Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = fast SCR

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3851 KiB  
Article
Ce/Mn Co-Doping Induces Synergistic Effects for Low-Temperature NH3-SCR over Ba2Ti5O12 Catalysts
by Wei Zhao, Wang Zhao, Haiwen Wang, Dingwen Zhang, Qian Wang, Aijian Wang, Danhong Shang and Qin Zhong
Catalysts 2025, 15(6), 593; https://doi.org/10.3390/catal15060593 - 15 Jun 2025
Viewed by 564
Abstract
To develop eco-friendly low-temperature NH3-SCR catalysts for the non-electric industry, a series of CeMn-modified Ba2Ti5O12 catalysts were synthesized using the sol-gel method to achieve denitrification. Activity tests revealed that Ce-Mn-modified Ba2Ti5O12 [...] Read more.
To develop eco-friendly low-temperature NH3-SCR catalysts for the non-electric industry, a series of CeMn-modified Ba2Ti5O12 catalysts were synthesized using the sol-gel method to achieve denitrification. Activity tests revealed that Ce-Mn-modified Ba2Ti5O12 catalysts exhibit excellent low-temperature denitrification performance with a broad operational temperature window. Characterization through XRD, XPS, BET, NH3-TPD, and EPR indicated that Ce-Mn modification enhances surface oxygen chemisorption and increases acidity, significantly improving NOx reduction. Notably, the optimal catalyst achieved NOx conversion rates exceeding 90% within the temperature range of 90 to 240 °C under a gas hourly space velocity (GHSV) of 28,000 h−1. In particular, the coexistence of Ce and Mn species promotes the oxidation of NO to NO2, facilitating the “fast SCR” reaction. The abundance of valence states further enhances the catalyst’s ultra-low-temperature NH3-SCR denitration performance. Full article
Show Figures

Figure 1

19 pages, 2494 KiB  
Article
Mesoporous MCM-48 and MCM-41 Silicas Modified with Copper by ADP Method as Effective Catalysts for Low-Temperature NH3-SCR—The Role of Synthesis Conditions and Associated Reactions
by Aleksandra Gomułka, Andrzej Kowalczyk, Izabela Majewska, Pegie Cool and Lucjan Chmielarz
Catalysts 2025, 15(6), 578; https://doi.org/10.3390/catal15060578 - 10 Jun 2025
Viewed by 759
Abstract
Mesoporous silicas of MCM-41 and MCM-48 types were synthesized and modified with copper using the ammonia-driven deposition precipitation (ADP) method, resulting in highly dispersed copper species. Samples with varying copper loadings were thoroughly characterized in terms of their porous structure, metal content, copper [...] Read more.
Mesoporous silicas of MCM-41 and MCM-48 types were synthesized and modified with copper using the ammonia-driven deposition precipitation (ADP) method, resulting in highly dispersed copper species. Samples with varying copper loadings were thoroughly characterized in terms of their porous structure, metal content, copper species’ aggregation, and the stability of deposited forms under reaction conditions. Copper-modified mesoporous silicas exhibited excellent catalytic performance in the low-temperature NH3-SCR process. Their activity in NO to NO2 oxidation suggests that the fast-SCR pathway plays a significant role in NOx conversion at low temperatures. However, direct ammonia oxidation limited SCR efficiency at higher temperatures. These findings demonstrate the potential of ADP-modified copper–silica catalysts for effective and selective NOx removal under low-temperature conditions. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Catalytic Materials)
Show Figures

