Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (197)

Search Parameters:
Keywords = fast cooling rate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2283 KiB  
Article
Application of High Efficiency and High Precision Network Algorithm in Thermal Capacity Design of Modular Permanent Magnet Fault-Tolerant Motor
by Yunlong Yi, Sheng Ma, Bo Zhang and Wei Feng
Energies 2025, 18(15), 3967; https://doi.org/10.3390/en18153967 - 24 Jul 2025
Viewed by 212
Abstract
Aiming at the problems of low thermal analysis efficiency and high computational cost of traditional computational fluid dynamics (CFD) methods for modular fault-tolerant permanent magnet synchronous motors (MFT-PMSMs) under complex working conditions, this paper proposes a fast modeling and calculation method of motor [...] Read more.
Aiming at the problems of low thermal analysis efficiency and high computational cost of traditional computational fluid dynamics (CFD) methods for modular fault-tolerant permanent magnet synchronous motors (MFT-PMSMs) under complex working conditions, this paper proposes a fast modeling and calculation method of motor temperature field based on a high-efficiency and high-precision network algorithm. In this method, the physical structure of the motor is equivalent to a parameterized network model, and the computational efficiency is significantly improved by model partitioning and Fourth-order Runge Kutta method. The temperature change of the cooling medium is further considered, and the temperature rise change of the motor at different spatial positions is effectively considered. Based on the finite element method (FEM), the space loss distribution under rated, single-phase open circuit and overload conditions is obtained and mapped to the thermal network nodes. Through the transient thermal network solution, the rapid calculation of the temperature rise law of key components such as windings and permanent magnets is realized. The accuracy of the thermal network model was verified by using fluid-structure coupling simulation and prototype test for temperature analysis. This method provides an efficient tool for thermal safety assessment and optimization in the motor fault-tolerant design stage, especially for heat capacity check under extreme conditions and fault modes. Full article
(This article belongs to the Special Issue Linear/Planar Motors and Other Special Motors)
Show Figures

Figure 1

19 pages, 1272 KiB  
Article
Waste to Biofuel: Process Design and Optimisation for Sustainable Aviation Fuel Production from Corn Stover
by Nur Aina Najihah Halimi, Ademola Odunsi, Alex Sebastiani and Dina Kamel
Energies 2025, 18(13), 3418; https://doi.org/10.3390/en18133418 - 29 Jun 2025
Viewed by 607
Abstract
Addressing the urgent need to decarbonise aviation and valorise agricultural waste, this paper investigates the production of Sustainable Aviation Fuel (SAF) from corn stover. A preliminary evaluation based on a literature review indicates that among various conversion technologies, fast pyrolysis (FP) emerged as [...] Read more.
Addressing the urgent need to decarbonise aviation and valorise agricultural waste, this paper investigates the production of Sustainable Aviation Fuel (SAF) from corn stover. A preliminary evaluation based on a literature review indicates that among various conversion technologies, fast pyrolysis (FP) emerged as the most promising option, offering the highest fuel yield (22.5%) among various pathways, a competitive potential minimum fuel selling price (MFSP) of 1.78 USD/L, and significant greenhouse gas savings of up to 76%. Leveraging Aspen Plus simulation, SAF production via FP was rigorously designed and optimised, focusing on the heat integration strategy within the process to minimise utility consumption and ultimately the total cost. Consequently, the produced fuel exceeded the American Society for Testing and Materials (ASTM) limit for the final boiling point, rendering it unsuitable as a standalone jet fuel. Nevertheless, it achieves regulatory compliance when blended at a rate of up to 10% with conventional jet fuel, marking a practical route for early adoption. Energy optimisation through pinch analysis integrated four hot–cold stream pairs, eliminating external heating, reducing cooling needs by 55%, and improving sustainability and efficiency. Economic analysis revealed that while heat integration slashed utility costs by 84%, the MFSP only decreased slightly from 2.35 USD/L to 2.29 USD/L due to unchanging material costs. Sensitivity analysis confirmed that hydrogen, catalyst, and feedstock pricing are the most influential variables, suggesting targeted reductions could push the MFSP below 2 USD/L. In summary, this work underscores the technical and economic viability of corn stover-derived SAF, providing a promising pathway for sustainable aviation and waste valorisation. While current limitations restrict fuel quality during full substitution, the results affirm the feasibility of SAF blending and present a scalable, low-carbon pathway for future development. Full article
(This article belongs to the Special Issue Biomass and Waste-to-Energy for Sustainable Energy Production)
Show Figures

