Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (521)

Search Parameters:
Keywords = fatigue cracking resistance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 1664 KiB  
Review
Mining Waste in Asphalt Pavements: A Critical Review of Waste Rock and Tailings Applications
by Adeel Iqbal, Nuha S. Mashaan and Themelina Paraskeva
J. Compos. Sci. 2025, 9(8), 402; https://doi.org/10.3390/jcs9080402 - 1 Aug 2025
Viewed by 200
Abstract
This paper presents a critical and comprehensive review of the application of mining waste, specifically waste rock and tailings, in asphalt pavements, with the aim of synthesizing performance outcomes and identifying key research gaps. A systematic literature search yielded a final dataset of [...] Read more.
This paper presents a critical and comprehensive review of the application of mining waste, specifically waste rock and tailings, in asphalt pavements, with the aim of synthesizing performance outcomes and identifying key research gaps. A systematic literature search yielded a final dataset of 41 peer-reviewed articles for detailed analysis. Bibliometric analysis indicates a notable upward trend in annual publications, reflecting growing academic and practical interest in this field. Performance-based evaluations demonstrate that mining wastes, particularly iron and copper tailings, have the potential to enhance the high-temperature performance (i.e., rutting resistance) of asphalt binders and mixtures when utilized as fillers or aggregates. However, their effects on fatigue life, low-temperature cracking, and moisture susceptibility are inconsistent, largely influenced by the physicochemical properties and dosage of the specific waste material. Despite promising results, critical knowledge gaps remain, particularly in relation to long-term durability, comprehensive environmental and economic Life-Cycle Assessments (LCA), and the inherent variability of waste materials. This review underscores the substantial potential of mining wastes as sustainable alternatives to conventional pavement materials, while emphasizing the need for further multidisciplinary research to support their broader implementation. Full article
(This article belongs to the Special Issue Advanced Asphalt Composite Materials)
Show Figures

Figure 1

17 pages, 4992 KiB  
Article
Effect of Heat Treatments and Related Microstructural Modifications on High-Cycle Fatigue Behavior of Powder Bed Fusion–Laser Beam-Fabricated Ti-6Al-2Sn-4Zr-6Mo Alloy
by Gianluca Pirro, Alessandro Morri, Alessandra Martucci, Mariangela Lombardi and Lorella Ceschini
Metals 2025, 15(8), 849; https://doi.org/10.3390/met15080849 (registering DOI) - 29 Jul 2025
Viewed by 126
Abstract
The study investigates the influence of microstructures on fatigue behavior and failure mechanisms of the α-β titanium alloy Ti6246, fabricated via Powder Bed Fusion-Laser Beam (PBF-LB). In particular, the investigation assesses the effect of two post-processing heat treatments, namely α-β annealing at 875 [...] Read more.
The study investigates the influence of microstructures on fatigue behavior and failure mechanisms of the α-β titanium alloy Ti6246, fabricated via Powder Bed Fusion-Laser Beam (PBF-LB). In particular, the investigation assesses the effect of two post-processing heat treatments, namely α-β annealing at 875 °C (AN875) and solution treatment at 825 °C followed by aging at 500 °C (STA825), on the alloy’s rotating and bending fatigue behavior. The results indicate that the STA825 condition provides superior fatigue resistance (+25%) compared to AN875, due to the presence of a finer bilamellar microstructure, characterized by thinner primary α lamellae (αp) and a more homogeneous distribution of secondary α lamellae (αs) within the β matrix. Additionally, an investigation conducted using the Kitagawa–Takahashi (KT) approach and the El-Haddad model, based on the relationship between the fatigue limit and defect sensitivity, revealed improved crack propagation resistance from pre-existing defects (ΔKth) for the STA825 condition compared to AN875. Notably, the presence of fine αs after aging for STA825 is effective in delaying crack nucleation and propagation at early stages, while refined αp contributes to hindering macrocrack growth. The fatigue behavior of the STA825-treated Ti6246 alloy was even superior to that of the PBF-LB-processed Ti64, representing a viable alternative for the production of high-performance components in the automotive and aerospace sectors. Full article
Show Figures

