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Abstract: We demonstrated highly efficient selective catalytic reduction catalysts by adopting the
polyol process, and the prepared catalysts exhibited a high nitrogen oxide (NOX) removal efficiency
of 96% at 250 ◦C. The V2O5 and WO3 catalyst nanoparticles prepared using the polyol process were
smaller (~10 nm) than those prepared using the impregnation method (~20 nm), and the small catalyst
size enabled an increase in surface area and catalytic acid sites. The NOX removal efficiencies at
temperatures between 200 and 250 ◦C were enhanced by approximately 30% compared to those of the
catalysts prepared using the conventional impregnation method. The NH3-temperature-programmed
desorption and H2-temperature-programmed reduction results confirmed that the polyol process
produced more surface acid sites at low temperatures and enhanced the redox ability. The in situ
Fourier-transform infrared spectra further elucidated the fast absorption of NH3 and its reduction
with NO and O2 on the prepared catalyst surfaces. This study provides an effective approach to
synthesizing efficient low-temperature SCR catalysts and may contribute to further studies related to
other catalytic systems.

Keywords: polyol-mediated synthesis; NH3-selective catalytic reduction; small catalysts

1. Introduction

Over recent decades, chemical impurities such as nitrogen oxides (NOX), sulfur oxides,
carbon oxide (CO), volatile organic compounds, and particulate matter generated from the
usage of biomass as a fuel at power plants, boilers, and mobile sources have polluted the
atmospheric environment [1,2]. Among these, NOX (NO, NO2, and N2O) are extremely
dangerous, as they cause various environmental issues, such as acid rain, smog, ozone
depletion, and even harm to human health [3–6]. Several processes, such as selective
catalytic reduction (SCR), selective noncatalytic reduction (SNCR), nonselective catalytic
reduction (NSCR), and photocatalytic degradation of NOX [7–12], have been proposed
to eliminate NOX [13]. Among them, NH3-SCR, which converts NOX in exhaust gas into
N2 and H2O, is the most commercialized technology owing to its 80–100% advanced effi-
ciencies and economic feasibility [14,15]. Several types of composites, including transition
metals (Fe, Cu, V, and Mn), are used as SCR catalysts [16,17]. V2O5–WO3/TiO2 are repre-
sentative SCR catalysts, owing to their high catalytic acidity in high temperature ranges of
300–400 ◦C and lower chemical contamination possibility than other elements [18]. How-
ever, V2O5–WO3/TiO2 catalysts exhibit low catalytic performance at low temperatures
below 300 ◦C [19,20].

Currently, most coal-fired power plants have adopted a high-dust system with an
exhaust gas pretreatment such as installing an economizer at the rear end of the SCR
system [21]. Consequently, the SCR catalyst becomes abraded and contaminated by dust
and sulfur, reducing the utilization efficiency over time. Therefore, numerous studies have
been conducted to develop new catalysts efficient at temperatures below 300 ◦C [9,22–25].
The low-temperature catalyst installed at the rear end of the electrostatic precipitator and
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desulfurization facility enables the realization of the tail-end SCR system and reduces
reheating costs [26].

Comprehensive research has been conducted to develop low-temperature SCR cata-
lysts, and Mn- and Cu-based catalysts reportedly exhibit high SCR catalytic performances
at low temperatures [16,27–31]. However, they are severely deactivated by sulfur contami-
nation [32]. A mesoporous TiO2 shell can improve the resistance of Fe2O3 catalysts to SO2
(Han et al.) [33]. Yu et al. developed a Cu-SSZ-13 zeolite–metal oxide hybrid catalyst with
high SO2 resistance by forming Zn sulfate [34]. Additional studies on low-temperature
catalysts entailed applying functional chemicals to improve the catalytic activity [35–39].
Chae et al. developed a V2O5–Sb2O3/TiO2 catalyst with a high catalytic performance at
temperatures below 300 ◦C by adding ammonium nitrate, which promoted NO oxidation
and rapid SCR mechanism reaction at temperatures below 300 ◦C [39]. Zhao et al. reported
90% of NOX removal efficiency with the V2O5/TiO2 catalyst at 210 ◦C by co-doping S
and N [40]. These catalysts form O2– active sites, increasing chemisorbed oxygen and
NH3. Furthermore, Maqbol et al. reported CeO2–Sb/V2O5/TiO2 catalysts pretreated with
SO2 under oxidizing conditions [41] forming sulfate species on the surface and a high
NH3-desorption and catalytic performance due to cerium (III) sulfate formation. How-
ever, previous studies have limitations concerning the complexity of the synthesis process,
restricting catalyst composition and limiting their commercial application.