Figure 1

26 pages, 9424 KiB  
Article
A Multiscale Study on Substrate Size Effect and Energy Density Regulation on Dynamic Response of Dilution Rate in Laser Cladding Iron-Based Coatings
by Danqing Yin, Meng Wang, Yonglei Wang, Meng Zhang, Jinglong Dong, Zhaohua Huang, Junming Chang, Haoqi Zhao and Sumsun Naher
Coatings 2025, 15(6), 694; https://doi.org/10.3390/coatings15060694 - 8 Jun 2025
Cited by 1 | Viewed by 505
Abstract
This study systematically revealed the synergistic effects of laser power, cladding speed, and substrate diameter on the dilution rate and hardness of iron-based alloy coatings on the surface of 45 steel through the integration of finite element simulation, elemental migration analysis, and response [...] Read more.
This study systematically revealed the synergistic effects of laser power, cladding speed, and substrate diameter on the dilution rate and hardness of iron-based alloy coatings on the surface of 45 steel through the integration of finite element simulation, elemental migration analysis, and response surface methodology (RSM). The experiments showed that when the substrate diameter was greater than 50 mm, the coupling effect of thermal diffusion retardation and molten pool expansion caused a nonlinear surge in the dilution rate. The growth rate of the molten pool depth increased by 46% (from 0.28 to 0.41 μm), and the melting volume of the substrate expanded by 1.7 times. The dilution rate reached 15.6%–31.7% through a dual-regulation mechanism involving energy density (1.43–3.75 J/mm2) and substrate diameter (30–60 mm), with a significant hardness demarcation of 343–738 HV. Substrates with a small diameter (30 mm) achieved a peak hardness of 738 HV at an energy density of 2.14 J/mm2 through ultra-fast cooling (>1.5 × 104 K/s), while those with a large diameter (60 mm) exhibited a hardness drop to 426.5 HV due to grain coarsening. The multi-method integrated model constructed in this study achieved a dilution rate prediction error of less than 5% (R2 = 0.9775), with a prediction deviation of less than 2% under extreme parameters (diameter of 55 mm and power of 4800 W). The study proposed an optimized process window with a substrate diameter of 42–57 mm and an energy density of 1.43–2.14 J/mm2, providing a physically mechanism-driven intelligent parameter design strategy for laser cladding repair of shaft parts. Full article
(This article belongs to the Section Laser Coatings)
Show Figures

Figure 1

17 pages, 9783 KiB  
Article
Comparative Study on the Microstructure and Simulation of High-Speed and Conventional Fe-Based Laser-Cladding Coatings
by Chuan Guo, Shouwen Ding, Xiaoqiang Xue, Mingzhong Li, Jingwang Yan, Shubin Wang, Dandan Wang, Xiaotong Zhang, Shuisheng Chen, Liuhua Yang, Zhenzhong Liu and Shirui Guo
Crystals 2025, 15(6), 545; https://doi.org/10.3390/cryst15060545 - 6 Jun 2025
Viewed by 945
Abstract
High-speed and conventional laser cladding technologies were used to prepare Fe-based alloy cladding layers on the surface of 45 steel, compare and analyze the microstructure, microhardness, and phase structure of the two cladding layers, and study and analyze the morphology of the molten [...] Read more.
High-speed and conventional laser cladding technologies were used to prepare Fe-based alloy cladding layers on the surface of 45 steel, compare and analyze the microstructure, microhardness, and phase structure of the two cladding layers, and study and analyze the morphology of the molten pool under the two cladding technologies, as well as the mechanism of evolution of the microstructure of the molten pool during the solidification process. The results show that, compared with the conventional laser melting coating, the grain size of the high-speed laser melting coating is finer, and the cooling rate at the top for conventional laser melting is 5.72 × 103 K/s, and the cooling rate for high-speed laser melting is 3.53 × 105 K/s. The microhardness of the high-speed laser melting coating has been significantly improved, and the solidification rates at the top for the two types of laser melting are the highest, namely 5.84 mm/s and 24.7 mm/s; the molten pool in conventional laser melting is usually larger and deeper, presenting a wide and deep shape, whereas the high-speed laser molten pool is usually shallower and narrower, with a flatter shape, presenting a comet trail, and the fast-cooling and fast-heating effects of high-speed laser melting are more significant. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