Graphical abstract

16 pages, 2050 KiB  
Article
Effects of Activated Cold Regenerant on Pavement Properties of Emulsified Asphalt Cold Recycled Mixture
by Fuda Chen, Jiangmiao Yu, Yuan Zhang, Zengyao Lin and Anxiong Liu
Materials 2025, 18(15), 3529; https://doi.org/10.3390/ma18153529 - 28 Jul 2025
Viewed by 274
Abstract
Limited recovery of the viscoelastic properties of aged asphalt on RAP surfaces at ambient temperature reduces interface fusion and bonding with new emulsified asphalt, degrading pavement performance and limiting large-scale promotion and high-value applications of the emulsified asphalt cold recycled mixture (EACRM). Therefore, [...] Read more.
Limited recovery of the viscoelastic properties of aged asphalt on RAP surfaces at ambient temperature reduces interface fusion and bonding with new emulsified asphalt, degrading pavement performance and limiting large-scale promotion and high-value applications of the emulsified asphalt cold recycled mixture (EACRM). Therefore, a cold regenerant was independently prepared to rapidly penetrate, soften, and activate aged asphalt at ambient temperature in this paper, and its effects on the volumetric composition, mechanical strength, and pavement performance of EACRM were systematically investigated. The results showed that as the cold regenerant content increased, the air voids, indirect tensile strength (ITS), and high-temperature deformation resistance of EACRM decreased, while the dry–wet ITS ratio, cracking resistance, and fatigue resistance increased. Considering the comprehensive pavement performance requirements of cold recycled pavements, the optimal content of the activated cold regenerant for EACRM was determined to be approximately 0.6%. Full article
Show Figures

Figure 1

14 pages, 2594 KiB  
Article
Low-Temperature Performance and Thermal Control of Asphalt Modified with Microencapsulated Phase-Change Materials
by Liming Zhang, Junmao Wang, Jinhua Wu, Ran Zhang, Yinchuan Guo, Hongbo Shen, Xinghua Liu and Kuncan Li
Coatings 2025, 15(8), 879; https://doi.org/10.3390/coatings15080879 - 26 Jul 2025
Viewed by 372
Abstract
Conventional asphalt is prone to cracking in cold climates due to its poor flexibility and limited ability to regulate temperature. This study investigates the use of low-temperature microencapsulated phase-change materials (MPCMs) to improve both the thermal storage and low-temperature performance of asphalt. MPCMs [...] Read more.
Conventional asphalt is prone to cracking in cold climates due to its poor flexibility and limited ability to regulate temperature. This study investigates the use of low-temperature microencapsulated phase-change materials (MPCMs) to improve both the thermal storage and low-temperature performance of asphalt. MPCMs were incorporated into asphalt through physical blending at various concentrations. The physical, thermal, and rheological properties of the asphalt were then systematically evaluated. Tests included penetration, softening point, ductility, thermogravimetric analysis (TGA), and dynamic shear rheometer (DSR). The addition of MPCMs increased penetration and ductility. It slightly reduced the softening point and viscosity. These changes suggest improved flexibility and workability at low temperatures. Rheological tests showed reductions in rutting and fatigue factors. This indicates better resistance to thermal and mechanical stresses. Bending Beam Rheometer (BBR) results further confirmed that MPCMs lowered creep stiffness and increased the m-value. These findings demonstrate improved crack resistance under cold conditions. Thermal cycling tests also showed that MPCMs delayed the cooling process and reduced temperature fluctuations. This highlights their potential to enhance both energy efficiency and the durability of asphalt pavements in cold regions. Full article
(This article belongs to the Special Issue Synthesis and Application of Functional Polymer Coatings)
Show Figures