The crystalline quality and morphology of nanomaterials are important in regulating
the physicochemical properties of catalysts. In the polyol process, the liquid organic
compound, a polyol, including 1,2-diols and ether glycols, acts both as a solvent of the solid
precursor and as a reducing agent determining important process characteristics [42,43]:
(1) the high boiling point allows synthesis at relatively high temperatures and ensures
well-crystallized nanomaterials; (2) the reducing medium protects the as-prepared particles
from contamination, as long as they remain in the medium; and (3) the high viscosity of
the medium minimizes coalescence and favors a diffusion-controlled regime for particle
growth, resulting in controlled structures and morphologies. Thus, the polyol process offers
several advantages, including the easy control of nanomaterials, low cost, and verified
scalability for industrial applications [42,44].

Herein, we adopted a polyol process to synthesize highly efficient SCR catalysts and
compared their catalytic properties with those of a catalyst prepared using the conventional
impregnation method. The catalysts synthesized through the polyol process formed small-
sized nanoparticles within a short time and, thus, had numerous active sites that could react
with NOX. The effect of the polyol process on the V2O5–WO3/TiO2 catalyst was observed
via transmission electron microscopy (TEM), Raman spectroscopy, and Brunauer–Emmett–
Teller (BET) analysis. The NOx removal efficiency and N2 selectivity of the catalyst were
measured to compare the catalytic activities in the low-temperature range of 150–300 ◦C.
NH3-temperature-programmed desorption (NH3-TPD), H2-temperature-programmed re-
duction (H2-TPR), and in situ Fourier-transform infrared (FTIR) spectroscopy were per-
formed to elucidate the enhancement of the catalytic activities.

2. Materials and Methods
2.1. Materials

Ammonium metavanadate (AMV; NH4VO3), ammonium metatungstate hydrate
(AMT; (NH4)6H2W12O40 × H2O), and oxalic acid (C2H2O4) were purchased from Sigma-
Aldrich (St. Louis, MO, USA). Ethylene glycol (C2H6O2) was obtained from Daejung Chem-
icals (Siheung-si, Korea), and titanium dioxide (TiO2) was obtained from NANO Co., Ltd.
(Seoul, Korea). All chemicals were of reagent grade and used without further purification.

2.2. Preparation of V2O5–WO3/TiO2 Catalysts

We prepared 2 wt.% V2O5–5 wt.% WO3/TiO2 catalysts using the impregnation and
polyol processes. In the impregnation method, AMV (0.128 g, 99.99%) or AMT (0.266 g,
99.99%) was dissolved in 50 mL of deionized water with 0.196 g oxalic acid. TiO2 powder
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(4.650 g, NT-01) was mixed with the prepared solution and stirred for 2 h. The solution was
evaporated at 85 ◦C in an oil bath and placed in an oven at 110 ◦C for 12 h. The obtained
powder was then sintered at 500 ◦C in a furnace for 5 h under atmospheric pressure. In the
polyol process, AMV (0.128 g, 99.99%) or AMT (0.266 g, 99.99%) was dissolved in 100 mL
ethylene glycol with 0.196 g oxalic acid. TiO2 powder (4.650 g, NT-01) was mixed with the
prepared solution and stirred for 2 h. The solution was heated in a microwave (Multiwave
5000; Anton Paar, Graz, Austria) for 10 min at 180 ◦C. The reacted solution was filtered,
washed, and placed in an oven at 110 ◦C for 12 h. The obtained powder was calcinated at
500 ◦C in a furnace for 5 h under standard atmospheric pressure. The synthesized catalysts
were denoted as IM and P according to the method applied to V2O5 and WO3, respectively.
Moreover, V2O5(P)–WO3(IM) and V2O5(IM)–WO3(P) catalysts were impregnated before
the polyol process.