19 pages, 6921 KiB  
Article
Drying Performance of Fabrics on the Human Body
by Ivona Jerkovic, Agnes Psikuta, Sahar Ebrahimi, Joyce Baumann, Martin Camenzind, Simon Annaheim and René M. Rossi
Materials 2025, 18(11), 2655; https://doi.org/10.3390/ma18112655 - 5 Jun 2025
Viewed by 550
Abstract
When developing fabrics for applications in which evaporative cooling and drying play an important role, e.g., sports or occupational applications, the drying performance of fabrics is commonly determined using fast and easy-to-perform benchmark methods. The measurement conditions in these methods, however, differ significantly [...] Read more.
When developing fabrics for applications in which evaporative cooling and drying play an important role, e.g., sports or occupational applications, the drying performance of fabrics is commonly determined using fast and easy-to-perform benchmark methods. The measurement conditions in these methods, however, differ significantly from the drying conditions on the human body surface, where drying is obstructed on one side of the fabric through contact with the skin and at the same time enhanced due to contact with the heated surface (skin). The aims of this study were to understand and quantify the fabric drying process at the skin interface considering these real-use effects based on tests applying two-sided drying, one-sided drying, one-sided drying on a heated surface, and one-sided drying on a heated surface in the stretched state, and to relate these to existing standard methods. The findings showed that contact with a solid heated surface such as the skin and the stretched state of the fabric both make a significant contribution (p < 0.05) to the drying rate compared to two-sided drying in standard climatic conditions. The corresponding drying rates observed for a range of typical fabrics used in leisure and sports as a first layer next to the skin were found to be 1.6 (±0.2), 1.1 (±0.2), 7.9 (±2.1), and 10.6 (±0.8) g/m2 min for two-sided drying, one-sided drying, one-sided drying on a heated surface, and one-sided drying on a heated surface in the stretched state, respectively. These findings are of great importance for human thermal modelling, including clothing models, where the drying process significantly contributes to the heat and mass transfer in the skin–clothing–environment system. Full article
Show Figures

Figure 1

32 pages, 5807 KiB  
Article
Influence of Nucleating Agents on the Crystallization, Thermal, and Mechanical Properties of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P3HBHHx)
by Anyi Jin, Germán Pérez, Luis J. del Valle and Jordi Puiggalí
Appl. Sci. 2025, 15(11), 6120; https://doi.org/10.3390/app15116120 - 29 May 2025
Viewed by 635
Abstract
This study investigates the impact of various nucleating agents on the crystallization behavior, thermal stability, and mechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P3HBHHx) with 6 mol% 3-hydroxyhexanoate (3HHx) units. Nucleating agents, including boron nitride (BN), poly(3-hydroxybutyrate) (PHB), talc, ultrafine cellulose (UFC), and an [...] Read more.
This study investigates the impact of various nucleating agents on the crystallization behavior, thermal stability, and mechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P3HBHHx) with 6 mol% 3-hydroxyhexanoate (3HHx) units. Nucleating agents, including boron nitride (BN), poly(3-hydroxybutyrate) (PHB), talc, ultrafine cellulose (UFC), and an organic potassium salt (LAK), were incorporated to enhance the crystallization performance. Differential scanning calorimetry (DSC) revealed that BN and PHB significantly increased the crystallization temperature and reduced the crystallization time by half, with BN exhibiting the highest nucleation efficiency. Isothermal kinetics modeled using the Avrami and Lauritzen–Hoffman theories confirmed faster crystallization and reduced nucleation barriers in nucleated samples. Polarized optical microscopy (POM) revealed that the nucleating agents altered the spherulite morphology and increased the growth rates. Under fast cooling, only BN induced crystallization, confirming its superior nucleation activity. Thermogravimetric analysis (TGA) indicated minimal changes in thermal stability, while mechanical testing showed a slight reduction in stiffness without compromising the tensile strength. Overall, BN emerged as the most effective nucleating agent for enhancing the P3HBHHx crystallization kinetics, providing a promising strategy for improving processing efficiency and reducing the cycle times in industrial applications. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Figure 1