Figure 1

25 pages, 3822 KiB  
Article
False-Alarm-Controllable Detection of Marine Small Targets via Improved Concave Hull Classifier
by Sainan Shi, Jiajun Wang, Jie Wang and Tao Li
Remote Sens. 2025, 17(11), 1808; https://doi.org/10.3390/rs17111808 - 22 May 2025
Viewed by 326
Abstract
In this paper, a new-brand feature-based detector via an improved concave hull classifier (FB-ICHC) is proposed to detect marine small targets. The dimension of feature space is suggested to be three, making a compromise between high detection accuracy and low computational cost. The [...] Read more.
In this paper, a new-brand feature-based detector via an improved concave hull classifier (FB-ICHC) is proposed to detect marine small targets. The dimension of feature space is suggested to be three, making a compromise between high detection accuracy and low computational cost. The main contributions are in the following two aspects. On the one hand, three features are well-designed from time series and Doppler spectrum, called relative phase zero ratio (RPZR), relative variation coefficient (RCV), and whitened peak height ratio (WPHR). RPZR can measure the pseudo-period properties in phase time series, insensitive to SCRs. In the Doppler spectrum, RCV reflects fluctuation variation in high SCR cases and WPHR describes the intensity property after clutter suppression in low SCR cases. On the other hand, in 3D feature space, an improved concave hull classifier is developed to further shrink the decision region, where a fast two-stage parameter search is designed for low computational cost and accurate control of false alarm rate. Finally, experimental results using open-recognized datasets show that the proposed FB-ICHC detector can improve detection performance by over 20% and reduce runtime by over 49%, compared with existing feature-based detectors with three features. Full article
Show Figures

Figure 1

21 pages, 6214 KiB  
Article
Astragalus Mongholicus Polysaccharides Alleviate Kidney Injury in Rats with Type 2 Diabetes Through Modulation of Oxidation, Inflammation, and Gut Microbiota
by Guoquan Xu, Haisheng Yuan, Jingran Liu, Xianjue Wang, Li Ma, Yuzhen Wang and Guicheng Dong
Int. J. Mol. Sci. 2025, 26(4), 1470; https://doi.org/10.3390/ijms26041470 - 10 Feb 2025
Cited by 1 | Viewed by 1228
Abstract
We aimed to uncover the underlying mechanisms contributing to the therapeutic efficacy of Astragalus mongholicus Polysaccharides (mAPS) in alleviating diabetic nephropathy (DN). The rat model of DN was subjected to a high-sugar and high-fat diet (HSHFD) coupled with streptozotocin (STZ) injection. Our findings [...] Read more.
We aimed to uncover the underlying mechanisms contributing to the therapeutic efficacy of Astragalus mongholicus Polysaccharides (mAPS) in alleviating diabetic nephropathy (DN). The rat model of DN was subjected to a high-sugar and high-fat diet (HSHFD) coupled with streptozotocin (STZ) injection. Our findings revealed that mAPS administration decreased fasting blood glucose (FBG), BUN, SCR, UA, and MDA levels, while elevating serum GSH, GSH-PX, and SOD activities in DN rats (p < 0.05). Furthermore, there was a notable rise in the mRNA and protein expression of renal Nrf-2, GCLC, NQO1, and HO-1 post mAPS treatment (p < 0.05). Additionally, mAPS supplementation led to reduced protein expression of TLR4, NLRP3, p-NF-κB, TGF-β, and Smad4. Concurrently, mAPS exerted a modulatory effect on gut microbiota, as evidenced by the increased abundance of Muribaculaceae, Ruminococcus_1, Phascolarctobacterium, and Lachnoclostridium-related genera. Spearman correlation analysis illustrated a negative association between the abundance of microbiota (Muribaculaceae, Lachnospiraceae_NK4A136, Ruminococcus_1, Clostridiales) and the levels of serum parameters (BUN, CR, UA, TC, TG). In summary, our data robustly attests to the potential of mAPS in modulating oxidative stress, inflammation, and gut microbiota, ultimately resulting in improved renal function in DN rats. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