2.3. Catalyst Characterization

We investigated the morphology of the catalysts using a field emission scanning
electron microscope (FESEM; SU8020; Hitachi, Tokyo, Japan) and transmission electron
microscope (TEM; JEM-2100F; JEOL Ltd., Tokyo, Japan) at an accelerating voltage of
15.0 kV to understand the effect of the synthesis method on catalysts. The chemical
compositions of the catalysts were measured using an X-ray fluorescence spectrometer
(XRF; Zetium; Malvern Panalytical, Malvern, UK). The crystallinity and impurities of
the catalysts were analyzed by X-ray diffraction (XRD; Ultima IV; Rigaku, Tokyo, Japan),
with Cu Kα (λ = 0.15406 nm) radiation in the 2 θ range of 10–90◦ at a scan rate of 1◦/min
and Raman spectra (alpha300s; WITec, Ulm, Germany) with a 532 nm laser. The textural
properties of the catalysts were analyzed using the BET method (ASAP2020; Micromeritics
Instrument Corp., Norcross, GA, USA). NH3-TPD was conducted using AutoChem II 2920
(Micromeritics Instrument Corp.). The samples were pretreated at 150 ◦C with a current
of N2 for 4 h to remove physiosorbed NH3 species and organic matter. NH3 was then
adsorbed with 10% NH3/He gas at 150 ◦C for 1 h. H2-TPR was conducted using the same
instruments as NH3-TPD, in addition to exposing the catalysts to a current of 10% H2/Ar
and measuring in the 100–900 ◦C temperature range.

2.4. Catalytic Activity Evaluation

The catalytic performance was evaluated in a fixed-bed reactor under atmospheric
pressure. The operating temperature varied from 150 ◦C to 300 ◦C, and the reactive gas
comprised 300 ppm NO, NH3 (NH3/NOX = 1.0), and SO2, and 5 vol.% of O2 with a balance
of N2 at a total flow rate of 500 sccm. During the evaluation, 0.35 mg of the powdered
catalyst (sieved to 40–60 mesh) was tested, yielding a gas hourly space velocity (GHSV)
of 60,000 h−1. The reactive gas concentration was continuously monitored through FTIR
spectroscopy (CX–4000; Gasmet Technologies, Vantaa, Finland) and an O2 analyzer (Oxitec
5000; ENOTEC, Marienheide, Germany). The NOX removal efficiency and N2 selectivity
were calculated according to Equations (1) and (2), respectively.

NOX removal efficiency (%) =
NOX inlet −NOX outlet

NOX inlet
× 100 (1)

N2 selectivity (%) =
NO inlet −NO outlet −NO2 outlet − N2Ooutlet

NO inlet −NO outlet
× 100 (2)

2.5. In Situ FTIR Measurement

In situ FTIR spectra of all samples were measured using an FTIR spectrometer (VER-
TEX 70v FTIR; Bruker, Billerica, MA, USA) [45] under operating conditions and accumu-
lated 16 scans with a resolution of 4 cm−1 in the range of 4000–400 cm−1. The gas mixture
of NH3 (500 ppm), NO (500 ppm), and O2 (5 vol.%) with N2 was used for in situ FTIR, and
the flow rate was 0.3 L/min.
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3. Results and Discussion

Figure 1a illustrates the formation of vanadium and tungsten oxide nanoparticles
on titania with short nucleation and controlled particle growth during the polyol process
(V2O5(P)–WO3(P)). We controlled the reaction between the V, W precursor, and ethylene
glycol under microwave irradiation at 180 ◦C for 10 min in an enclosed chamber. The
optimized V2O5–WO3/TiO2 nanoparticles were obtained using multifunctional microwave
equipment. The samples were filtered from the unreacted precursor and ethylene glycol
and dried in an oven at 110 ◦C. Ethylene glycol acts as a stabilizer to limit particle growth
and prevent agglomeration. Finally, we obtained green-colored samples with vanadium
glycolate and tungsten glycolate. After calcination at 500 ◦C, the catalysts were transformed
into V2O5–WO3 nanoparticles with a yellow color. This polyol process is a facile synthesis
process ideal for processing very fine powders with high purity, high crystallinity, good re-
producibility, narrow particle size distribution, uniformity, and high reactivity. The overall
reactions of vanadium and tungsten are given as Equations (3) and (4), respectively [46].