18 pages, 4132 KiB  
Article
A Development of the Rosenthal Equation for Predicting Thermal Profiles During Additive Manufacturing
by William Keeley, Richard Turner, Bashir Mitchell and Nils Warnken
Thermo 2025, 5(2), 16; https://doi.org/10.3390/thermo5020016 - 21 May 2025
Viewed by 1164
Abstract
Thermal modelling of additive manufacturing is a key method for furthering the quality of the components produced, as it allows for analysis that is not possible via experimental methods due to the difficulties involved with in situ monitoring. The thermal gradients present during [...] Read more.
Thermal modelling of additive manufacturing is a key method for furthering the quality of the components produced, as it allows for analysis that is not possible via experimental methods due to the difficulties involved with in situ monitoring. The thermal gradients present during the additive manufacturing process have a large impact on the formation of defects, such as porosity, residual stress, and cracking. The thermal gradients also have a large impact on material properties by controlling the microstructure formed. Thermal modelling methods are often based on numerical solutions of the heat conduction equation. Whilst numerical methods can be more accurate, they are often very slow because of the fine mesh requirements to capture high thermal gradients and iterative solvers to approximate the real-world solution to the required thermal field equations. An analytical model was developed to provide a fast solution to the problem. The analytical model used in this research was based on the Rosenthal equation and was analysed under a range of process parameters. A temperature-dependent Rosenthal model was also created with the aim of improving the results. The analytical model was then compared with a finite element numerical model to act as verification for the results. The analytical model accurately predicted the meltpool width over a range of process conditions. The analytical model underestimated the meltpool length compared to the numerical model, especially at high velocities. When using the standard Rosenthal model, the use of room-temperature or high-temperature thermal conductivities underestimated or overestimated the cooling rates from the meltpool, respectively. A temperature-dependent Rosenthal model was shown to produce more accurate cooling rates compared to the original Rosenthal equation. Full article
(This article belongs to the Special Issue Thermal Science and Metallurgy)
Show Figures