26 pages, 1083 KiB  
Article
Light Gradient Boosting Machine-Based Low–Slow–Small Target Detection Algorithm for Airborne Radar
by Jing Liu, Pengcheng Huang, Cao Zeng, Guisheng Liao, Jingwei Xu, Haihong Tao and Filbert H. Juwono
Remote Sens. 2024, 16(10), 1737; https://doi.org/10.3390/rs16101737 - 14 May 2024
Cited by 1 | Viewed by 1761
Abstract
For airborne radar, detecting a low–slow–small (LSS) target is a hot and challenging topic, which results from the rapidly increasing number of non-cooperative flying LSS targets becoming of widespread concern, and the low signal-to-clutter ratio (SCR) of LSS targets results in the targets [...] Read more.
For airborne radar, detecting a low–slow–small (LSS) target is a hot and challenging topic, which results from the rapidly increasing number of non-cooperative flying LSS targets becoming of widespread concern, and the low signal-to-clutter ratio (SCR) of LSS targets results in the targets being particularly easily overwhelmed by the clutter. In this paper, a novel light gradient boosting machine (LightGBM)-based LSS target detection algorithm for airborne radar is proposed. The proposed method, based on the current real-time clutter environment of the range cell to be detected, firstly designs a specific real-time space-time LSS target signal repository with special dimensions and structures. Then, the proposed method creatively designs a new fast-built real-time training feature dataset specifically for the LSS target and the current clutter, together with a series of unique data transformations, sample selection, data restructuring, feature extraction, and feature processing. Finally, the proposed method develops a unique machine learning-based LSS target detection classifier model for the designed training dataset, by fully excavating and utilizing the advantages of the ensemble decision trees-based LightGBM. Consequently, the pre-processed data in the range cell of interest are classified using the proposed algorithm, which achieves LSS target detection by evaluating the output results of the designed classifier. Compared with the traditional classical target detection methods, the proposed algorithm is capable of providing markedly superior performance for LSS target detection. With an appropriate computational time, the proposed algorithm attains the highest probability of detecting LSS targets under the low SCR. The simulation outcomes and detection results with the experimental data are employed to validate the effectiveness and merits of the proposed algorithm. Full article
(This article belongs to the Section AI Remote Sensing)
Show Figures

Figure 1

19 pages, 11984 KiB  
Article
Stability Analysis via Impedance Modelling of a Real-World Wind Generation System with AC Collector and LCC-Based HVDC Transmission Grid
by Muhammad Arshad, Omid Beik, Muhammad Owais Manzoor and Mahzad Gholamian
Electronics 2024, 13(10), 1917; https://doi.org/10.3390/electronics13101917 - 14 May 2024
Cited by 5 | Viewed by 1613
Abstract
This paper studies the stability of a real-world wind farm, Bison Wind Generation System (BWGS) in the state of North Dakota in the United States. BWGS uses an AC collector grid rated at 34.5 kV and a symmetrical bipolar high-voltage DC (HVDC) transmission [...] Read more.
This paper studies the stability of a real-world wind farm, Bison Wind Generation System (BWGS) in the state of North Dakota in the United States. BWGS uses an AC collector grid rated at 34.5 kV and a symmetrical bipolar high-voltage DC (HVDC) transmission grid rated at ±250 kV. The HVDC line transfers a total power of 0.5 GW, while both the HVDC rectifier and inverter substations use line-commuted converters (LCCs). The LCC-based rectifier adopts constant DC current control to regulate HVDC current, while the inverter operates in constant extinction angle control mode to maintain a fixed HVDC voltage. This paper proposes a frequency scan-based approach to obtain the d–q impedance model of (i) BWGS AC collector grids with Type 4 wind turbines that use permanent magnet synchronous generators (PMSGs) and two fully rated converters, and (ii) an LCC-HVDC system. The impedance frequency response of the BWGS is acquired by exciting the AC collector grid and LCC-HVDC with multi-sine voltage perturbations during its steady-state operation. The resulting voltage and current signals are subjected to a fast Fourier transform (FFT) to extract frequency components. By analyzing the impedance frequency response measurement of BWGS, a linear time–invariant (LTI) representation of its dynamics is obtained using the vector fitting (VF) technique. Finally, a Bode plot is applied, considering the impedance of the BWGS and grid to perform stability analyses. This study examines the influence of the short circuit ratio (SCR) of the grid and the phase lock loop (PLL) frequency bandwidth on the stability of the overall system. The findings provide valuable insights for the design and verification of an AC collector and LCC-based HVDC transmission systems. The findings suggest that the extraction of the impedance model of a real-world wind farm, achieved through frequency scanning and subsequent representation as an LTI system using VF, is regarded as a robust, suitable, and accurate methodology for investigating the dynamics, unstable operating conditions, and control interaction of the wind farm and LCC-HVDC system with the AC grid. Full article
(This article belongs to the Special Issue A Mass Adoption of Power Electronics in Wind Power System)
Show Figures