NH4VO3 + C2H6O2 ⇒ N2 + VO(CH2O)2 + H2O⇒ V2O5 (3)

(NH4)6H2W12O40 × H2O + C2H6O2 ⇒ N2 + WO(CH2O)2 + H2O⇒WO3 (4)
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Figure 1. (a) Schematic of the polyol process on V2O5–WO3/TiO2 catalysts using a microwave at
180 ◦C for 10 min. Field emission scanning electron microscope images of (b) V2O5(IM)–WO3(IM)
and (c) V2O5(P)–WO3(P). Transmission electron microscope images of (d) V2O5(IM)–WO3(IM),
(e) V2O5(IM)–WO3(P), (f) V2O5(P)–WO3(IM), and (g) V2O5(P)–WO3(P).
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Table 1 shows the V2O5, WO3, TiO2, and SO3 weight fractions of the catalysts. The
weight fractions synthesized using the polyol process and impregnation method were
similar, except that SO3

– was present in TiO2.

Table 1. X-ray fluorescence analysis of V2O5(IM)–WO3(IM), V2O5(IM)–WO3(P), V2O5(P)–WO3(IM),
and V2O5(P)–WO3(P).

Sample TiO2 V2O5 WO3 SO3

V2O5(IM)–WO3(IM) 92.33 1.93 5.02 0.72
V2O5(IM)–WO3(P) 92.43 2.02 4.89 0.66
V2O5(P)–WO3(IM) 92.29 1.91 5.08 0.72
V2O5(P)–WO3(P) 92.44 1.88 4.97 0.71

3.1. Catalyst Characterization

FE-SEM and TEM were used to compare morphologies of the V2O5 and WO3 nanopar-
ticles synthesized using the impregnation and polyol process, respectively (Figure 1b–g).
Figure 1b,c show FE-SEM images of V2O5(IM)–WO3(IM) and V2O5(P)–WO3(P), respec-
tively. The clusters of both catalysts had similar particle sizes and shapes with diameters of
approximately 20–30 nm, such as those of titania. Therefore, V2O5 and WO3 nanoparticles
are difficult to distinguish from the TiO2 particles. In contrast, Figure 1d–g show the distinct
V2O5 and WO3 nanoparticles through TEM and diffraction patterns analysis of the samples.
V2O5(IM)–WO3(IM), V2O5(IM)–WO3(P), V2O5(P)–WO3(IM), and V2O5(P)–WO3(P) have
V2O5/WO3 particle sizes of 21 nm/20 nm, 14 nm/22 nm, 10 nm/19 nm, and 13 nm/12 nm,
respectively (Figure S1). The catalyst particle size is very important, because the active
area that determines the performance of the catalyst is very important, and these results
demonstrate that the polyol process formed smaller V2O5 and WO3 particles than the
impregnation method, with up to 55% reduction in particle size.

The crystalline structure and phase purity of the V2O5–WO3/TiO2 catalysts were
measured by XRD analysis and Raman spectroscopy. The XRD results showed the anatase
phase of TiO2 at 25.36◦, 37.05◦, 37.91◦, 38.67◦, 48.16◦, 54.05◦, 55.20◦, 62.87◦, 68.98◦, 70.48◦,
75.30◦, and 82.93◦ in all catalysts (Figure 2a). However, the V2O5 and WO3 phases were not
observed in any of the catalysts, because the peak positions of V2O5 and WO3 were very
similar to those of the anatase phase, and low contents of 2 wt.% V2O5 and 5 wt.% WO3
were uniformly dispersed on TiO2 support. Raman spectroscopy was used to understand
the crystalline structure and particle size of V2O5–WO3/TiO2 catalysts. The Raman spectra
of all catalysts contained TiO2 anatase peaks at 144.7, 197.3, 401.5, 518.5, and 639.1 cm–1