Figure 1

16 pages, 11780 KiB  
Article
The Effect of Aging on the Microstructure and Mechanical Properties of Solidified Lead-Bismuth Eutectic Alloy
by Hailuo Zhong, Sijuan Chen, Weibing Liao, Jiawei Zhang, Xuan Xiao and Xi Huang
Materials 2025, 18(9), 2001; https://doi.org/10.3390/ma18092001 - 28 Apr 2025
Viewed by 345
Abstract
Lead-bismuth eutectic (LBE) is a eutectic alloy of lead (44.5 at%) and bismuth (55.5 at%) that can be used as the coolant for the fast nuclear reactors. In the event of specific conditions or even accidents of the reactors, the temperature of liquid [...] Read more.
Lead-bismuth eutectic (LBE) is a eutectic alloy of lead (44.5 at%) and bismuth (55.5 at%) that can be used as the coolant for the fast nuclear reactors. In the event of specific conditions or even accidents of the reactors, the temperature of liquid LBE decreases, and it may undergo solidification and volume expansion during the aging process after solidification, which can easily cause damage to the reactor’s internal structure as well as the reactor vessels. In this study, the microstructure and mechanical properties of solidified LBE obtained at different cooling rates are systematically investigated after different aging times. It was found that the internal structure of LBE after aging remained a eutectic microstructure, consisting of the γ-phase (Bi-rich phase) and β-phase (Pb7Bi3). After a long period of static aging, the white γ-phase precipitated into the black β-phase, which further confirms the phase transition mechanism. Meanwhile, the acceleration of the cooling rate can aggravate volume expansion. As the aging time increases, there is no significant difference in the compressive yield strength σ of the LBE samples with the same cooling rate and only a certain degree of fluctuation. The elastic modulus E also shows similar results, indicating that aging time has a minor effect on the compressive yield strength σ and elastic modulus E of the LBE. With the increase in cooling rate, the compressive yield strength σ shows an upward trend, while the elastic modulus E is not significantly affected, with a small amplitude of fluctuation. Meanwhile, the hardness of LBE samples after long-term aging treatment is enhanced. After long-term aging, the overall density of the LBE samples shows a decreasing trend, the density fluctuation range of the fast cooling rates (5 K/min and 10 K/min) are significantly larger than that of the slow cooling rates. The decrease in density leads to volume expansion of the LBE during the aging process after solidification. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

24 pages, 6825 KiB  
Article
Numerical Analysis on Cooling Performances for Connectors Using Immersion Cooling in Ultra-Fast Chargers for Electric Vehicles
by Seong-Guk Hwang, Moo-Yeon Lee and Beom-Seok Ko
Symmetry 2025, 17(4), 624; https://doi.org/10.3390/sym17040624 - 20 Apr 2025
Cited by 2 | Viewed by 706
Abstract
The increasing demand for ultra-fast charging in electric vehicles (EVs) necessitates advancements in thermal management strategies to mitigate Joule heating, which arises due to electrical resistance in charging connectors and cable cores. This study presents a numerical analysis of immersion cooling performance for [...] Read more.
The increasing demand for ultra-fast charging in electric vehicles (EVs) necessitates advancements in thermal management strategies to mitigate Joule heating, which arises due to electrical resistance in charging connectors and cable cores. This study presents a numerical analysis of immersion cooling performance for ultra-fast chargers under realistic charging conditions. The simulated results are validated by experiments with a maximum deviation of 5.5% at 600 A and 700 A currents. The novelty of this work lies in the consideration of a realistic charging cable length of 5 m, the evaluation of temperature characteristics in the charger connector, and the analysis of geometric symmetry in the charging cable and coolant configuration to ensure uniform heat distribution. Key operating conditions were systematically analyzed, including applied currents, ambient temperatures, coolant flow rates, cable core cross-sectional areas, and different types of coolants. Results indicate that increasing the applied current from 400 A to 800 A raised the connector temperature from 60.73 °C to 97.33 °C. As the ambient temperature increased from 20 °C to 50 °C, the connector temperature rose significantly from 42.71 °C to 74.99 °C, while the maximum cable core temperature increased from 65.26 °C to 100.61 °C. Increasing the cable core cross-sectional area from 20 mm2 to 30 mm2 reduced the connector temperature from 77.20 °C to 74.99 °C. Meanwhile, increasing the coolant flow rate from 2 LPM to 5 LPM had a negligible effect on the connector temperature. Among the three tested coolants, Novec 7500 exhibited the highest cooling efficiency, achieving the lowest contact temperature (74.76 °C) and the highest performance evaluation criteria (PEC) value of 3.8. This study provides valuable guidelines for enhancing symmetry-driven thermal management systems and demonstrates the potential of immersion cooling to improve efficiency, safety, and operational reliability in next-generation high-power EV chargers. Full article
(This article belongs to the Special Issue Symmetry in Power Systems and Thermal Engineering)
Show Figures