Figure 1

17 pages, 10980 KiB  
Article
Enhanced Low-Temperature Activity and Hydrothermal Stability of Ce-Mn Oxide-Modified Cu-SSZ-39 Catalysts for NH3-SCR of NOx
by Ahui Tang, Fuzhen Yang, Ying Xin, Xiaoli Zhu, Long Yu, Shuai Liu, Dongxu Han, Junxiu Jia, Yaning Lu, Zhenguo Li and Zhaoliang Zhang
Catalysts 2024, 14(1), 10; https://doi.org/10.3390/catal14010010 - 21 Dec 2023
Cited by 8 | Viewed by 2155
Abstract
Cu-SSZ-39 zeolite with an AEI structure exhibits excellent hydrothermal stability and can be a potential alternative to Cu-SSZ-13 zeolite SCR catalysts for NOx removal in diesel vehicles. However, the inferior low-temperature performance of Cu-SSZ-39 leads to substantial NOx emissions during the [...] Read more.
Cu-SSZ-39 zeolite with an AEI structure exhibits excellent hydrothermal stability and can be a potential alternative to Cu-SSZ-13 zeolite SCR catalysts for NOx removal in diesel vehicles. However, the inferior low-temperature performance of Cu-SSZ-39 leads to substantial NOx emissions during the cold-start period, impeding its practical application. In this study, Ce-Mn oxide-modified Cu-SSZ-39 catalysts (CeMnOx/Cu-SSZ-39) and references (CeO2/Cu-SSZ-39 and MnOx/Cu-SSZ-39) were prepared by the ion-exchange of Cu ions followed by impregnation of the oxide precursors, with the aim of enhancing the NH3-SCR performance at low temperatures. The modified catalysts exhibited improved low-temperature activity and hydrothermal stability compared to the unmodified counterpart. In particular, CeMnOx/Cu-SSZ-39 showed the highest activity among the three catalysts and achieved NOx conversions above 90% within the temperature range of 180 °C to 600 °C, even after undergoing hydrothermal aging at 800 °C. Experimental results indicated that the synergistic effect between Ce and Mn in CeMnOx improves the redox properties and acidity of the catalyst due to the presence of Ce3+, Mn4+, and abundant adsorbed oxygen species, which facilitate low-temperature SCR reactions. Furthermore, the interaction of CeMnOx with Cu-SSZ-39 stabilizes the zeolite framework and hinders the agglomeration of Cu species during the hydrothermal aging process, contributing to its exceptional hydrothermal stability. The kinetics and NO oxidation experiments demonstrated that CeMnOx provides access to fast SCR reaction pathways by oxidizing NO to NO2, resulting in a significant increase in low-temperature activity. This study provides novel guidelines for the design and preparation of Cu-SSZ-39 zeolite with outstanding SCR performance over a wide temperature range. Full article
Show Figures