Graphical abstract

21 pages, 3663 KiB  
Article
A Study on the Road Performance of the Self-Healing Microcapsule for Asphalt Pavement
by Pei Li, Rongyi Ji, Chenlong Zhang, Jinghan Xu, Mulian Zheng and Xinghan Song
Materials 2025, 18(15), 3483; https://doi.org/10.3390/ma18153483 - 25 Jul 2025
Viewed by 332
Abstract
Asphalt pavement cracking is an important factor affecting its service life. Under certain conditions, the self-healing behavior of asphalt itself can repair pavement cracks. However, the self-healing ability of asphalt itself is limited. In order to strengthen the self-healing ability of asphalt, the [...] Read more.
Asphalt pavement cracking is an important factor affecting its service life. Under certain conditions, the self-healing behavior of asphalt itself can repair pavement cracks. However, the self-healing ability of asphalt itself is limited. In order to strengthen the self-healing ability of asphalt, the microcapsule wrapped with a repair agent is pre-mixed into the asphalt mixture. When the crack occurs and spreads to the surface of the microcapsule, the microcapsule ruptures and the healing agent flows out to realize the self-healing of the crack. Current microcapsules are mostly prepared with healing agents and bio-oil as core materials, and their high-temperature resistance to rutting is poor. While the epoxy resin contains a three-membered cyclic ether, it can undergo ring-opening polymerization to bond and repair the asphalt matrix. In addition, research on microcapsules mainly focuses on the self-healing properties of microcapsule-modified asphalt. In fact, before adding microcapsules to asphalt to improve its self-healing performance, it is necessary to ensure that the asphalt has a good road performance. On this basis, the self-healing performance of asphalt is improved, thereby extending the service life of asphalt pavement. Therefore, two-component epoxy self-healing microcapsules (E-mic and G-mic) were first prepared in this paper. Then, a temperature scanning test, rheological test of bending beams, and linear amplitude scanning test were, respectively, conducted for the microcapsule/asphalt to evaluate its road performance, including the high-temperature performance, low-temperature crack resistance, and fatigue performance. Finally, the self-healing performance of microcapsules/asphalt was tested. The results showed that the self-developed epoxy self-healing microcapsules were well encapsulated and presented as spherical micron-sized particles. The average particle size of the E-mic was approximately 23.582 μm, while the average particle size of the G-mic was approximately 22.440 μm, exhibiting a good normal distribution. In addition, they can remain intact and unbroken under high-temperature conditions. The results of road performance tests indicated that the microcapsule/asphalt mixture exhibits an excellent high-temperature resistance to permanent deformation, low-temperature crack resistance, and fatigue resistance. The self-healing test demonstrated that the microcapsule/asphalt exhibited an excellent self-healing performance. When the microcapsule content was 4%, the self-healing rate reached its optimal level of 67.8%, which was 149.2% higher than that of the base asphalt. Full article
(This article belongs to the Special Issue Innovative Approaches in Asphalt Binder Modification and Performance)
Show Figures