Figure 1

27 pages, 16472 KiB  
Review
Recent Research on Structural Design, Performance Optimization, and Applications of Piezoelectric Pumps
by Qiufeng Yan, Zhiling Liu, Le Wang, Wanting Sun and Mengyao Jiang
Micromachines 2025, 16(4), 474; https://doi.org/10.3390/mi16040474 - 16 Apr 2025
Cited by 1 | Viewed by 763
Abstract
With the advantages of simple structure, low power consumption, no electromagnetic interference, and fast response, piezoelectric pumps (PPs) have been widely used in the fields of chip cooling, biomedical applications, chemical applications, and fuel supply applications. In recent decades, scholars have proposed various [...] Read more.
With the advantages of simple structure, low power consumption, no electromagnetic interference, and fast response, piezoelectric pumps (PPs) have been widely used in the fields of chip cooling, biomedical applications, chemical applications, and fuel supply applications. In recent decades, scholars have proposed various PPs, and this article reviews the recent research results. In this review, according to the “valve” structure, PPs are divided into valve-less piezoelectric pumps (VLPPs), valve-based piezoelectric pumps (VBPPs), and piezoelectric pumps with valve and valve-less state transitions (PPVVSTs). Firstly, the design methods of typical structures were discussed, and comparisons were made in terms of driving frequency, driving voltage, output pressure, flow rate, structure materials, and pump size. The advantages and disadvantages of VLPPs, VBPPs, and PPVVSTs were analyzed. Then, we compared the driving parameters, output performance, structure materials, and pump size of single-chamber piezoelectric pumps (SCPs) and multi-chamber piezoelectric pumps (MCPs) and analyzed the advantages and disadvantages of SCPs and MCPs. Optimization methods proposed in recent years have been summarized to address the issues of the cavitation phenomenon, the liquid back-flow problem, and low output performance in PPs. Subsequently, the application research of PPs and the distribution of academic achievements were discussed. Finally, this review was summarized, and future research hot spots for PPs were proposed. The main contribution of this review is to provide piezoelectric pump (PP) researchers with a certain understanding of the structural design, optimization methods, practical applications, and research distribution of PPs, which can provide theoretical guidance for future research. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

20 pages, 3486 KiB  
Article
Effects of Different Litchi E-Commerce Logistics Packaging Methods on Microenvironment and Fruit Quality Variations
by Jiaming Guo, Dongfeng Liu, Guopeng Lin, Haofeng Qiu, Peng Guo, Zhiwu Ding, Dinghe Wu, Jianye Wang and Enli Lv
Foods 2025, 14(8), 1305; https://doi.org/10.3390/foods14081305 - 9 Apr 2025
Viewed by 904
Abstract
“Foam container + ice pack” is a common packaging form for e-commerce logistics of litchis. However, there are numerous factors affecting the temperature variation under this logistics mode, making it difficult to control the packaging temperature and litchi quality during the e-commerce logistics [...] Read more.
“Foam container + ice pack” is a common packaging form for e-commerce logistics of litchis. However, there are numerous factors affecting the temperature variation under this logistics mode, making it difficult to control the packaging temperature and litchi quality during the e-commerce logistics process. In order to explore the impact of the packaging scheme on the packaging environment temperature and the quality variation in litchis during the “foam container + ice pack” logistics process, this paper takes the number of ice packs, the terminal pre-cooling temperature of litchis, the weight of litchis, and whether to use aluminum foil insulating film as variable factors to study the impact rules of these factors on the EPS (Expanded Polystyrene) foam container environment temperature, the total number of fruit pericarp, and the marketable fruit rate. The experimental results show the following trends: the terminal pre-cooling temperature has a significant impact on the daily average temperature of the fruit layer; the packaging environment temperature of the 15 °C pre-cooling group on the first day and the second day is 5.00 °C and 2.78 °C higher than that of the 5 °C pre-cooling experimental group, respectively. Moreover, under this treatment, the growth rate of fruit pericarp fungi is relatively fast, which could reach 3.87 Lg (CFU/g) on the second day. Increasing the amount of litchis could maintain a lower temperature environment, but it will cause the relative conductivity increasing 4.12% compared with the groups with no weight increasing. Increasing the number of ice packs could significantly reduce the decline rate of fruit soluble solids in the first two days. The research results of this paper are expected to provide a certain reference for the quality assurance logistics and the formulation of long-distance transportation strategies for perishable agricultural products. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

