Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (88)

Search Parameters:
Keywords = fastening stiffness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3197 KiB  
Article
The Progressive Damage Modeling of Composite–Steel Lapped Joints
by Alaa El-Sisi, Ahmed Elbelbisi, Ahmed Elkilani and Hani Salim
J. Compos. Sci. 2025, 9(7), 350; https://doi.org/10.3390/jcs9070350 - 7 Jul 2025
Viewed by 620
Abstract
In advanced structural applications—aerospace and automotive—fiber-laminated composite (FRP) materials are increasingly used for their superior strength-to-weight ratios, making the reliability of their mechanical joints a critical concern. Mechanically fastened joints play a major role in ensuring the structural stability of FRP Composite structures; [...] Read more.
In advanced structural applications—aerospace and automotive—fiber-laminated composite (FRP) materials are increasingly used for their superior strength-to-weight ratios, making the reliability of their mechanical joints a critical concern. Mechanically fastened joints play a major role in ensuring the structural stability of FRP Composite structures; however, accurately predicting their failure behavior remains a major challenge due to the anisotropic and heterogeneous nature of composite materials. This paper presents a progressive damage modeling approach to investigate the failure modes and joint strength of mechanically fastened carbon fiber-laminated (CFRP) composite joints. A 3D constitutive model based on continuum damage mechanics was developed and implemented within a three-dimensional finite element framework. The joint model comprises a composite plate, a steel plate, a steel washer, and steel bolts, capturing realistic assembly behavior. Both single- and double-lap joint configurations, featuring single and double bolts, were analyzed under tensile loading. The influence of clamping force on joint strength was also investigated. Model predictions were validated against existing experimental results, showing a good correlation. It was observed that double-lap joints exhibit nearly twice the strength of single-lap joints and can retain up to 85% of the strength of a plate with a hole. Furthermore, double-lap configurations support higher clamping forces, enhancing frictional resistance at the interface and load transfer efficiency. However, the clamping force must be optimized, as excessive values can induce premature damage in the composite before external loading. The stiffness of double-bolt double-lap (3DD) joints was found to be approximately three times that of single-bolt single-lap (3DS) joints, primarily due to reduced rotational flexibility. These findings provide useful insights into the design and optimization of composite bolted joints under tensile loading. Full article
(This article belongs to the Special Issue Characterization and Modelling of Composites, Volume III)
Show Figures

Figure 1

31 pages, 3456 KiB  
Review
Advancements in Timber–Steel Hybridisation: A Review on Techniques, Applications, and Structural Performances
by Abdulaziz Abdulmalik, Benoit P. Gilbert, Hong Guan, Tuan Ngo and Alex Remennikov
Buildings 2025, 15(13), 2252; https://doi.org/10.3390/buildings15132252 - 26 Jun 2025
Viewed by 476
Abstract
Timber–steel hybridisation offers a balanced approach by capitalising on the high strength-to-weight ratio and sustainability of the timber while also benefiting from the high stiffness and ductility of the steel, contributing to the improved performance of hybrid structural elements. This paper reviews key [...] Read more.
Timber–steel hybridisation offers a balanced approach by capitalising on the high strength-to-weight ratio and sustainability of the timber while also benefiting from the high stiffness and ductility of the steel, contributing to the improved performance of hybrid structural elements. This paper reviews key aspects of timber–steel hybridisation, with a particular emphasis on the connection methods between timber and steel, including adhesive bonding and mechanical fastening, as well as the different types of reinforcement configurations. In particular, this review covers two main types of adhesives used in timber–steel hybrid systems, namely, epoxy and polyurethane, and two primary types of mechanical fasteners, namely, bolts and screws. The mechanical performances of all hybridisation methods are reviewed. The importance of surface treatments, such as shot blasting for steel and mechanical abrasion for timber, is also discussed as a key factor in optimising adhesive bonds. Furthermore, various reinforcement configurations, including top, bottom, side, and embedded arrangements, are evaluated for their impact on the structural efficiency and fire performance. To support this evaluation, calculations have been carried out to illustrate how different reinforcement configurations influence the stress distribution in timber–steel hybrid beams. By providing detailed insights into these critical aspects, this paper serves as a valuable decision-making tool, offering guidance for researchers and industry professionals for selecting the appropriate bonding techniques and configurations to meet specific structural objectives and advance sustainable construction practices. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