Graphical abstract

16 pages, 1795 KiB  
Article
MHD Simulations of the Solar Corona to Determine the Conditions for Large Solar Flares and the Acceleration of Cosmic Rays during Them
by Alexander Podgorny, Igor Podgorny and Alexei Borisenko
Physics 2023, 5(3), 895-910; https://doi.org/10.3390/physics5030058 - 22 Aug 2023
Cited by 1 | Viewed by 1893
Abstract
Solar cosmic rays (SCRs) are generated during the primordial energy release in solar flares. This explosive process takes place in the solar corona above the active region. It represents the fast release of the magnetic field energy of the current sheet, which is [...] Read more.
Solar cosmic rays (SCRs) are generated during the primordial energy release in solar flares. This explosive process takes place in the solar corona above the active region. It represents the fast release of the magnetic field energy of the current sheet, which is formed near a singular magnetic field line. Solar cosmic rays appear as a result of the acceleration of charged particles, mainly protons, by an inductive electric field in the current sheet equal to the field E = V × B/c (with V the speed of plasma and B the magnetic field near the current sheet, and c the speed of light). To study the mechanism of solar flares and obtain conditions for studying SCR acceleration, it is necessary to carry out magnetohydrodynamic (MHD) simulations of flare situations in the solar corona above a real active region. Methods of stabilization were developed which made it possible to partially solve the problem of numerical instabilities. MHD simulations shows complicated configurations near the singular line. Comparison of the results of the MHD simulations with observations showed the general agreement of the positions of the current sheets with regions of intense flare radiation. However, there are some problems with the details of such coincidences. The results obtained in this paper show the possibility of improving the methods of MHD simulation in order to solve the problems that arise during solving of MHD equations. Full article
(This article belongs to the Special Issue From Heavy Ions to Astroparticle Physics)
Show Figures

Figure 1

16 pages, 4062 KiB  
Article
Metal-Doped Mesoporous MnO2-CeO2 Catalysts for Low-Temperature Pre-Oxidation of NO to NO2 in Fast SCR Process
by Chun-Nan Kuo, Cheng-Shiuan Li, Yu-Lun Lai and Shao-I Yen
Catalysts 2023, 13(4), 694; https://doi.org/10.3390/catal13040694 - 3 Apr 2023
Cited by 5 | Viewed by 2430
Abstract
Selective catalytic reduction (SCR) is an effective system for treating nitrogen oxides (NOx; mainly NO), and fast SCR requires the equimolar reactants of NO and NO2. This study focused on catalysts for oxidizing 50% of NO to NO2 [...] Read more.
Selective catalytic reduction (SCR) is an effective system for treating nitrogen oxides (NOx; mainly NO), and fast SCR requires the equimolar reactants of NO and NO2. This study focused on catalysts for oxidizing 50% of NO to NO2. A series of catalysts composed of a variety of components, such as mesoporous mMnO2-nCeO2 as carrier catalysts (m:n = 9:1 and 7:3) and transition metals (e.g., Fe, Co, Ni, Cu, and Cr), were synthesized and characterized using N2 adsorption, in situ XRD, TEM, and XPS. All samples had a mesoporous structure with pore size around 8 nm. XPS results demonstrated that addition of cerium ion increased the surface area and provided oxygen vacancy due to the formation of Ce3+ within the structure. NO oxidation activity was tested using a feed (205~300 ppm NO and 6% O2) that simulated typical flue gas conditions. Doped mesoporous mMnO2–nCeO2 has higher NO oxidation activity than pristine mMnO2–nCeO2. The doped mMnO2-nCeO2 catalyzed 50% of NO to NO2 at between 140 and 200 °C resulting in an equivalent amount of NO and NO2. Among the transition metals, Cu, Ni, Co, Fe, and Cr have the highest to lowest oxidation activity, respectively. The precatalytic oxidation of NO can potentially be combined with the current SCR system without changes to existing equipment and can be applied to the exhaust gas treatment for de-NOx. Full article
(This article belongs to the Topic Catalysis for Sustainable Chemistry and Energy)
Show Figures