Figure 1

17 pages, 2470 KiB  
Article
Correlation Between Packing Voids and Fatigue Performance in Sludge Gasification Slag-Cement-Stabilized Macadam
by Yunfei Tan, Xiaoqi Wang, Hao Zheng, Yingxu Liu, Juntao Ma and Shunbo Zhao
Sustainability 2025, 17(14), 6587; https://doi.org/10.3390/su17146587 - 18 Jul 2025
Viewed by 353
Abstract
The fatigue resistance of cement-stabilized macadam (CSM) plays a vital role in ensuring the long-term durability of pavement structures. However, limited cementitious material (CM) content often leads to high packing voids, which significantly compromise fatigue performance. Existing studies have rarely explored the coupled [...] Read more.
The fatigue resistance of cement-stabilized macadam (CSM) plays a vital role in ensuring the long-term durability of pavement structures. However, limited cementitious material (CM) content often leads to high packing voids, which significantly compromise fatigue performance. Existing studies have rarely explored the coupled mechanism between pore structure and fatigue behavior, especially in the context of solid-waste-based CMs. In this study, a cost-effective alkali-activated sludge gasification slag (ASS) was proposed as a sustainable CM substitute for ordinary Portland cement (OPC) in CSM. A dual evaluation approach combining cross-sectional image analysis and fatigue loading tests was employed to reveal the effect pathway of void structure optimization on fatigue resistance. The results showed that ASS exhibited excellent cementitious reactivity, forming highly polymerized C-A-S-H/C-S-H gels that contributed to a denser microstructure and superior mechanical performance. At a 6% binder dosage, the void ratio of ASS–CSM was reduced to 30%, 3% lower than that of OPC–CSM. The 28-day unconfined compressive strength and compressive resilient modulus reached 5.7 MPa and 1183 MPa, representing improvements of 35.7% and 4.1% compared to those of OPC. Under cyclic loading, the ASS system achieved higher energy absorption and more uniform stress distribution, effectively suppressing fatigue crack initiation and propagation. Moreover, the production cost and carbon emissions of ASS were 249.52 CNY/t and 174.51 kg CO2e/t—reductions of 10.9% and 76.2% relative to those of OPC, respectively. These findings demonstrate that ASS not only improves fatigue performance through pore structure refinement but also offers significant economic and environmental advantages, providing a theoretical foundation for the large-scale application of solid-waste-based binders in pavement engineering. Full article
Show Figures

Figure 1

15 pages, 2854 KiB  
Review
A Review on the Applications of Basalt Fibers and Their Composites in Infrastructures
by Wenlong Yan, Jianzhe Shi, Xuyang Cao, Meng Zhang, Lei Li and Jingyi Jiang
Buildings 2025, 15(14), 2525; https://doi.org/10.3390/buildings15142525 - 18 Jul 2025
Viewed by 351
Abstract
This article presents a review on the applications of basalt fibers and their composites in infrastructures. The characteristics and advantages of high-performance basalt fibers and their composites are firstly introduced. Then, the article discusses strengthening using basalt fiber sheets and BFRP bars or [...] Read more.
This article presents a review on the applications of basalt fibers and their composites in infrastructures. The characteristics and advantages of high-performance basalt fibers and their composites are firstly introduced. Then, the article discusses strengthening using basalt fiber sheets and BFRP bars or grids, followed by concrete structures reinforced with BFRP bars, asphalt pavements, and cementitious composites reinforced with chopped basalt fibers in terms of mechanical behaviors and application examples. The load-bearing capacity of the strengthened structures can be increased by up to 60%, compared with those without strengthening. The lifespan of the concrete structures reinforced with BFRP can be extended by up to 50 years at least in harsh environments, which is much longer than that of ordinary reinforced concrete structures. In addition, the fatigue cracking resistance of asphalt can be increased by up to 600% with basalt fiber. The newly developed technologies including anchor bolts using BFRPs, self-sensing BFRPs, and BFRP–concrete composite structures are introduced in detail. Furthermore, suggestions are proposed for the forward-looking technologies, such as long-span bridges with BFRP cables, BFRP truss structures, BFRP with thermoplastic resin matrix, and BFRP composite piles. Full article
Show Figures

Figure 1

14 pages, 5148 KiB  
Proceeding Paper
Numerical Modeling and Analysis of Fatigue Failure in 42CrMo4 Steel Pivot Bolts at Different Heat Treatments
by Ivanka Delova, Tsvetomir Borisov, Yordan Mirchev and Raycho Raychev
Eng. Proc. 2025, 100(1), 52; https://doi.org/10.3390/engproc2025100052 - 17 Jul 2025
Viewed by 114
Abstract
This study presents a numerical model for analyzing fatigue crack growth in 42CrMo4 steel pivot bolts under different heat treatments and service loads. The finite element method (FEM) in the ANSYS Workbench environment (version 2019R1) (SMART Crack Growth), along with algorithms based on [...] Read more.
This study presents a numerical model for analyzing fatigue crack growth in 42CrMo4 steel pivot bolts under different heat treatments and service loads. The finite element method (FEM) in the ANSYS Workbench environment (version 2019R1) (SMART Crack Growth), along with algorithms based on Paris’s law implemented in MATLAB (version R2016a), was used. The results highlight the significant influence of heat treatment on fatigue resistance and serve as a basis for optimizing design parameters and improving the durability of the structural components. Full article
Show Figures