14 pages, 6282 KiB  
Article
Influence of Jointing Methods on the Mechanical Properties of CFRTP Structure Under Bending Load
by Yi Wan, Linshu Meng, Hirokuni Wataki and Jun Takahashi
J. Compos. Sci. 2025, 9(6), 291; https://doi.org/10.3390/jcs9060291 - 6 Jun 2025
Viewed by 521
Abstract
Jointing is inevitable for CFRTP (carbon fiber reinforced thermoplastic) component applications in the automotive industry. In this study, commonly used jointing methods were applied to fasten CFRTP components. Three types of jointing methods. Ultrasonic welding, bolted joints, and adhesive joining, and three types [...] Read more.
Jointing is inevitable for CFRTP (carbon fiber reinforced thermoplastic) component applications in the automotive industry. In this study, commonly used jointing methods were applied to fasten CFRTP components. Three types of jointing methods. Ultrasonic welding, bolted joints, and adhesive joining, and three types of CFRTP materials, conventional cross-ply, ultra-thin prepreg cross-ply, and sheet molding compounds, were selected. The influence of the jointing methods on mechanical properties and damage patterns under bending load has been investigated. The finite element models were developed to predict the hazardous area and structural stiffness of jointed structures; the simulation results showed good agreement with experimental ones. The results indicate that the ultrasonic welding could reach similar bending stiffness compared to adhesive joining, whereas the stiffness of bolt jointed structures is relatively lower due to the contact separation induced by the bending deformation. Overall, the finite element model results correlated well with the experimental data. Full article
(This article belongs to the Special Issue Mechanical Properties of Composite Materials and Joints)
Show Figures

Figure 1

11 pages, 3733 KiB  
Article
Effect of Wet–Dry Cycles on the Shear Behavior of Compressed Wood Nails Compared to Steel Nails
by Wei Fan, Xinrui Zhu, Xinyu Hu and Hongguang Liu
Forests 2025, 16(6), 940; https://doi.org/10.3390/f16060940 - 3 Jun 2025
Viewed by 399
Abstract
The corrosion-induced strength degradation of steel nails poses a critical challenge to the structural integrity of timber connection joints, particularly in hygrothermal environments. Compressed wood nails exhibit hygroscopic expansion characteristics, demonstrating their potential as a sustainable alternative to steel nails in structural connections. [...] Read more.
The corrosion-induced strength degradation of steel nails poses a critical challenge to the structural integrity of timber connection joints, particularly in hygrothermal environments. Compressed wood nails exhibit hygroscopic expansion characteristics, demonstrating their potential as a sustainable alternative to steel nails in structural connections. However, systematic investigations on their shear performance under cyclic hygrothermal conditions remain limited. This study comparatively analyzed the shear behavior evolution of compressed wood nail and galvanized steel nail connections under wet-dry cycles. Distinct failure mechanisms were observed: wood nail connections exhibited characteristic brittle fracture patterns, whereas steel nail connections demonstrated ductile failure through pull-out deformation with nail bending. Notably, compressed wood nails displayed superior environmental stability, with significantly lower degradation rates in terms of load-bearing capacity (2.8% vs. 22.3%) and stiffness (16.3% vs. 38.0%) than their steel counterparts under identical hygrothermal exposure. These findings provide critical design references and data support for implementing wood-based fasteners in moisture-prone engineering applications. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

