Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (541)

Search Parameters:
Keywords = farm automation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1397 KiB  
Article
Comparison of Soil Organic Carbon Measurement Methods
by Wing K. P. Ng, Pete J. Maxfield, Adrian P. Crew, Dayane L. Teixeira, Tim Bevan and Matt J. Bell
Agronomy 2025, 15(8), 1826; https://doi.org/10.3390/agronomy15081826 - 28 Jul 2025
Viewed by 130
Abstract
To enhance agricultural soil health and soil organic carbon (SOC) sequestration, it is important to accurately measure SOC. The aim of this study was to compare common methods for measuring SOC in soils in order to determine the most effective approach among different [...] Read more.
To enhance agricultural soil health and soil organic carbon (SOC) sequestration, it is important to accurately measure SOC. The aim of this study was to compare common methods for measuring SOC in soils in order to determine the most effective approach among different agricultural land types. The measurement methods of loss-on-ignition (LOI), automated dry combustion (Dumas), and real-time near-infrared spectroscopy (NIRS) were compared. A total of 95 soil core samples, ranging in clay and calcareous content, were collected across a range of agricultural land types from forty-eight fields across five farms in the Southwest of England. There were similar and positive correlations between all three methods for measuring SOC (ranging from r = 0.549 to 0.579; all p < 0.001). On average, permanent grass fields had higher SOC content (6.6%) than arable and temporary ley fields (4.6% and 4.5%, respectively), with the difference of 2% indicating a higher carbon storage potential in permanent grassland fields. Newly predicted conversion equations of linear regression were developed among the three measurement methods according to all the fields and land types. The correlation of the conversation equations among the three methods in permanent grass fields was strong and significant compared to those in both arable and temporary ley fields. The analysed results could help understand soil carbon management and maximise sequestration. Moreover, the approach of using real-time NIRS analysis with a rechargeable portable NIRS soil device can offer a convenient and cost-saving alternative for monitoring preliminary SOC changes timely on or offsite without personnel risks from the high-temperature furnace and chemical reagent adopted in the LOI and Dumas processes, respectively, at the laboratory. Therefore, the study suggests that faster, lower-cost, and safer methods like NIRS for analysing initial SOC measurements are now available to provide similar SOC results as traditional soil analysis methods of the LOI and Dumas. Further studies on assessing SOC levels in different farm locations, land, and soil types across seasons using NIRS will improve benchmarked SOC data for farm stakeholders in making evidence-informed agricultural practices. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

27 pages, 2978 KiB  
Article
Dynamic Monitoring and Precision Fertilization Decision System for Agricultural Soil Nutrients Using UAV Remote Sensing and GIS
by Xiaolong Chen, Hongfeng Zhang and Cora Un In Wong
Agriculture 2025, 15(15), 1627; https://doi.org/10.3390/agriculture15151627 - 27 Jul 2025
Viewed by 289
Abstract
We propose a dynamic monitoring and precision fertilization decision system for agricultural soil nutrients, integrating UAV remote sensing and GIS technologies to address the limitations of traditional soil nutrient assessment methods. The proposed method combines multi-source data fusion, including hyperspectral and multispectral UAV [...] Read more.
We propose a dynamic monitoring and precision fertilization decision system for agricultural soil nutrients, integrating UAV remote sensing and GIS technologies to address the limitations of traditional soil nutrient assessment methods. The proposed method combines multi-source data fusion, including hyperspectral and multispectral UAV imagery with ground sensor data, to achieve high-resolution spatial and spectral analysis of soil nutrients. Real-time data processing algorithms enable rapid updates of soil nutrient status, while a time-series dynamic model captures seasonal variations and crop growth stage influences, improving prediction accuracy (RMSE reductions of 43–70% for nitrogen, phosphorus, and potassium compared to conventional laboratory-based methods and satellite NDVI approaches). The experimental validation compared the proposed system against two conventional approaches: (1) laboratory soil testing with standardized fertilization recommendations and (2) satellite NDVI-based fertilization. Field trials across three distinct agroecological zones demonstrated that the proposed system reduced fertilizer inputs by 18–27% while increasing crop yields by 4–11%, outperforming both conventional methods. Furthermore, an intelligent fertilization decision model generates tailored fertilization plans by analyzing real-time soil conditions, crop demands, and climate factors, with continuous learning enhancing its precision over time. The system also incorporates GIS-based visualization tools, providing intuitive spatial representations of nutrient distributions and interactive functionalities for detailed insights. Our approach significantly advances precision agriculture by automating the entire workflow from data collection to decision-making, reducing resource waste and optimizing crop yields. The integration of UAV remote sensing, dynamic modeling, and machine learning distinguishes this work from conventional static systems, offering a scalable and adaptive framework for sustainable farming practices. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