(Figure S2). Figure 2b shows the structure of vanadium and tungsten oxides in the range
of 700–1100 cm–1. The states of the vanadium and tungsten species on the surface of the
catalysts play a crucial role in the SCR catalytic action [47]. The Raman signal at 988.7 cm–1

could be attributed to the V–O vibration of crystalline vanadium oxide and at 800.5 cm–1 to
the W–O–W stretching of octahedrally coordinated W units. V2O5(IM)–WO3(IM) exhibited
higher Raman signals than V2O5(P)–WO3(P) at 988.7 cm–1 and 800.5 cm–1 (Figure 2b),
indicating that the impregnation method formed large-sized particles of vanadium and
tungsten oxides with high crystallinity, whereas the polyol method formed small-sized
particles with low crystallinity. Furthermore, the textural details are listed in Figure 2c,d
and Table 2 with the nitrogen adsorption–desorption measurements. All catalysts had
similar isotherm plots, corresponding to the H3-type hysteresis loop with a mesoporous
structure (Figure 2c). In contrast, the specific surface area, pore volume, and pore size
were the highest in the order of V2O5(P)–WO3(P), V2O5(IM)–WO3(P), V2O5(P)–WO3(IM),
and V2O5(IM)–WO3(IM), due to the effect of size on vanadium oxide and tungsten oxide
particles (Table 2). V2O5(P)–WO3(P) and V2O5(IM)–WO3(P) with the polyol process ap-
plied to tungsten oxides had a higher pore size of 14.90 and 14.77 nm, respectively, than
V2O5(P)–WO3(IM) (11.68 nm) and V2O5(IM)–WO3(IM) (11.01 nm) (Figure 2d) because of
the atomization of the WO3 nanoparticles with a content of 5 wt.%, which is a relatively
large portion of V2O5–WO3/TiO2 than V2O5 nanoparticles.
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Figure 2. (a) X-ray diffraction patterns. (b) Raman spectra in the range of 1100 cm−1 to 700 cm−1.
(c) N2 adsorption−desorption isotherms, and (d) Barrett–Joyner–Halenda (BJH) pore size distribution
curves of V2O5(IM)–WO3(IM), V2O5(IM)–WO3(P), V2O5(P)–WO3(IM), and V2O5(P)–WO3(P).

Table 2. Brunauer–Emmet–Teller (BET) results of V2O5(IM)–WO3(IM), V2O5(IM)–WO3(P),
V2O5(P)–WO3(IM), and V2O5(P)–WO3(P).

Sample SBET (m2/g) Pore Volume (cm3/g) Pore Size (nm)

V2O5(IM)–WO3(IM) 71.33 0.22 11.01
V2O5(IM)–WO3(P) 74.23 0.28 14.77
V2O5(P)–WO3(IM) 75.67 0.22 11.68
V2O5(P)–WO3(P) 75.83 0.28 14.90

3.2. Evaluation of Catalytic Activity

In the general NH3-SCR process, NOX is converted to nitrogen and water through the
reduction reaction of the NH3 and NOX on catalysts (Equations (5)–(8)) [48].

4NO + 4NH3 + O2 ⇒ 4N2 + 6H2O (5)

NO + NO2 +2NH3 ⇒ 2N2 + 3H2O (6)

2NO2 + 4NH3 + O2 ⇒ 3N2 + 6H2O (7)

6NO2 + 8NH3⇒ 7N2 + 12H2O (8)