32 pages, 17340 KiB  
Article
Elastic Structural Assessment of Clamp-Based Steel Beam-to-Column Connections for Reusable Steel Systems
by Fernando Nunes Cavalheiro, Manuel Cabaleiro, Borja Conde and Yago Cruz
Appl. Sci. 2025, 15(10), 5398; https://doi.org/10.3390/app15105398 - 12 May 2025
Viewed by 475
Abstract
The increasing demand for modular and reusable steel structures has driven the development of demountable connections that preserve the integrity of structural components. This study investigated the structural performance of beam-to-column connections using clamp-based fastening systems, operating strictly within the elastic regime and [...] Read more.
The increasing demand for modular and reusable steel structures has driven the development of demountable connections that preserve the integrity of structural components. This study investigated the structural performance of beam-to-column connections using clamp-based fastening systems, operating strictly within the elastic regime and targeting applications in temporary systems and industrial platforms. Two triangular steel frame configurations (180 mm and 260 mm), differing in clamp capacity and hole arrangement, were experimentally tested and numerically modeled to assess their influence on load-bearing capacity, displacements, and stress distribution. Experimental tests were conducted with controlled bolt pretension and progressive vertical loading, continuously monitoring displacements and applied forces. The finite element model (FEM), validated with high correlation (>97%) to the experimental data, confirmed that all configurations remained within the elastic domain. Results showed that increasing the number of clamps significantly enhanced both stiffness and load capacity, with gains of up to 27.3% depending on the configuration, while reductions exhibited a nonlinear performance loss. Stress concentrations were observed in clamp contact regions without plasticization. Overall, clamp-based connections demonstrated efficient structural performance and alignment with design-for-deconstruction and circular economy principles, proving to be technically feasible for systems requiring reusability and adaptability. Full article
Show Figures

Figure 1

13 pages, 2271 KiB  
Article
Potential of Sustainable Timber Modular Houses in Southern Highland, Tanzania: The Structural Response of Timber Modules Under Wind Load
by Daudi Salezi Augustino
Buildings 2025, 15(9), 1459; https://doi.org/10.3390/buildings15091459 - 25 Apr 2025
Viewed by 476
Abstract
Traditional construction of timber houses in Tanzania has been prevalent for years; however, inhabiting these structures has been a challenge due to the instability of the buildings under various loadings. This instability, despite its lightweight, is mainly controlled by mechanical joints within timber [...] Read more.
Traditional construction of timber houses in Tanzania has been prevalent for years; however, inhabiting these structures has been a challenge due to the instability of the buildings under various loadings. This instability, despite its lightweight, is mainly controlled by mechanical joints within timber members. Parametric Python scripts were developed in Abaqus (version 6.13) to have a reliable joint between timber volume modules and assess their response when subjected to wind forces. Two timber volume modules, each with a height of 3.0 m, were subjected to a horizontal displacement of 10 mm. Results show that the screwed fasteners between the modules result in high shear resistance due to the embedded fastener’s threads in timber members increasing the rope effect. Additionally, with weak fastener stiffness, the openings in the longitudinal wall had no effect on resisting shear compared to strong joints between modules. Longitudinal walls with doors and window openings showed a decrease in shear force to 21.95 kN, which is 44% less than the 39 kN of walls without openings. In addition, for a single door in the wall, the shear force decreased to 17.9%, indicating that major shear forces in the wall are affected by the window opening due to its large size and proximity to the point of load application. Furthermore, the stresses were concentrated in the corners of the openings, subjecting the structure to failure during its in-service life and demanding the use of cross-diagonal timber members between the corners to redistribute corner stresses. It is recommended that these types of houses be adopted due to less slip deformation (less than 10 mm) caused by wind speed of 24 km/h. Full article
(This article belongs to the Special Issue Performance Analysis of Timber Composite Structures)
Show Figures