23 pages, 4324 KiB  
Article
Monitoring Nitrogen Uptake and Grain Quality in Ponded and Aerobic Rice with the Squared Simplified Canopy Chlorophyll Content Index
by Gonzalo Carracelas, John Hornbuckle and Carlos Ballester
Remote Sens. 2025, 17(15), 2598; https://doi.org/10.3390/rs17152598 - 25 Jul 2025
Viewed by 333
Abstract
Remote sensing tools have been proposed to assist with rice crop monitoring but have been developed and validated on ponded rice. This two-year study was conducted on a commercial rice farm with irrigation automation technology aimed to (i) understand how canopy reflectance differs [...] Read more.
Remote sensing tools have been proposed to assist with rice crop monitoring but have been developed and validated on ponded rice. This two-year study was conducted on a commercial rice farm with irrigation automation technology aimed to (i) understand how canopy reflectance differs between high-yielding ponded and aerobic rice, (ii) validate the feasibility of using the squared simplified canopy chlorophyll content index (SCCCI2) for N uptake estimates, and (iii) explore the SCCCI2 and similar chlorophyll-sensitive indices for grain quality monitoring. Multispectral images were collected from an unmanned aerial vehicle during both rice-growing seasons. Above-ground biomass and nitrogen (N) uptake were measured at panicle initiation (PI). The performance of single-vegetation-index models in estimating rice N uptake, as previously published, was assessed. Yield and grain quality were determined at harvest. Results showed that canopy reflectance in the visible and near-infrared regions differed between aerobic and ponded rice early in the growing season. Chlorophyll-sensitive indices showed lower values in aerobic rice than in the ponded rice at PI, despite having similar yields at harvest. The SCCCI2 model (RMSE = 20.52, Bias = −6.21 Kg N ha−1, and MAPE = 11.95%) outperformed other models assessed. The SCCCI2, squared normalized difference red edge index, and chlorophyll green index correlated at PI with the percentage of cracked grain, immature grain, and quality score, suggesting that grain milling quality parameters could be associated with N uptake at PI. This study highlights canopy reflectance differences between high-yielding aerobic (averaging 15 Mg ha−1) and ponded rice at key phenological stages and confirms the validity of a single-vegetation-index model based on the SCCCI2 for N uptake estimates in ponded and non-ponded rice crops. Full article
Show Figures

Figure 1

24 pages, 2803 KiB  
Article
AKI2ALL: Integrating AI and Blockchain for Circular Repurposing of Japan’s Akiyas—A Framework and Review
by Manuel Herrador, Romi Bramantyo Margono and Bart Dewancker
Buildings 2025, 15(15), 2629; https://doi.org/10.3390/buildings15152629 - 25 Jul 2025
Viewed by 497
Abstract
Japan’s 8.5 million vacant homes (Akiyas) represent a paradox of scarcity amid surplus: while rural depopulation leaves properties abandoned, housing shortages and bureaucratic inefficiencies hinder their reuse. This study proposes AKI2ALL, an AI-blockchain framework designed to automate the circular repurposing of Akiyas into [...] Read more.
Japan’s 8.5 million vacant homes (Akiyas) represent a paradox of scarcity amid surplus: while rural depopulation leaves properties abandoned, housing shortages and bureaucratic inefficiencies hinder their reuse. This study proposes AKI2ALL, an AI-blockchain framework designed to automate the circular repurposing of Akiyas into ten high-value community assets—guesthouses, co-working spaces, pop-up retail and logistics hubs, urban farming hubs, disaster relief housing, parking lots, elderly daycare centers, exhibition spaces, places for food and beverages, and company offices—through smart contracts and data-driven workflows. By integrating circular economy principles with decentralized technology, AKI2ALL streamlines property transitions, tax validation, and administrative processes, reducing operational costs while preserving embodied carbon in existing structures. Municipalities list properties, owners select uses, and AI optimizes assignments based on real-time demand. This work bridges gaps in digital construction governance, proving that automating trust and accountability can transform systemic inefficiencies into opportunities for community-led, low-carbon regeneration, highlighting its potential as a scalable model for global vacant property reuse. Full article
(This article belongs to the Special Issue Advances in the Implementation of Circular Economy in Buildings)
Show Figures