Figure 1

29 pages, 6725 KiB  
Article
Privacy-Preserving Mobility Model and Optimization-Based Advanced Cluster Head Selection (P2O-ACH) for Vehicular Ad Hoc Networks
by Nejood Faisal Abdulsattar, Dheyaa Abdulameer Mohammed, Ahmed Alkhayyat, Shemaha Z. Hamed, Hussein Muhi Hariz, Ali S. Abosinnee, Ali Hashim Abbas, Mustafa Hamid Hassan, Mohammed Ahmed Jubair, Fatima Hashim Abbas, Abeer D. Algarni, Naglaa F. Soliman and Walid El-Shafai
Electronics 2022, 11(24), 4163; https://doi.org/10.3390/electronics11244163 - 13 Dec 2022
Cited by 45 | Viewed by 2073
Abstract
In vehicular ad hoc networks (VANETs), due to the fast-moving mobile nodes, the topology changes frequently. This dynamically changing topology produces congestion and instability. To overcome this issue, privacy-preserving optimization-based cluster head selection (P2O-ACH) is proposed. One of the major drawbacks analyzed in [...] Read more.
In vehicular ad hoc networks (VANETs), due to the fast-moving mobile nodes, the topology changes frequently. This dynamically changing topology produces congestion and instability. To overcome this issue, privacy-preserving optimization-based cluster head selection (P2O-ACH) is proposed. One of the major drawbacks analyzed in the earlier cluster-based VANETs is that it creates a maximum number of clusters for communication that leads to an increase in energy consumption which reflects in a degradation of the performance. In this paper, enhanced rider optimization algorithm (ROA)-based CH selection is performed and that optimally selects the CH so that effective clusters are created. By analyzing this, the behavior of the bypass rider’s CH is chosen, and this forms the optimized clusters, and during the process of transmission, privacy-preserving mobility patterns are used to secure the network from all kinds of malfunctions which are performed by the new vehicle blending and migration process. The proposed P2O-ACH is simulated using NS-2, and for performance analysis, two scenarios are taken, which contain a varying number of vehicles and varying speeds. For a varying number of vehicles and speeds, the considered parameters are energy efficiency, energy consumption, network lifetime, packet delivery ratio, packet loss, network latency, network throughput, and routing overhead. From the results, it is understood that the proposed method performed better when compared with earlier work, such as GWO-CH, ACO-SCRS, and QMM-VANET. Full article
(This article belongs to the Special Issue Artificial Intelligence in Cybersecurity for Industry 4.0)
Show Figures

Figure 1

12 pages, 2924 KiB  
Article
Polyol-Mediated Synthesis of V2O5–WO3/TiO2 Catalysts for Low-Temperature Selective Catalytic Reduction with Ammonia
by Min Seong Lee, Yeong Jun Choi, Su-Jeong Bak, Mingyu Son, Jeehoon Shin and Duck Hyun Lee
Nanomaterials 2022, 12(20), 3644; https://doi.org/10.3390/nano12203644 - 18 Oct 2022
Cited by 4 | Viewed by 2307
Abstract
We demonstrated highly efficient selective catalytic reduction catalysts by adopting the polyol process, and the prepared catalysts exhibited a high nitrogen oxide (NOX) removal efficiency of 96% at 250 °C. The V2O5 and WO3 catalyst nanoparticles prepared [...] Read more.
We demonstrated highly efficient selective catalytic reduction catalysts by adopting the polyol process, and the prepared catalysts exhibited a high nitrogen oxide (NOX) removal efficiency of 96% at 250 °C. The V2O5 and WO3 catalyst nanoparticles prepared using the polyol process were smaller (~10 nm) than those prepared using the impregnation method (~20 nm), and the small catalyst size enabled an increase in surface area and catalytic acid sites. The NOX removal efficiencies at temperatures between 200 and 250 °C were enhanced by approximately 30% compared to those of the catalysts prepared using the conventional impregnation method. The NH3-temperature-programmed desorption and H2-temperature-programmed reduction results confirmed that the polyol process produced more surface acid sites at low temperatures and enhanced the redox ability. The in situ Fourier-transform infrared spectra further elucidated the fast absorption of NH3 and its reduction with NO and O2 on the prepared catalyst surfaces. This study provides an effective approach to synthesizing efficient low-temperature SCR catalysts and may contribute to further studies related to other catalytic systems. Full article
(This article belongs to the Special Issue Nanomaterials for Energy Conversion and Catalytic Applications)
Show Figures