Figure 1

28 pages, 17257 KiB  
Article
A Crystal Plasticity Phase-Field Study on the Effects of Grain Boundary Degradation on the Fatigue Behavior of a Nickel-Based Superalloy
by Pengfei Liu, Zhanghua Chen, Xiao Zhao, Jianxin Dong and He Jiang
Materials 2025, 18(14), 3309; https://doi.org/10.3390/ma18143309 - 14 Jul 2025
Viewed by 374
Abstract
Grain boundary weakening in high-temperature environments significantly influences the fatigue crack growth mechanisms of nickel-based superalloys, introducing challenges in accurately predicting fatigue life. In this study, a dislocation-density-based crystal plasticity phase-field (CP–PF) model is developed to simulate the fatigue crack growth behavior of [...] Read more.
Grain boundary weakening in high-temperature environments significantly influences the fatigue crack growth mechanisms of nickel-based superalloys, introducing challenges in accurately predicting fatigue life. In this study, a dislocation-density-based crystal plasticity phase-field (CP–PF) model is developed to simulate the fatigue crack growth behavior of the GH4169 alloy under both room and elevated temperatures. Grain boundaries are explicitly modeled, enabling the competition between transgranular and intergranular cracking to be accurately captured. The grain boundary separation energy and surface energy, calculated via molecular dynamics simulations, are employed as failure criteria for grain boundary and intragranular material points, respectively. The simulation results reveal that under oxygen-free conditions, fatigue crack propagation at both room and high temperatures is governed by sustained shear slip, with crack advancement hindered by grains exhibiting low Schmid factors. When grain boundary oxidation is introduced, increasing oxidation levels progressively degrade grain boundary strength and reduce overall fatigue resistance. Specifically, at room temperature, oxidation shortens the duration of crack arrest near grain boundaries. At elevated service temperatures, intensified grain boundary degradation facilitates a transition in crack growth mode from transgranular to intergranular, thereby accelerating crack propagation and exacerbating fatigue damage. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

18 pages, 2365 KiB  
Article
The Improvement of Road Performance of Foam Asphalt Cold Recycled Mixture Based on Interface Modification
by Han Zhao, Yuheng Chen, Wenyi Zhou, Yichao Ma, Zhuo Chen and Junyan Yi
Polymers 2025, 17(14), 1927; https://doi.org/10.3390/polym17141927 - 13 Jul 2025
Viewed by 399
Abstract
With the increasing demand for highway maintenance, enhancing the resource utilization of reclaimed asphalt pavement (RAP) has become an urgent and widely studied issue. Although foam asphalt cold recycling technology offers significant benefits in terms of resource utilization and energy saving, it still [...] Read more.
With the increasing demand for highway maintenance, enhancing the resource utilization of reclaimed asphalt pavement (RAP) has become an urgent and widely studied issue. Although foam asphalt cold recycling technology offers significant benefits in terms of resource utilization and energy saving, it still faces challenges, particularly the poor stability of foam asphalt mixtures. This study focuses on optimizing the performance of foam asphalt recycled mixtures through interface modification, aiming to promote the widespread application of foam asphalt cold recycling technology. Specifically, the research follows these steps: First, the optimal mix ratio of the recycled mixtures was determined based on the fundamental properties of foam asphalt and RAP. Then, zinc oxide, silane coupling agents, and amine anti-stripping agents were introduced to modify the recycled mixtures. At last, a series of tests were conducted to comprehensively evaluate improvements in road performance. The results indicate that the silane coupling agent enhances the low-temperature performance and fatigue. The fracture energy reached 526.71 J/m2. Zinc oxide improves the low-temperature cracking resistance and dry shrinkage performance. Amine anti-stripping agents have minimal impact on the low-temperature performance. The linear shrinkage was reduced by 2.6%. The results of TOPSIS indicated that silane coupling agent modification exhibits superior fatigue resistance and low-temperature performance, achieving the highest comprehensive score of 0.666. Although amine-based anti-stripping agents improve fatigue life, they are not suitable for modifying foamed asphalt mixtures due to their detrimental effects on low-temperature performance and moisture resistance. Full article
(This article belongs to the Special Issue Polymer Materials for Pavement Applications)
Show Figures