Figure 1

18 pages, 9531 KiB  
Article
Experimental Validation of Clamping-Type Mesh Fastening Method Using Thin Plates and Push-Button Rivets for Deployable Mesh Antennas
by Jae-Seop Choi, Bong-Geon Chae and Hyun-Ung Oh
Aerospace 2025, 12(3), 248; https://doi.org/10.3390/aerospace12030248 - 17 Mar 2025
Viewed by 429
Abstract
Deployable mesh antennas offer advantages such as high gain, ultra-light weight, and high packaging efficiency. However, the mesh that constitutes the reflection surface is prone to deformation due to its low stiffness, which directly affects the performance of the antenna. Therefore, it is [...] Read more.
Deployable mesh antennas offer advantages such as high gain, ultra-light weight, and high packaging efficiency. However, the mesh that constitutes the reflection surface is prone to deformation due to its low stiffness, which directly affects the performance of the antenna. Therefore, it is essential to minimize the mechanical deformation of the mesh caused by external forces in order to achieve the target performance. In particular, the fastening interface between the mesh and the antenna structure is a critical area where high tensile forces are incurred due to the dynamic behavior of the antenna structure during ground tests, launch environments, and on-orbit operation. This causes degradation in the precision of the reflection surface. Therefore, an important part of the antenna development process is researching mesh fabric fastening methods that minimize the deformation of the reflection surface. Nevertheless, existing studies have only briefly mentioned mesh fastening methods, with limited systematic analysis of their impact on the mechanical properties of mesh fabric. In this paper, we propose a clamping-type mesh fastening method that combines push-button rivets and thin plates, which have high workability during mesh assembly, and conduct experimental validation. The characteristics of each fastening method were analyzed through tensile strength tests conducted at the mesh fabric level, and the results of the repeated tensile tests verified the effectiveness of the proposed fastening method. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

23 pages, 3542 KiB  
Article
Numerical Study on In-Plane Behaviour of Light Timber-Framed Wall Elements Under a Horizontal Load Impact
by Miroslav Premrov and Erika Kozem Šilih
Buildings 2025, 15(5), 778; https://doi.org/10.3390/buildings15050778 - 27 Feb 2025
Viewed by 697
Abstract
This study analyses the many different parameters of the in-plane flexibility problem regarding the lateral behaviour of light timber-framed (LTF) wall elements with different types of sheathing material (FPB, OSB, or even reinforced concrete), as well as the thickness of the timber frame [...] Read more.
This study analyses the many different parameters of the in-plane flexibility problem regarding the lateral behaviour of light timber-framed (LTF) wall elements with different types of sheathing material (FPB, OSB, or even reinforced concrete), as well as the thickness of the timber frame elements (internal or external wall elements). The analysis simultaneously considers bending, shear, and timber-to-framing connection flexibility, while assuming stiff-supported wall elements as prescribed by Eurocode 5. Particular emphasis is placed on the sliding deformation between sheathing boards and the timber frame, which can significantly reduce the overall stiffness of LTF wall elements. The influence of fastener spacing (s) on sliding deformation and overall stiffness is comprehensively analysed, as well as the different bending and shear behaviours of the various sheathing materials. The results show that reducing the fastener spacing can significantly improve the stiffness of OSB wall elements, while it is less critical for FPB elements used in mid-rise timber buildings. A comparison of external and internal wall elements revealed a minimal difference in racking stiffness (3.3%) for OSB and FPB specimens, highlighting their comparable performance. The inclusion of RC sheathing on one side of the LTF elements showed significant potential to improve torsional behaviour and in-plane racking stiffness, making it a viable solution for strengthening prefabricated multi-storey timber buildings. These findings provide valuable guidance for optimizing the design of LTF walls, ensuring improved structural performance and extended application possibilities in modern timber construction. Full article
(This article belongs to the Special Issue Advances and Applications in Timber Structures)
Show Figures