Figure 1

15 pages, 2371 KiB  
Article
Designing and Implementing a Ground-Based Robotic System to Support Spraying Drone Operations: A Step Toward Collaborative Robotics
by Marcelo Rodrigues Barbosa Júnior, Regimar Garcia dos Santos, Lucas de Azevedo Sales, João Victor da Silva Martins, João Gabriel de Almeida Santos and Luan Pereira de Oliveira
Actuators 2025, 14(8), 365; https://doi.org/10.3390/act14080365 - 23 Jul 2025
Viewed by 348
Abstract
Robots are increasingly emerging as effective platforms to overcome a wide range of challenges in agriculture. Beyond functioning as standalone systems, agricultural robots are proving valuable as collaborative platforms, capable of supporting and integrating with humans and other technologies and agricultural activities. In [...] Read more.
Robots are increasingly emerging as effective platforms to overcome a wide range of challenges in agriculture. Beyond functioning as standalone systems, agricultural robots are proving valuable as collaborative platforms, capable of supporting and integrating with humans and other technologies and agricultural activities. In this study, we designed and implemented an automated system embedded in a ground-based robotic platform to support spraying drone operations. The system consists of a robotic platform that carries the spraying drone along with all necessary support devices, including a water tank, chemical reservoirs, a mixer, generators for drone battery charging, and a top landing pad. The system is controlled with a mobile app that calculates the total amount of water and chemicals required and sends commands to the platform to prepare the application mixture. The input information in the app includes the field area, application rate, and up to three chemical dosages simultaneously. Additionally, the platform allows the drone to take off from and land on it, enhancing both safety and operability. A set of pumps was used to deliver water and chemicals as specified in the mobile app. To automate pump control, we used Arduino technology, including both the microcontroller and a programming environment for coding and designing the mobile app. To validate the system’s effectiveness, we individually measured the amount of water and chemical delivered to the mixer tank and compared it with conventional manual methods for calculating chemical quantities and preparation time. The system demonstrated consistent results, achieving high precision and accuracy in delivering the correct amount. This study advances the field of agricultural robotics by highlighting the role of collaborative platforms. Particularly, the system presents a valuable and low-cost solution for small farms and experimental research. Full article
(This article belongs to the Special Issue Design and Control of Agricultural Robotics)
Show Figures