Figure 1

17 pages, 4357 KiB  
Article
Rotational Bending Fatigue Crack Initiation and Early Extension Behavior of Runner Blade Steels in Air and Water Environments
by Bing Xue, Yongbo Li, Wanshuang Yi, Wen Li and Jiangfeng Dong
Metals 2025, 15(7), 783; https://doi.org/10.3390/met15070783 - 11 Jul 2025
Viewed by 301
Abstract
This study provides a comprehensive analysis of the fatigue cracking behavior of super martensitic stainless steel in air and water environments, highlighting the critical influence of environmental factors on its mechanical properties. By examining the distribution of fatigue test data, the Weibull three-parameter [...] Read more.
This study provides a comprehensive analysis of the fatigue cracking behavior of super martensitic stainless steel in air and water environments, highlighting the critical influence of environmental factors on its mechanical properties. By examining the distribution of fatigue test data, the Weibull three-parameter model was identified as the most accurate descriptor of fatigue life data in both environments. Key findings reveal that, in air, cracks predominantly propagate along the densest crystallographic planes, whereas, in water, corrosive media significantly accelerate crack initiation and propagation, reducing fatigue resistance, creating more tortuous crack paths, and inducing microvoids and secondary cracks at the crack tip. These corrosive effects adversely alter the material’s microstructure, profoundly impacting fatigue life and crack propagation rates. The insights gained from this research are crucial for understanding the performance of super martensitic stainless steel in aqueous environments, offering a reliable basis for its engineering applications and contributing to the development of more effective design and maintenance strategies. Full article
(This article belongs to the Special Issue Microstructure, Deformation and Fatigue Behavior in Metals and Alloys)
Show Figures

Figure 1

22 pages, 1654 KiB  
Review
A Review of Mechanical Performance Studies on Composite Concrete Beams and Slabs
by Xinhao Wang, Qiuwei Yang, Xi Peng, Kangshuo Xia and Bin Xu
Materials 2025, 18(14), 3259; https://doi.org/10.3390/ma18143259 - 10 Jul 2025
Viewed by 365
Abstract
This paper reviews the applications and performance advantages of ultra-high-performance concrete (UHPC), engineered cementitious composite (ECC), and recycled aggregate concrete (RAC) in composite flexural members. UHPC is characterized by its ultra-high strength, high toughness, excellent durability, and microcrack self-healing capability, albeit with high [...] Read more.
This paper reviews the applications and performance advantages of ultra-high-performance concrete (UHPC), engineered cementitious composite (ECC), and recycled aggregate concrete (RAC) in composite flexural members. UHPC is characterized by its ultra-high strength, high toughness, excellent durability, and microcrack self-healing capability, albeit with high costs and complex production processes. ECC demonstrates superior tensile, flexural, and compressive strength and durability, yet it exhibits a lower elastic modulus and greater drying shrinkage strain. RAC, as an eco-friendly concrete, offers cost-effectiveness and environmental benefits, although it poses certain performance challenges. The focus of this review is on how to enhance the load-bearing capacity of composite beams or slabs by modifying the interface roughness, adjusting the thickness of the ECC or UHPC layer, and altering the cross-sectional form. The integration of diverse concrete materials improves the performance of beam and slab elements while managing costs. For instance, increasing the thickness of the UHPC or ECC layer typically enhances the load-bearing capacity of composite beams or plates by approximately 10% to 40%. Increasing the roughness of the interface can significantly improve the interfacial bond strength and further augment the ultimate load-bearing capacity of composite components. Moreover, the optimized design of material mix proportions and cross-sectional shapes can also contribute to enhancing the load-bearing capacity, crack resistance, and ductility of composite components. Nevertheless, challenges persist in engineering applications, such as the scarcity of long-term monitoring data on durability, fatigue performance, and creep effects. Additionally, existing design codes inadequately address the nonlinear behavior of multi-material composite structures, necessitating further refinement of design theories. Full article
(This article belongs to the Special Issue Advances in Concrete and Binders for Sustainable Engineering)
Show Figures