Figure 1

22 pages, 7877 KiB  
Article
A Systematic Control Design Method with Active Damping Control in Voltage Source Converters
by Hosein Gholami-Khesht, Pooya Davari, Chao Wu and Frede Blaabjerg
Appl. Sci. 2022, 12(17), 8893; https://doi.org/10.3390/app12178893 - 5 Sep 2022
Cited by 2 | Viewed by 2152
Abstract
This paper proposes a systematic control design method for active damping control of grid-connected voltage source converters (VSCs). The proposed control method considers the conventional cascaded control loops and improves them by including additional states feedback-based active damping. In such a way, all [...] Read more.
This paper proposes a systematic control design method for active damping control of grid-connected voltage source converters (VSCs). The proposed control method considers the conventional cascaded control loops and improves them by including additional states feedback-based active damping. In such a way, all control gains are lumped into one control gain matrix based on the proposed formulation. The lumping of all control gains into one matrix leads to a linear optimization problem, so different techniques can be used to calculate control gains. This work calculates them by using a simple but effective optimal control theorem as a noteworthy feature. The proposed control method can overcome the challenges of designing multiple control loops, evaluating wide time scale dynamics, and tuning required control parameters. Moreover, direct relationships between the proposed tuning parameters and system well-known stability and performance indicators such as maximum damping factor, minimum damping ratio, and the control efforts are identified, providing good physical insight. Finally, the proposed control structure and optimal gain calculations ensure power converter robustness against uncertainties in the grid’s short-circuit ratio (SCR) and different operating-point conditions. When the grid’s SCR changes from 10 (strong grid condition) to 1 (ultra-weak grid condition), the system under the proposed control method maintains good stability margins and simultaneously provides a fast dynamic response by facilitating the implementation of a high-bandwidth phase-locked loop (PLL). The performance of the proposed control strategy was investigated analytically and practically by conducting eigenvalue analysis, simulations, and experiments. Full article
(This article belongs to the Special Issue 5th Anniversary of Energy Section—Recent Advances in Energy)
Show Figures

Figure 1

19 pages, 4039 KiB  
Article
Catalytic Performance of Bimetallic Systems (Cu-Fe, Cu-Mn, Fe-Mn) Based on Spherical MCM-41 Modified by Template Ion-Exchange in NH3-SCR Process
by Aleksandra Jankowska, Andrzej Kowalczyk, Małgorzata Rutkowska, Marek Michalik and Lucjan Chmielarz
Catalysts 2022, 12(8), 885; https://doi.org/10.3390/catal12080885 - 12 Aug 2022
Cited by 11 | Viewed by 2835
Abstract
Mesoporous silica of MCM-41 type with spherical morphology was modified with copper, iron, or manganese as well as pairs of these metals by template ion-exchange (TIE) method. The obtained samples were characterized with respect to their structure (XRD), morphology (SEM-EDS), textural parameters (low-temperature [...] Read more.
Mesoporous silica of MCM-41 type with spherical morphology was modified with copper, iron, or manganese as well as pairs of these metals by template ion-exchange (TIE) method. The obtained samples were characterized with respect to their structure (XRD), morphology (SEM-EDS), textural parameters (low-temperature N2 sorption), surface acidity (NH3-TPD), transition metal loadings (ICP-OES), their deposited forms (UV-vis DRS) and reducibility (H2-TPR). The catalytic performance of monometallic and bimetallic samples in the selective catalytic reduction of NO with ammonia (NH3-SCR) was tested. The best catalytic results presented a bimetallic copper-manganese sample, which was significantly more active than the mechanical mixture of monometallic copper and manganese catalysts. The synergistic cooperation of manganese and copper species is possibly related to charge relocation between them, resulting in activation of the catalyst in oxidation of NO to NO2, which is necessary for the fast NH3-SCR reaction. Full article
(This article belongs to the Special Issue Catalytic Methods for Nitrogen Pollutants Conversion in Flue Gases)
Show Figures