16 pages, 4449 KiB  
Article
The Cooling Phase Transition Behavior of 30MnNbRE Steel Studied Based on TMCP
by Shimin Guo, Hui Ma, Xirong Bao, Jia Sun, Xuejiao Tang and Xiaodong Wang
Crystals 2025, 15(4), 327; https://doi.org/10.3390/cryst15040327 - 28 Mar 2025
Viewed by 451
Abstract
The continuous cooling transformation (CCT) curves of undercooled austenite serve as crucial references for obtaining desired microstructures and properties in metallic materials (particularly deformed metals) through heat treatment. In this study, static and dynamic CCT curves were constructed for experimental steels micro-doped with [...] Read more.
The continuous cooling transformation (CCT) curves of undercooled austenite serve as crucial references for obtaining desired microstructures and properties in metallic materials (particularly deformed metals) through heat treatment. In this study, static and dynamic CCT curves were constructed for experimental steels micro-doped with rare earth element Ce by combining temperature-dilatometric curves recorded after austenitization at 900 °C with microstructural characterization and microhardness measurements. Comparative analyses were conducted on the microstructures and microhardness of three experimental steels with varying Ce contents subjected to sizing (reducing) diameter deformation at 850 °C and 950 °C. The CCT experimental results revealed that the microhardness of the tested steels increased with cooling rates. Notably, dynamic CCT specimens cooled at 50 °C/s to room temperature following superheated deformation exhibited 56.7 HV5 higher microhardness than static CCT specimens, accompanied by increased martensite content. The reduction of deformation temperature from 950 °C to 850 °C resulted in the expansion of the bainitic phase region. The incorporation of trace Ce elements demonstrated a significant enhancement in the microhardness of 30MnNbRE steel. This research proposes an effective processing route for improving strength-toughness combination in microalloyed oil well tubes: introducing trace Ce additions followed by sizing (reducing) diameter deformation at 950 °C and subsequent ultra-fast cooling at 50 °C/s to room temperature. This methodology facilitates the production of high-strength/toughness steels containing abundant martensitic microstructures. Full article
Show Figures

Figure 1

16 pages, 1838 KiB  
Article
Factors Affecting Cryopreservation of Domestic Cat (Felis catus) Epididymal Spermatozoa
by Natalia Gañán, Ana Sanchez-Rodriguez and Eduardo R. S. Roldan
Animals 2025, 15(7), 949; https://doi.org/10.3390/ani15070949 - 26 Mar 2025
Cited by 1 | Viewed by 466
Abstract
Sperm cryopreservation is a powerful tool for the conservation of endangered species, but its application requires adapting protocols to particular species, due to differences in sperm structure, function, and cryosensitivity. Research on the biology of endangered felids primarily relies on the domestic cat [...] Read more.
Sperm cryopreservation is a powerful tool for the conservation of endangered species, but its application requires adapting protocols to particular species, due to differences in sperm structure, function, and cryosensitivity. Research on the biology of endangered felids primarily relies on the domestic cat as an experimental model. Semen from live animals can be collected using several methods. However, in animals that die due to roadkill or in the field, spermatozoa must be retrieved from the epididymis. Differences may exist in the cryosensitivity of epididymal and ejaculated sperm due to the influence of secretions from accessory genital glands. We analyzed the effects of several factors on the motility and acrosomal integrity of cryopreserved cat epididymal spermatozoa, including cooling rate, storage system, time and temperature of straw loading, and the freezing method in nitrogen vapors. There were no significant differences in motility or acrosomal integrity at thawing between fast (−0.5 °C/min) or slow (−0.125 °C/min) cooling rates or between loading straws at room temperature versus 5 °C. Post-thaw motility was significantly higher when using straws compared to pellets and when freezing in nitrogen vapors at two levels rather than at a single level. Additionally, interactions between the loading temperature of straws and both motility and acrosomal integrity were not significant. These results are important for standardizing protocols to cryopreserve feline epididymal sperm, facilitating the rescue of genetic material from endangered species in the field. Full article
(This article belongs to the Section Animal Reproduction)
Show Figures