Figure 1

19 pages, 6567 KiB  
Article
Investigation of the Noise Emitted from Elevated Urban Rail Transit Paved with Various Resilient Tracks
by Quanmin Liu, Kui Gao, Yifei Miao, Lizhong Song and Si Yue
Materials 2025, 18(5), 968; https://doi.org/10.3390/ma18050968 - 21 Feb 2025
Viewed by 486
Abstract
Based on the dynamic receptance method, a vehicle–track–bridge interaction model was developed to calculate the wheel–rail interaction forces and the forces transmitted to the bridge in an elevated urban rail transit system. A prediction model integrating the finite element method–boundary element method (FEM-BEM) [...] Read more.
Based on the dynamic receptance method, a vehicle–track–bridge interaction model was developed to calculate the wheel–rail interaction forces and the forces transmitted to the bridge in an elevated urban rail transit system. A prediction model integrating the finite element method–boundary element method (FEM-BEM) and the statistical energy analysis (SEA) method was established to obtain the noise from the main girder, track slab, and wheel–rail system for elevated urban rail transit. The calculated results agree well with the measured data. Thereafter, the noise radiation characteristics of a single source and the total noise of elevated urban rail transit systems with resilient fasteners, trapezoidal sleepers, and steel spring floating slabs were investigated. The results demonstrate that the noise prediction model for elevated urban rail transit that was developed in this study is effective. The diversity of track forms altered the noise radiation field of elevated urban rail transit systems significantly. Compared to monolithic track beds, where the fastener stiffness is assumed to be 60 × 106 N/m (MTB_60), steel spring floating slab tracks (FSTs), trapezoidal sleeper tracks (TSTs), and resilient fasteners with a stiffness of 40 × 106 N/m (MTB_40) and 20 × 106 N/m (MTB_20) can reduce bridge-borne noise by 24.6 dB, 8.8 dB, 2.1 dB, and 4.2 dB, respectively. These vibration-mitigating tracks can decrease the radiated noise from the track slab by −0.7 dB, −0.6 dB, 2.5 dB, and 2.6 dB, but increase wheel–rail noise by 0.4 dB, 0.8 dB, 1.3 dB, and 2.4 dB, respectively. The noise emanating from the main girder and the track slab was dominant in the linear weighting of the total noise of the elevated section with MTBs. For the TST and FST, the radiated noise from the track slab contributed most to the total noise. Full article
Show Figures

Figure 1

22 pages, 5140 KiB  
Article
Effect of Anti-Bending Bars on Vertical Vibrations of Passenger Carriage Body
by Ioana-Izabela Apostol, Traian Mazilu and Mădălina Dumitriu
Technologies 2025, 13(2), 73; https://doi.org/10.3390/technologies13020073 - 10 Feb 2025
Viewed by 1116
Abstract
High-speed passenger carriages with a long and light carriage body are sensitive to vertical vibration because the bending mode eigenfrequency falls within the most sensible frequency interval for the human being. Anti-bending bars (ABBs) are a passive means to raise the eigenfrequency of [...] Read more.
High-speed passenger carriages with a long and light carriage body are sensitive to vertical vibration because the bending mode eigenfrequency falls within the most sensible frequency interval for the human being. Anti-bending bars (ABBs) are a passive means to raise the eigenfrequency of the bending mode of the carriage body beyond the sensitive limit, ameliorating ride comfort. ABBs are two bars fixed via vertical supports under the carriage chassis on the longitudinal beams. ABBs resist the bending of the carriage body and can, therefore, increase the bending eigenfrequency beyond the sensitive limit, as necessary. In this paper, a new model for the ABBs, which takes into account the longitudinal stiffness of the ABBs, the three-direction stiffness of the fastening between the ABBs and the vertical supports and the vertical vibration modes of the ABBs via the Euler–Bernoulli beam theory and modal analysis, is incorporated in the 10 degrees of freedom model of a passenger carriage; this is to study the effect of the ABBs upon the running behaviour and ride comfort according to the specific regulations in the field. First, the frequency response functions (FRFs) of the passenger carriage with an ABB system are calculated and analysed, and then, the root mean square (r.m.s.) acceleration and the comfort index are evaluated in the carriage body centre in the context of a parametric study. The longitudinal stiffness of the fastening is critical to ensure the effectiveness of the ABB system. However, the effect of decreasing in the longitudinal stiffness of the fastening can be compensated by adopting longer ABBs. Full article
Show Figures