Graphical abstract

21 pages, 6033 KiB  
Article
A Probabilistic Framework for the Robust Stability and Performance Analysis of Grid-Tied Voltage Source Converters
by Hosein Gholami-Khesht, Pooya Davari, Mateja Novak and Frede Blaabjerg
Appl. Sci. 2022, 12(15), 7375; https://doi.org/10.3390/app12157375 - 22 Jul 2022
Cited by 5 | Viewed by 1890
Abstract
This paper proposed a probabilistic framework that could be used for the sensitivity assessment of grid-connected voltage source converters (VSCs), where uncertainties in the grid short circuit ratio (SCR) and operating point conditions, as well as control-loop interactions, were considered. The proposed method [...] Read more.
This paper proposed a probabilistic framework that could be used for the sensitivity assessment of grid-connected voltage source converters (VSCs), where uncertainties in the grid short circuit ratio (SCR) and operating point conditions, as well as control-loop interactions, were considered. The proposed method tried to broaden the available knowledge on the small-signal stability analysis of VSCs and provide a probabilistic point of view of this subject. It considered the probability of different operational conditions in order to obtain less conservatism and more accurate results. Based on uncertain inputs and the employed stability model, the proposed model produced statistical distributions of the critical mode and its damping factor and ratio, which were not accessible by existing deterministic methods. Crucial statistical information measures how much system stability and performance are maintained or changed over the system uncertainties and disturbances, as well as provides a clear insight into the system stability problem. For instance, as concluded in this paper, for the conventional control system design, fast dynamic parts of a VSC, such as the current controller and control delay, significantly impact the minimum damping ratio. Furthermore, slow dynamic parts, such as outer voltage control loops and the synchronization block, influence the maximum damping factor. For strong grids, the AC voltage magnitude controller (AVC) significantly impacts the maximum damping factor due to its lower bandwidth among all control loops. For weak grids, the damping factor of the critical mode is highly affected by interactions between the VSC, the power grid, and different control loops due to the synchronization mechanism. The other contributions of this paper were the introduction of robust stability and performance definitions and indices; explanations of the pros and cons of probabilistic assessment methods and their applicability; interpretation of the obtained results; and, finally, a link was provided between system stability and reliability, which will be crucial for future power system design. Full article
(This article belongs to the Special Issue Power Converters: Modeling, Control, and Applications II)
Show Figures

Figure 1

9 pages, 2917 KiB  
Article
Investigation on the Correlation between Inclusions and High Temperature Urea Corrosion Behavior in Ferritic Stainless Steel
by Xuelin Wang, Qingsong Lu, Wei Zhang, Zhenjia Xie and Chengjia Shang
Metals 2021, 11(11), 1823; https://doi.org/10.3390/met11111823 - 13 Nov 2021
Cited by 12 | Viewed by 2107
Abstract
The influence of inclusion size and number density on high-temperature urea corrosion (HTUC) behavior of ferritic stainless steels was investigated in a simulated working environment of selective catalytic reduction (SCR) system in commercial vehicles. There is a positive correlation between the control level [...] Read more.
The influence of inclusion size and number density on high-temperature urea corrosion (HTUC) behavior of ferritic stainless steels was investigated in a simulated working environment of selective catalytic reduction (SCR) system in commercial vehicles. There is a positive correlation between the control level of inclusions and the resistance of HTUC. By slightly increasing the content of Nb in ferritic stainless steels, the inclusions, especially TiN, were significantly refined, and thus displayed an improvement in HTUC resistance. The interface between inclusions and the matrix becomes a fast channel for chromium precipitation during high-temperature nitriding induced by the decomposition of urea. Chromium nitrides will precipitate around the inclusions and wrap the inclusions, which will decrease the chromium equivalent of the matrix and reduce the resistance of ferritic stainless steels to HTUC. In addition, the high-temperature oxidation accompanied with thermal fatigue also makes the inclusions more likely to become the crack nucleation source, which can accelerate the material thinning and reduce its service life. Full article
(This article belongs to the Special Issue Mechanical Properties of Stainless Steel)
Show Figures

Figure 1

Back to TopTop