incompletely understood. Here, we found that compared to the wild type, the mitochondria of long-lived daf-2 C. elegans maintain youthful morphology and function. Through quantitative proteomic [...] Read more.
Aging is a time-dependent process of functional decline influenced by genetic and environmental factors. Age-related mitochondrial changes remain incompletely understood. Here, we found that compared to the wild type, the mitochondria of long-lived daf-2 C. elegans maintain youthful morphology and function. Through quantitative proteomic analysis on isolated mitochondria, we identified 257 differentially expressed candidates. Analysis of these changed mitochondrial proteins reveals a significant upregulation of five key mitochondrial metabolic pathways in daf-2 mutants, including branched-chain amino acids (BCAA), reactive oxygen species (ROS), propionate, β-alanine, and fatty acids (FA), all of which are related to daf-2-mediated longevity. In addition, mitochondrial ribosome protein abundance slightly decreased in daf-2 mutants. A mild reduction in mitochondrial elongation factor G (gfm-1) by RNAi extends the lifespan of wild type while decreasing lipid metabolic process and cytoplasmic fatty acid metabolism, suggesting that proper inhibition of mitochondrial translation activity might be important for lifespan extension. Overall, our findings indicate that mitochondrial metabolic modulation contributes to the longevity of daf-2 mutants and further highlights the crucial role of mitochondria in aging. Full article
Show Figures

Figure 1

22 pages, 1530 KiB  
Article
Investigation of Plasticity in Morphology, Organ Traits and Nutritional Composition in Chinese Soft-Shelled Turtle (Pelodiscus sinensis) Under Different Culturing Modes
by Ming Qi, Yang Wang, Liangliang Hu, Guangmei Chen, Tianlun Zheng, Xueyan Ding, Yijiang Bei, Jianjun Tang, Wenjun Ma and Xin Chen
Fishes 2025, 10(3), 89; https://doi.org/10.3390/fishes10030089 - 20 Feb 2025
Viewed by 783
Abstract
The Chinese soft-shelled turtle (Pelodiscus sinensis) is an aquatic reptile prized for its nutritional and health benefits. Given its adaptability to various culturing modes including the greenhouse, pond and rice culturing modes, we conducted a comparative analysis of the morphology, organ [...] Read more.
The Chinese soft-shelled turtle (Pelodiscus sinensis) is an aquatic reptile prized for its nutritional and health benefits. Given its adaptability to various culturing modes including the greenhouse, pond and rice culturing modes, we conducted a comparative analysis of the morphology, organ trait and nutritional composition of turtles cultured in three culturing modes. This study investigated the plasticity of morphology and physiology, as well as the variations in nutritional composition across varying culturing modes. The results demonstrated that after approximately 120 days of cultivation, significant changes were observed in the morphology, physiology and nutritional composition of turtles from each culturing mode. In terms of morphology, rice turtles exhibited an arched shell shape, broad plastron, elongated limbs, narrow interocular distance and slender head and neck. Pond turtles displayed similar morphological characteristics to rice turtles, with the additional features of a flattened body shape and narrower plastron. Greenhouse turtles presented a flattened shell shape, narrow plastron, shortened limbs, wider interocular distance and stocky head and neck. Regarding the organ characteristics, the specific weights of liver, viscera, internal fat lumps and condition factors were significantly higher in greenhouse turtles compared to rice turtles and pond turtles (p < 0.05). Conversely, the specific weights of the back carapace, calipash and edible part were significantly lower than those in rice turtles and pond turtles (p < 0.05). Nutritional analysis revealed that crude protein, total amino acid, essential amino acid, flavor amino acid, pharmacodynamic amino acid, collagen and EPA+DHA contents were significantly higher in rice turtles and pond turtles than greenhouse turtles (p < 0.05). However, crude fat and unsaturated fatty acid contents were significantly higher in greenhouse turtles than in rice turtles and pond turtles (p < 0.05). In summary, Chinese soft-shelled turtles exhibited significant morphological and organ plasticity in response to different culturing modes. While the rice and pond culturing modes could enhance the nutritional quality of turtles to some extent, the impact of commercial feed on fatty acid profiles must be carefully considered. Full article
Show Figures

Figure 1

Back to TopTop