Figure 1

21 pages, 7358 KiB  
Article
Dynamic Response Analysis of Ballastless Tracks Considering the Temperature-Dependent Viscoelasticity of Cement-Emulsified Asphalt Mortar Based on a Vehicle–Track–Subgrade Coupled Model
by Yunqing Chen, Bing Wu, Linquan Yao and Xianglong Su
Lubricants 2025, 13(2), 58; https://doi.org/10.3390/lubricants13020058 - 30 Jan 2025
Viewed by 826
Abstract
This study aims to explore the dynamic response of ballastless tracks under various temperatures of the cement-emulsified asphalt (CA) mortar layer and other environmental factors. CA mortar is the key material in the ballastless track structure, exhibiting notably temperature-dependent viscoelastic properties. It can [...] Read more.
This study aims to explore the dynamic response of ballastless tracks under various temperatures of the cement-emulsified asphalt (CA) mortar layer and other environmental factors. CA mortar is the key material in the ballastless track structure, exhibiting notably temperature-dependent viscoelastic properties. It can be damaged or even fail due to the continuous loads from trains. However, the dynamic behaviors of ballastless tracks considering the temperature-dependent viscoelasticity of CA mortar have been insufficiently studied. This paper captures the temperature-dependent viscoelastic characteristics of CA mortar by employing the fractional Maxwell model and applying it to finite element simulations through a Prony series. A vehicle–track–subgrade (VTS) coupled CRTS I ballastless track model, encompassing Hertz nonlinear contact and track irregularity, is established. The model is constrained symmetrically on both of the longitudinal sides, and the bottom is fixed on the infinite element boundary, which can reduce the effects of reflected waves. After the simulation outcomes in this study are validated, variations in the dynamic responses under different environmental factors are analyzed, offering a theoretical foundation for maintaining the ballastless tracks. The results show that the responses in the track subsystem will undergo significant changes as the temperature rises; a notable effect is caused by the increase in speed and fastener stiffness on the entire system; the CA mortar layer experiences the maximum stress at its edge, which makes it highly susceptible to damage in this area. The original contribution of this work is the establishment of a temperature-dependent vehicle–track–subgrade coupled model that incorporates the viscoelasticity of the CA mortar, enabling the investigation of dynamic responses in ballastless tracks. Full article
(This article belongs to the Special Issue Recent Advances in Lubricated Tribological Contacts)
Show Figures

Figure 1

20 pages, 5483 KiB  
Article
Flexural Wave Propagation and Defect States of Periodic Slab Track Structure in High-Speed Railway
by Qiang Yi, Zeyu Wu, Lei Zhao, Zhiheng Li and Shuguo Wang
Appl. Sci. 2025, 15(3), 1070; https://doi.org/10.3390/app15031070 - 22 Jan 2025
Cited by 2 | Viewed by 786
Abstract
The unit slab track structure in high-speed railways exhibits multiple periodic characteristics, which result in bandgaps of elastic wave propagation within the track structure. Moreover, local defects inevitably occur in the ballastless track structure, disrupting its periodicity and leading to the generation of [...] Read more.
The unit slab track structure in high-speed railways exhibits multiple periodic characteristics, which result in bandgaps of elastic wave propagation within the track structure. Moreover, local defects inevitably occur in the ballastless track structure, disrupting its periodicity and leading to the generation of defect states. An analytical model for infinite periodic slab track structure was established using the Floquet transform and supercell method, accounting for local defects, to clarify the propagation of flexural waves in slab tracks. The formation mechanism of elastic wave bandgaps in periodic slab tracks can be explained by Bragg scattering and local resonance. In the low-frequency below 200 Hz, the local resonances of the slab interact with the flexural waves in the rail, forming an approximately broad coupling bandgap. The bandgaps expand significantly with the increasing fastening stiffness. Besides, when the stiffness of the isolating layer beneath the slab is within the range of 0.9 to 1.0 × 109 N/m3, a broad coupled bandgap is generated in the frequency range of 180–230 Hz. Local damage caused by contact loss between the composite slab and baseplate leads to defect states, and the frequencies of the defect states correspond to unique wave modes, demonstrating the localization of elastic waves near the defect location. The formation mechanism of defect states can be elucidated by the local resonance of the structure at the defect. The frequency of the first-order defect state is significantly affected by the defect size, the second-order defect state exhibits unidirectional propagation characteristics, and the third-order defect state shows localized vibration characteristics, which can provide a reference for defect identification. Full article
(This article belongs to the Special Issue Advances in Structural Vibration Control)
Show Figures