Figure 1

25 pages, 5828 KiB  
Article
Study on Performance and Aging Mechanism of Rubber-Modified Asphalt Under Variable-Intensity UV Aging
by Qian Liu, Fujin Hou, Dongdong Ge, Songtao Lv and Zihao Ju
Materials 2025, 18(13), 3186; https://doi.org/10.3390/ma18133186 - 5 Jul 2025
Viewed by 462
Abstract
Prolonged ultraviolet (UV) exposure accelerates aging and degradation, while conventional constant-intensity UV simulations do not reflect the variable nature of outdoor radiation. Aging duration and film thickness are both key factors affecting Rubber-Modified Asphalt (RMA), but how their combination influences RMA remains unclear. [...] Read more.
Prolonged ultraviolet (UV) exposure accelerates aging and degradation, while conventional constant-intensity UV simulations do not reflect the variable nature of outdoor radiation. Aging duration and film thickness are both key factors affecting Rubber-Modified Asphalt (RMA), but how their combination influences RMA remains unclear. To address this limitation, this research employed accelerated aging experiments under variable-intensity UV radiation to investigate the performance and aging mechanism of RMA across different aging durations and asphalt film thicknesses. Rheological properties were analyzed through rheological tests, and the UV aging mechanisms of RMA were revealed using FTIR and SEM. The results revealed that crumb rubber improved RMA’s UV aging resistance, including high-temperature performance, fatigue life, and low-temperature cracking resistance. Aging effects were more influenced in RMA with thinner films under prolonged UV exposure. After nine cycles of ultraviolet aging, the rutting resistance, elastic recovery, fatigue life, and low-temperature cracking resistance of RMA with a 1 mm film thickness were 1.33, 1.11, 0.54, and 0.67 times, respectively, those of RMA with a 2 mm film thickness subjected to three UV aging cycles. RMA demonstrated comparable high-temperature performance and elastic recovery under UV aging conditions corresponding to a 1.5 mm film thickness aged for three cycles and a 2.0 mm film thickness aged for six cycles, as well as a 1.0 mm film thickness aged for six cycles and a 1.5 mm film thickness aged for nine cycles. FTIR showed that the increased activity of C=C and C-H under photo-oxidative aging caused a greater impact on the carbonyl groups than the sulfoxide groups. Under high-intensity UV radiation, RMA with thinner films exhibited greater rubber powder detachment, increased surface oxidation, and a substantial widening of cracks. The rubber powder absorbed UV radiation, enhancing the stability of RMA. The maximum crack width of the 1 mm NA was twice that of RMA. These provided insight into the microstructural pattern of cracking resistance degradation caused by aging. This research provides theoretical support for the optimization of the anti-aging performance of RMA. Full article
Show Figures