Figure 1

19 pages, 1160 KiB  
Entry
Fundamentals of Water Radiolysis
by Jean-Paul Jay-Gerin
Encyclopedia 2025, 5(1), 38; https://doi.org/10.3390/encyclopedia5010038 - 7 Mar 2025
Cited by 3 | Viewed by 5448
Definition
Radiolysis of water and aqueous solutions refers to the decomposition of water and its solutions under exposure to ionizing radiation, such as γ-rays, X-rays, accelerated particles, or fast neutrons. This exposure leads to the formation of highly reactive species, including free radicals like [...] Read more.
Radiolysis of water and aqueous solutions refers to the decomposition of water and its solutions under exposure to ionizing radiation, such as γ-rays, X-rays, accelerated particles, or fast neutrons. This exposure leads to the formation of highly reactive species, including free radicals like hydroxyl radicals (OH), hydrated electrons (eaq), and hydrogen atoms (H), as well as molecular products like molecular hydrogen (H2) and hydrogen peroxide (H2O2). These species may further react with each other or with solutes in the solution. The yield and behavior of these radiolytic products depend on various factors, including pH, radiation type and energy, dose rate, and the presence of dissolved solutes such as oxygen or ferrous ions, as in the case of the ferrous sulfate (Fricke) dosimeter. Aqueous radiation chemistry has been pivotal for over a century, driving advancements in diverse fields, including nuclear science and technology—particularly in water-cooled reactors—radiobiology, bioradical chemistry, radiotherapy, food preservation, wastewater treatment, and the long-term management of nuclear waste. This field is also vital for understanding radiation effects in space. Full article
(This article belongs to the Section Chemistry)
Show Figures

Figure 1

29 pages, 13513 KiB  
Article
A Physical-Based Electro-Thermal Model for a Prismatic LFP Lithium-Ion Cell Thermal Analysis
by Alberto Broatch, Pablo Olmeda, Xandra Margot and Luca Agizza
Energies 2025, 18(5), 1281; https://doi.org/10.3390/en18051281 - 5 Mar 2025
Viewed by 957
Abstract
This article presents an electro-thermal model of a prismatic lithium-ion cell, integrating physics-based models for capacity and resistance estimation. A 100 Ah prismatic cell with LFP-based chemistry was selected for analysis. A comprehensive experimental campaign was conducted to determine electrical parameters and assess [...] Read more.
This article presents an electro-thermal model of a prismatic lithium-ion cell, integrating physics-based models for capacity and resistance estimation. A 100 Ah prismatic cell with LFP-based chemistry was selected for analysis. A comprehensive experimental campaign was conducted to determine electrical parameters and assess their dependencies on temperature and C-rate. Capacity tests were conducted to characterize the cell’s capacity, while an OCV test was used to evaluate its open circuit voltage. Additionally, Hybrid Pulse Power Characterization tests were performed to determine the cell’s internal resistive-capacitive parameters. To describe the temperature dependence of the cell’s capacity, a physics-based Galushkin model is proposed. An Arrhenius model is used to represent the temperature dependence of resistances. The integration of physics-based models significantly reduces the required test matrix for model calibration, as temperature-dependent behavior is effectively predicted. The electrical response is represented using a first-order equivalent circuit model, while thermal behavior is described through a nodal network thermal model. Model validation was conducted under real driving emissions cycles at various temperatures, achieving a root mean square error below 1% in all cases. Furthermore, a comparative study of different cell cooling strategies is presented to identify the most effective approach for temperature control during ultra-fast charging. The results show that side cooling achieves a 36% lower temperature at the end of the charging process compared to base cooling. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

Back to TopTop