The SCR catalysts efficiently and selectively reduce NOX to N2. The NOX removal
efficiency of the V2O5(P)–WO3(P), V2O5(P)–WO3(IM), and V2O5(IM)–WO3(P) catalysts
was higher than that of V2O5(IM)–WO3(IM) at 150–300 ◦C (Figure 3a). At 250 ◦C, the NOX
removal efficiencies of V2O5(P)–WO3(P), V2O5(P)–WO3(IM), and V2O5(IM)–WO3(P) were
96%, 93%, and 86%, respectively, whereas that of V2O5(IM)–WO3(IM) was the lowest at
66%, and the high NOX removal efficiencies of V2O5(P)–WO3(P) were stable for 4 h of
the durability test (Figure S3). Based on these results, we found that adjusting the polyol
process for the V2O5–WO3/TiO2 catalysts increases the specific surface area, leading to
enhanced reactions sites for V2O5 and WO3. In particular, the polyol process for V2O5
nanoparticles was more critical to NOX removal efficiency than WO3 nanoparticles, because
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V2O5 as the main catalyst is more active than WO3. In contrast, all catalysts, including
those from the polyol process, exhibited low catalytic activity at 150 ◦C, demonstrating
that vanadium oxide was ineffective, and ammonium sulfate (NH4HSO4) or ammonium
bisulfate ((NH4)2SO4) were easily formed on the catalysts by reacting with sulfur dioxide,
unreacted ammonia, and water, blocking the most active sites at temperatures below 150 ◦C.
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Figure 3b,c illustrate the N2O concentration and N2 selectivity, respectively. Trace
amounts of N2O in all catalysts were produced at temperatures over 250 ◦C. N2O produced
from SCR side reactions is a secondary pollutant, which is important for determining the
reaction accuracy. V2O5(IM)–WO3(IM) produced N2O at 225 ◦C, and the amount was
relatively large. In contrast, V2O5–WO3/TiO2 catalysts formed using the polyol process
showed lower N2O concentrations than those using the impregnation method, particularly
V2O5(P)–WO3(P), which had the lowest N2O concentration of 1.375 ppm at 300 ◦C. Ac-
cording to the N2O concentrations, N2 selectivity of V2O5(P)–WO3(P), V2O5(P)–WO3(IM),
V2O5(IM)–WO3(P), and V2O5(IM)–WO3(IM) reached 99.52%, 99.29%, 98.29%, and 97.11%
at 300 ◦C, respectively.

3.3. NH3-TPD and H2-TPR Analyses

We further explained the effect of the polyol process on the catalytic performance
of the V2O5–WO3/TiO2 catalysts using NH3-TPD and H2-TPR analyses (Figure 4). The
NH3-TPD results for V2O5(IM)–WO3(IM), V2O5(IM)–WO3(P), V2O5(P)–WO3(IM), and
V2O5(P)–WO3(P) were observed at 100–800 ◦C, which is important for the content and
strength of the surface acidic sites on the prepared catalysts (Figure 4a). All curves showed
three distinct NH3 desorption peaks at 100–200 ◦C, 300–500 ◦C, and above 500 ◦C, indicating
weakly, intermediately, and strongly adsorbed NH3 related to Bronsted and Lewis acid
sites with different intensities, respectively [49,50]. Generally, the adsorbed NH3 exists
as NH4

+ ions and coordinated NH3 when bonded to Bronsted acid sites and Lewis acid
sites, respectively. In addition, the concentration of desorbed NH3 indicates the adsorption
capability of the catalysts. The desorbed NH3 concentration for V2O5(IM)–WO3(IM),
V2O5(IM)–WO3(P), V2O5(P)–WO3(IM), and V2O5(P)–WO3(P) was 32.86, 51.98, 57.10, and
54.50 cm3/g, respectively, in the NH3-TPD profile (Table 3). These results indicate that the
catalysts from the polyol process have a larger amount of desorbed NH3 than those from
the impregnation method, because the polyol process induces a large specific surface area
and provides various sites for bonding with NH3. Particularly, V2O5(P)–WO3(P) showed
higher thermal conductivity detector (TCD) signals belonging to Bronsted acid sites in
the temperature range of 100–500 ◦C than V2O5(IM)–WO3(P) and V2O5(P)–WO3(IM),
suggesting the explanation for the high catalytic performance of V2O5(P)–WO3(P).
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Table 3. NH3-temperature-programmed desorption (NH3-TPD) and H2-temperature-programmed
reduction (H2-TPR) integral intensity of V2O5(IM)–WO3(IM), V2O5(IM)–WO3(P), V2O5(P)–WO3(IM),
and V2O5(P)–WO3(P).