Figure 1

33 pages, 7442 KiB  
Review
Transparent Electrodes Based on Crack-Templated Metallic Networks for Next-Generation Optoelectronics
by Eleonora Sofia Cama, Mariacecilia Pasini, Francesco Galeotti and Umberto Giovanella
Materials 2025, 18(13), 3091; https://doi.org/10.3390/ma18133091 - 30 Jun 2025
Viewed by 599
Abstract
Transparent conductive electrodes (TCEs) are essential components in modern optoelectronic devices, including organic light-emitting diodes and solar cells, sensors, and flexible displays. Indium tin oxide has been the dominant material for TCEs due to its high transparency and conductivity. However, its brittleness, high [...] Read more.
Transparent conductive electrodes (TCEs) are essential components in modern optoelectronic devices, including organic light-emitting diodes and solar cells, sensors, and flexible displays. Indium tin oxide has been the dominant material for TCEs due to its high transparency and conductivity. However, its brittleness, high cost, and increasingly limited availability pose significant challenges for electronics. Crack-template (CT)-assisted fabrication has emerged as a promising technique to develop metal mesh-based TCEs with superior mechanical flexibility, high conductivity, and excellent optical transmittance. This technique leverages the spontaneous formation of random and continuous microcrack networks in sacrificial templates, followed by metal deposition (e.g., Cu, Ag, Al, etc.), to produce highly conductive, scalable, and low-cost electrodes. Various crack formation strategies, including controlled drying of polymer suspensions, mechanical strain engineering, and thermal processing, have been explored to tailor electrode properties. Recent studies have demonstrated that crack-templated TCEs can achieve transmittance values exceeding 85% and sheet resistances below 10 Ω/sq, with mesh line widths as low as ~40 nm. Moreover, these electrodes exhibit enhanced stretchability and robustness under mechanical deformation, outperforming ITO in bend and fatigue tests. This review aims to explore recent advancements in CT engineering, highlighting key fabrication methods, performance metrics across different metals and substrates, and presenting examples of its applications in optoelectronic devices. Additionally, it will examine current challenges and future prospects for the widespread adoption of this emerging technology. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Graphical abstract

17 pages, 5076 KiB  
Article
Enhancing Fatigue Life Prediction Accuracy: A Parametric Study of Stress Ratios and Hole Position Using SMART Crack Growth Technology
by Yahya Ali Fageehi and Abdulnaser M. Alshoaibi
Crystals 2025, 15(7), 596; https://doi.org/10.3390/cryst15070596 - 24 Jun 2025
Viewed by 535
Abstract
This study presents a unique and comprehensive application of ANSYS Mechanical R19.2’s SMART crack growth feature, leveraging its capabilities to conduct an unprecedented parametric investigation into fatigue crack propagation behavior under a wide range of positive and negative stress ratios, and to provide [...] Read more.
This study presents a unique and comprehensive application of ANSYS Mechanical R19.2’s SMART crack growth feature, leveraging its capabilities to conduct an unprecedented parametric investigation into fatigue crack propagation behavior under a wide range of positive and negative stress ratios, and to provide detailed insights into the influence of hole positioning on crack trajectory. By uniquely employing an unstructured mesh method that significantly reduces computational overhead and automates mesh updates, this research overcomes traditional fracture simulation limitations. The investigation breaks new ground by comprehensively examining an unprecedented range of both positive (R = 0.1 to 0.5) and negative (R = −0.1 to −0.5) stress ratios, revealing previously unexplored relationships in fracture mechanics. Through rigorous and extensive numerical simulations on two distinct specimen configurations, i.e., a notched plate with a strategically positioned hole under fatigue loading and a cracked rectangular plate with dual holes under static loading, this work establishes groundbreaking correlations between stress parameters and fatigue behavior. The research reveals a novel inverse relationship between the equivalent stress intensity factor and stress ratio, alongside a previously uncharacterized inverse correlation between stress ratio and von Mises stress. Notably, a direct, accelerating relationship between stress ratio and fatigue life is demonstrated, where higher R-values non-linearly increase fatigue resistance by mitigating stress concentration, challenging conventional linear approximations. This investigation makes a substantial contribution to fracture mechanics by elucidating the fundamental role of hole positioning in controlling crack propagation paths. The research uniquely demonstrates that depending on precise hole location, cracks will either deviate toward the hole or maintain their original trajectory, a phenomenon attributed to the asymmetric stress distribution at the crack tip induced by the hole’s presence. These novel findings, validated against existing literature, represent a significant advancement in predictive modeling for fatigue life assessment, offering critical new insights for engineering design and maintenance strategies in high-stakes industries. Full article
(This article belongs to the Special Issue Fatigue and Fracture of Crystalline Metal Structures)
Show Figures

Figure 1

Back to TopTop