Figure 1

11 pages, 3586 KiB  
Article
Effect of Clamped Member Material and Thickness on Bolt Self-Loosening Under Transverse Loads
by Rashique Iftekhar Rousseau and Abdel-Hakim Bouzid
Materials 2025, 18(2), 462; https://doi.org/10.3390/ma18020462 - 20 Jan 2025
Viewed by 915
Abstract
Bolted joints, prevalent in industrial applications for component fastening, are susceptible to self-loosening—a critical issue resulting in a gradual reduction in clamping force. Gaining insight into the underlying mechanisms of self-loosening is crucial. While prior research has largely focused on evaluating component stiffness, [...] Read more.
Bolted joints, prevalent in industrial applications for component fastening, are susceptible to self-loosening—a critical issue resulting in a gradual reduction in clamping force. Gaining insight into the underlying mechanisms of self-loosening is crucial. While prior research has largely focused on evaluating component stiffness, limited attention has been given to its impact on the self-loosening behavior of bolted joints under transverse cyclic loading. This study investigates how component stiffness influences self-loosening in bolted joints by varying the material and thickness of clamped members. An experimental setup replicating real-world conditions is devised to simulate loosening caused by cyclic lateral displacement. Tests are conducted using steel and high-density polyethylene (HDPE) clamped members of different grip lengths to explore the relationship between stiffness and self-loosening. Key parameters measured include bolt axial load, transverse force on clamped members, relative displacement, and rotation between the bolt and nut. The findings provide valuable insights into the effects of stiffness across various clamped member materials and grip length combinations, which can enhance the understanding of conditions that promote loosening resistance. Moreover, by highlighting stage-II or rotational loosening, with each test resulting in complete preload loss, the study provides a comparative analysis of the influencing factors. This enables the identification of distinct loosening patterns and supports the development of improved bolted joint designs to reduce loosening. Full article
Show Figures