Figure 1

21 pages, 16254 KiB  
Article
Prediction of Winter Wheat Yield and Interpretable Accuracy Under Different Water and Nitrogen Treatments Based on CNNResNet-50
by Donglin Wang, Yuhan Cheng, Longfei Shi, Huiqing Yin, Guangguang Yang, Shaobo Liu, Qinge Dong and Jiankun Ge
Agronomy 2025, 15(7), 1755; https://doi.org/10.3390/agronomy15071755 - 21 Jul 2025
Viewed by 383
Abstract
Winter wheat yield prediction is critical for optimizing field management plans and guiding agricultural production. To address the limitations of conventional manual yield estimation methods, including low efficiency and poor interpretability, this study innovatively proposes an intelligent yield estimation method based on a [...] Read more.
Winter wheat yield prediction is critical for optimizing field management plans and guiding agricultural production. To address the limitations of conventional manual yield estimation methods, including low efficiency and poor interpretability, this study innovatively proposes an intelligent yield estimation method based on a convolutional neural network (CNN). A comprehensive two-factor (fertilization × irrigation) controlled field experiment was designed to thoroughly validate the applicability and effectiveness of this method. The experimental design comprised two irrigation treatments, sufficient irrigation (C) at 750 m3 ha−1 and deficit irrigation (M) at 450 m3 ha−1, along with five fertilization treatments (at a rate of 180 kg N ha−1): (1) organic fertilizer alone, (2) organic–inorganic fertilizer blend at a 7:3 ratio, (3) organic–inorganic fertilizer blend at a 3:7 ratio, (4) inorganic fertilizer alone, and (5) no fertilizer control. The experimental protocol employed a DJI M300 RTK unmanned aerial vehicle (UAV) equipped with a multispectral sensor to systematically acquire high-resolution growth imagery of winter wheat across critical phenological stages, from heading to maturity. The acquired multispectral imagery was meticulously annotated using the Labelme professional annotation tool to construct a comprehensive experimental dataset comprising over 2000 labeled images. These annotated data were subsequently employed to train an enhanced CNN model based on ResNet50 architecture, which achieved automated generation of panicle density maps and precise panicle counting, thereby realizing yield prediction. Field experimental results demonstrated significant yield variations among fertilization treatments under sufficient irrigation, with the 3:7 organic–inorganic blend achieving the highest actual yield (9363.38 ± 468.17 kg ha−1) significantly outperforming other treatments (p < 0.05), confirming the synergistic effects of optimized nitrogen and water management. The enhanced CNN model exhibited superior performance, with an average accuracy of 89.0–92.1%, representing a 3.0% improvement over YOLOv8. Notably, model accuracy showed significant correlation with yield levels (p < 0.05), suggesting more distinct panicle morphological features in high-yield plots that facilitated model identification. The CNN’s yield predictions demonstrated strong agreement with the measured values, maintaining mean relative errors below 10%. Particularly outstanding performance was observed for the organic fertilizer with full irrigation (5.5% error) and the 7:3 organic-inorganic blend with sufficient irrigation (8.0% error), indicating that the CNN network is more suitable for these management regimes. These findings provide a robust technical foundation for precision farming applications in winter wheat production. Future research will focus on integrating this technology into smart agricultural management systems to enable real-time, data-driven decision making at the farm scale. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

16 pages, 3840 KiB  
Article
Automated Body Condition Scoring in Dairy Cows Using 2D Imaging and Deep Learning
by Reagan Lewis, Teun Kostermans, Jan Wilhelm Brovold, Talha Laique and Marko Ocepek
AgriEngineering 2025, 7(7), 241; https://doi.org/10.3390/agriengineering7070241 - 18 Jul 2025
Viewed by 514
Abstract
Accurate body condition score (BCS) monitoring in dairy cows is essential for optimizing health, productivity, and welfare. Traditional manual scoring methods are labor-intensive and subjective, driving interest in automated imaging-based systems. This study evaluated the effectiveness of 2D imaging and deep learning for [...] Read more.
Accurate body condition score (BCS) monitoring in dairy cows is essential for optimizing health, productivity, and welfare. Traditional manual scoring methods are labor-intensive and subjective, driving interest in automated imaging-based systems. This study evaluated the effectiveness of 2D imaging and deep learning for BCS classification using three camera perspectives—front, back, and top-down—to identify the most reliable viewpoint. The research involved 56 Norwegian Red milking cows at the Center for Livestock Experiments (SHF) of Norges Miljo-og Biovitenskaplige Universitet (NMBU) in Norway. Images were classified into BCS categories of 2.5, 3.0, and 3.5 using a YOLOv8 model. The back view achieved the highest classification precision (mAP@0.5 = 0.439), confirming that key morphological features for BCS assessment are best captured from this angle. Challenges included misclassification due to overlapping features, especially in Class 2.5 and background data. The study recommends improvements in algorithmic feature extraction, dataset expansion, and multi-view integration to enhance accuracy. Integration with precision farming tools enables continuous monitoring and early detection of health issues. This research highlights the potential of 2D imaging as a cost-effective alternative to 3D systems, particularly for small and medium-sized farms, supporting more effective herd management and improved animal welfare. Full article
(This article belongs to the Special Issue Precision Farming Technologies for Monitoring Livestock and Poultry)
Show Figures