Sample SBET (m2/g) Pore Volume (cm3/g)

V2O5(IM)–WO3(IM) 71.33 0.22
V2O5(IM)–WO3(P) 74.23 0.28
V2O5(P)–WO3(IM) 75.67 0.22
V2O5(P)–WO3(P) 75.83 0.28

Moreover, we identified the mechanism by which the polyol process affected the redox
performance of the catalysts in NH3–SCR. The redox performances of V2O5(IM)–WO3(IM),
V2O5(IM)–WO3(P), V2O5(P)–WO3(IM), and V2O5(P)–WO3(P) in the temperature range of
100–900 ◦C by H2–TPR analysis are illustrated in Figure 4b and Table 3. The V2O5(IM)–WO3(IM)
has three apparent peaks centered at 413.5, 449.5, and 771.0 ◦C, indicating the co-reduction
of V5+ to V3+ corresponding to the surface vanadium species, reduction of W6+ to W4+, and
reduction of W4+ to W0 in tungsten oxide, respectively. In contrast, the reduction peaks
of V2O5(IM)–WO3(P), V2O5(P)–WO3(IM), and V2O5(P)–WO3(P), indicating V5+ to V3+ co-
reduction and W6+ to W4+ reduction, shifted to lower temperatures at 400.9 ◦C/426.3 ◦C,
340.5 ◦C/373.7 ◦C, and 336.3 ◦C/373.7 ◦C, respectively, because the increased specific
surface area of V2O5 and WO3 promoted the release of lattice oxygen to reduce vanadium
and tungsten species, thereby reducing a large amount of hydrogen. Particularly, catalysts
that apply polyol to vanadium oxides as active catalysts exhibited remarkable shift changes
and reduced a large amount of hydrogen at low temperatures. Therefore, V2O5(P)–WO3(IM)
and V2O5(P)–WO3(P) have superior reducing ability, which is one of the reasons for their
high NOX removal efficiencies at temperatures below 300 ◦C.

3.4. In Situ FTIR Measurement

In situ FTIR analysis elucidates the formation and transformation of adsorbed species
on the surface of a catalyst, providing information such as the activation capacity of the
catalysts or the reaction mechanism between catalysts and reactive gases. Figure 5 illustrates
the in situ FTIR spectra of the adsorbed species on the surfaces of V2O5(IM)–WO3(IM) and
V2O5(P)–WO3(P) derived from NH3 gas at 200 ◦C. After introducing NH3 gas at 200 ◦C,
V2O5(P) –WO3(P) catalysts reacted with NH3, and they were mainly covered by coordinated
NH3 bound to the Lewis acid sites (1244, 1294, 1583, 3153, 3250, 3359, and 3394 cm−1)
and ionic NH4

+ bound to the Bronsted acid sites (1427, 1466, and 1695 cm−1) in 5 min,
whereas V2O5(IM)–WO3(IM) reacted with NH3 for 20 min [46]. The intensities of the Lewis
and Bronsted acid sites were greater in V2O5(P)–WO3(P) than in V2O5(IM)–WO3(IM),
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demonstrating that the catalysts produced by the polyol process were smaller in size,
providing more adsorption sites for ammonia. The FTIR spectra of the adsorbed species on
the surfaces of V2O5(IM)–WO3(P) and V2O5(P)–WO3(IM) were also observed under NH3
gas at 200 ◦C (Figure S4). The catalysts showed intermediate catalytic activities between
V2O5(P)–WO3(P) and V2O5(IM)–WO3(IM). The higher specific surface area of the active
catalysts (Table 2) provided more Lewis and Bronsted acid sites, resulting in an increase in
NH3 binding to the catalyst surfaces.
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Figure 5. In situ Fourier−transform infrared spectra of ammonia adsorption depending on
the reaction time over (a) V2O5(IM)–WO3(IM) and (b) V2O5(P)–WO3(P) at 200 ◦C. Conditions:
[NH3] = 500 ppm (when used) and N2 as the balance.