Figure 1

21 pages, 2817 KiB  
Article
Study on the Dynamic Response of the Carbody–Anti-Bending Bars System
by Ioana-Izabela Apostol, Traian Mazilu and Mădălina Dumitriu
Technologies 2025, 13(1), 31; https://doi.org/10.3390/technologies13010031 - 12 Jan 2025
Cited by 1 | Viewed by 1589
Abstract
Ride comfort is an important requirement that passenger rail vehicles must meet. Carbody–anti-bending system is a relatively new passive method to enhance the ride comfort in passenger rail vehicles with long and light carbody. The resonance frequency of the first bending mode (FBM) [...] Read more.
Ride comfort is an important requirement that passenger rail vehicles must meet. Carbody–anti-bending system is a relatively new passive method to enhance the ride comfort in passenger rail vehicles with long and light carbody. The resonance frequency of the first bending mode (FBM) of such vehicle is within the most sensitive frequency range that affects ride comfort. Anti-bending bars consist of two bars that are mounted under the longitudinal beams of the carbody chassis using vertical supports. When the carbody bends, the anti-bending bars develop moments in the neutral axis of the carbody opposing the bending of the carbody. In this way, the carbody structure becomes stiffer and the resonance frequency of the FBM can be increased beyond the upper limit of the discomfort range of frequency, improving the ride comfort. The theoretical principle of this method has been demonstrated employing a passenger rail vehicle model that includes the carbody as a free–free Euler–Bernoulli beam and the anti-bending bars as longitudinal springs jointed to the vertical supports. Also, the method feasibility has been verified in the past using an experimental scale demonstrator system. In this paper, a new model of the carbody–anti-bending bar system is proposed by including three-directional elastic elements (vertical and longitudinal direction and rotation in the vertical–longitudinal plane) to model the fastening of the anti-bending bars to the supports and the vertical motion of the anti-bending bars modelled as free–free Euler–Bernoulli beams connected to the elastic elements of the fastening. In the longitudinal direction, the anti-bending bars work as springs connected to the longitudinal elastic elements of the fastening. The modal analysis method is applied to point out the basic properties of the frequency response functions (FRFs) of the carbody–anti-bending bars system, considering the bounce and FBMs of both the carbody and the anti-bending bars. A parametric study of the FRF of the carbody shows that the vertical stiffness of the fastening should be sufficiently high enough to eliminate the influence of the modes of the anti-bending bars upon the carbody response and to reduce the anti-bending bars vibration in the frequency range of interest. Longitudinal stiffness of the elastic elements of the fastening is critical to increase the bending resonance frequency of the carbody out of the sensitive range. Longer anti-bending bars can improve the capability of the anti-bending bars to increase the bending resonance without the risk of interference effects caused by the bounce and bending modes of the anti-bending bars. Full article
Show Figures

Figure 1

19 pages, 7069 KiB  
Article
Experimental Study on the Elastic Support in a Discrete Rail Fastening System Used in Ballastless Tram Track Structures
by Cezary Kraśkiewicz, Monika Urbaniak and Andrzej Piotrowski
Materials 2025, 18(1), 141; https://doi.org/10.3390/ma18010141 - 1 Jan 2025
Cited by 1 | Viewed by 934
Abstract
This paper presents an experimental study on the elastic support in a discrete rail fastening system used in a ballastless tram track structure. The study focuses on the elastic support of the anchor element, specifically the Pm49 baseplate. These elements significantly influence environmental [...] Read more.
This paper presents an experimental study on the elastic support in a discrete rail fastening system used in a ballastless tram track structure. The study focuses on the elastic support of the anchor element, specifically the Pm49 baseplate. These elements significantly influence environmental pollution along tram routes, such as vibration (at low frequencies) or noise (at high frequencies), as well as static and dynamic rail deflections. The authors outline a methodology for identifying the static and dynamic characteristics of the discrete elastic support in laboratory conditions. The procedure follows the European standard EN 13146-9 for track category A (tramway), as classified according to the European standard EN 13481-5. The study analyzes how the thickness and density of the tested materials affect stiffness. Additionally, it examines the correlation between parameters identified easily on-site (thickness, Shore hardness and density) and laboratory-determined parameters (static and dynamic stiffness), which are costly and time-consuming to measure. The research confirms that prototype prefabricated vibration isolation baseplate pads made of styrene butadiene rubber (SBR) granules, recycled from end-of-life car tires, can achieve equivalent basic static and dynamic parameters, compared to underlays made of two-component polyurethane (PU) resin. This aligns with the strategy of promoting sustainable materials in construction. The innovative and prefabricated SBR rubber baseplate pads can also be used in repair and maintenance works (regardless of weather conditions), as they enable the quick launch of tram traffic. The results of the research included in this article can be used by other scientists, recycled rubber producers, tram track designers or construction site engineers. Full article
(This article belongs to the Special Issue Innovative Materials and Technologies for Road Pavements)
Show Figures

Figure 1

Back to TopTop