Figure 6 shows in situ FTIR spectra of NOx and oxygen reacted with pre-adsorbed
ammonia over V2O5(IM)–WO3(IM) and V2O5(P)–WO3(P) at 200 ◦C. V2O5(P)–WO3(P) was
primarily covered by coordinated NH3 bound to the Lewis acid sites (1232, 1287, 1589, 3142,
3250, 3359, and 3394 cm–1) and ionic NH4

+ bound to the Bronsted acid sites (1412, 1452, and
1705 cm–1). The adsorbed Lewis and Bronsted acid sites gradually decreased by selectively
reducing NO gas, and their reduction was evident in 5 min for V2O5(P)–WO3(P) and
10 min for the V2O5(IM)–WO3(IM) catalysts. The in situ FTIR spectra of V2O5(IM)–WO3(P)
and V2O5(P)–WO3(IM) were also observed under NO and O2 gas with pre-adsorbed NH3
at 200 ◦C (Figure S5). The catalysts showed an intermediate reduction time between
V2O5(P)–WO3(P) and V2O5(IM)–WO3(IM). V2O5(P)–WO3(P) catalysts showed that the
Bronsted acid site disappeared before the Lewis acid site, indicating that the adsorption site
corresponds to the Bronsted acid sites, and NO and O2 were first bonded. Therefore, the
excellent catalytic activity of V2O5(P)–WO3(P) was confirmed when the adsorbed ammonia
reacted with NO and O2.
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[NO] = 500 ppm (when used), [O2] = 5 vol.% (when used), and N2 as the balance.

4. Conclusions

In this study, we explored a facile synthetic process to obtain highly efficient SCR
catalysts by adopting a polyol process, and the prepared catalyst demonstrated high
NOx removal efficiency of 96% at 250 ◦C. The V2O5 and WO3 catalyst nanoparticles
prepared using the polyol process were smaller (~10 nm) than those prepared using the
impregnation method (~20 nm). The small catalyst size enabled an increase in the surface
area and catalytic acid sites. At temperatures between 200 and 250 ◦C, the NOx removal
efficiencies were enhanced by approximately 30% compared to the catalysts prepared using
the conventional impregnation method. The NH3-TPD results demonstrated that the polyol
process provided more surface acid sites generated at low temperatures. H2-TPR revealed
the enhanced redox ability and reducing characteristics of the catalysts, which promoted
a rapid SCR reaction. The in situ FTIR spectra elucidated the fast absorption of NH3
and its reduction with NO and O2 on the prepared catalyst surfaces at low temperatures.
This study provided an effective approach to synthesizing efficient low-temperature SCR
catalysts and may contribute to further studies related to other catalytic systems.
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//www.mdpi.com/article/10.3390/nano12203644/s1, Figure S1: Transmission electron microscope
(TEM) images and selected area electron diffraction (SAED) patterns of (a) V2O5(IM)–WO3(IM),
(b) V2O5(IM)–WO3(P), (c) V2O5(P)–WO3(IM), and (d) V2O5(P)–WO3(P). Figure S2: Raman spectra of
V2O5(IM)–WO3(IM), V2O5(IM)–WO3(P), V2O5(P)–WO3(IM), and V2O5(P)–WO3(P). Figure S3: NOX
removal efficiency of V2O5(P)–WO3(P) measured for 4 h at 250 ◦C. Figure S4: In situ Fourier-transform
infrared spectra of ammonia adsorption, depending on the reaction time over (a) V2O5(IM)–WO3(P)
and (b) V2O5(P)–WO3(IM) at 200 ◦C. Figure S5: In situ Fourier-transform infrared spectra of NO and
O2 reacted with pre-adsorbed NH3 over (a) V2O5(IM)–WO3(P) and (b) V2O5(P)–WO3(IM) at 200 ◦C.
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