Figure 1

26 pages, 6624 KiB  
Article
Data-Efficient Sowing Position Estimation for Agricultural Robots Combining Image Analysis and Expert Knowledge
by Shuntaro Aotake, Takuya Otani, Masatoshi Funabashi and Atsuo Takanishi
Agriculture 2025, 15(14), 1536; https://doi.org/10.3390/agriculture15141536 - 16 Jul 2025
Viewed by 471
Abstract
We propose a data-efficient framework for automating sowing operations by agricultural robots in densely mixed polyculture environments. This study addresses the challenge of enabling robots to identify suitable sowing positions with minimal labeled data by integrating image-based field sensing with expert agricultural knowledge. [...] Read more.
We propose a data-efficient framework for automating sowing operations by agricultural robots in densely mixed polyculture environments. This study addresses the challenge of enabling robots to identify suitable sowing positions with minimal labeled data by integrating image-based field sensing with expert agricultural knowledge. We collected 84 RGB-depth images from seven field sites, labeled by synecological farming practitioners of varying proficiency levels, and trained a regression model to estimate optimal sowing positions and seeding quantities. The model’s predictions were comparable to those of intermediate-to-advanced practitioners across diverse field conditions. To implement this estimation in practice, we mounted a Kinect v2 sensor on a robot arm and integrated its 3D spatial data with axis-specific movement control. We then applied a trajectory optimization algorithm based on the traveling salesman problem to generate efficient sowing paths. Simulated trials incorporating both computation and robotic control times showed that our method reduced sowing operation time by 51% compared to random planning. These findings highlight the potential of interpretable, low-data machine learning models for rapid adaptation to complex agroecological systems and demonstrate a practical approach to combining structured human expertise with sensor-based automation in biodiverse farming environments. Full article
Show Figures

Figure 1

23 pages, 3747 KiB  
Article
Design Optimization and Performance Evaluation of an Automated Pelleted Feed Trough for Sheep Feeding Management
by Xinyu Gao, Chuanzhong Xuan, Jianxin Zhao, Yanhua Ma, Tao Zhang and Suhui Liu
Agriculture 2025, 15(14), 1487; https://doi.org/10.3390/agriculture15141487 - 10 Jul 2025
Viewed by 297
Abstract
The automatic feeding device is crucial in grassland livestock farming, enhancing feeding efficiency, ensuring regular and accurate feed delivery, minimizing waste, and reducing costs. The shape and size of pellet feed render it particularly suitable for the delivery mechanism of automated feeding troughs. [...] Read more.
The automatic feeding device is crucial in grassland livestock farming, enhancing feeding efficiency, ensuring regular and accurate feed delivery, minimizing waste, and reducing costs. The shape and size of pellet feed render it particularly suitable for the delivery mechanism of automated feeding troughs. The uniformity of pellet flow is a critical factor in the study of automatic feeding troughs, and optimizing the movement characteristics of the pellets contributes to enhanced operational efficiency of the equipment. However, existing research often lacks a systematic analysis of the pellet size characteristics (such as diameter and length) and flow behavior differences in pellet feed, which limits the practical application of feed troughs. This study optimized the angle of repose and structural parameters of the feeding trough using Matlab simulations and discrete element modeling. It explored how the stock bin slope and baffle opening height influence pellet feed flow characteristics. A programmable logic controller (PLC) and human–machine interface (HMI) were used for precise timing and quantitative feeding, validating the design’s practicality. The results indicated that the Matlab method could calibrate the Johnson–Kendall–Roberts (JKR) model’s surface energy. The optimal slope was found to be 63°, with optimal baffle heights of 28 mm for fine and medium pellets and 30 mm for coarse pellets. The experimental metrics showed relative errors of 3.5%, 2.8%, and 4.2% (for average feed rate) and 8.2%, 7.3%, and 1.2% (for flow time). The automatic feeding trough showed a feeding error of 0.3% with PLC-HMI. This study’s optimization of the automatic feeding trough offers a strong foundation and guidance for efficient, accurate pellet feed distribution. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

28 pages, 521 KiB  
Article
Provably Secure and Privacy-Preserving Authentication Scheme for IoT-Based Smart Farm Monitoring Environment
by Hyeonjung Jang, Jihye Choi, Seunghwan Son, Deokkyu Kwon and Youngho Park
Electronics 2025, 14(14), 2783; https://doi.org/10.3390/electronics14142783 - 10 Jul 2025
Viewed by 278
Abstract
Smart farming is an agricultural technology integrating advanced technology such as cloud computing, Artificial Intelligence (AI), the Internet of Things (IoT), and robots into traditional farming. Smart farming can help farmers by increasing agricultural production and managing resources efficiently. However, malicious attackers can [...] Read more.
Smart farming is an agricultural technology integrating advanced technology such as cloud computing, Artificial Intelligence (AI), the Internet of Things (IoT), and robots into traditional farming. Smart farming can help farmers by increasing agricultural production and managing resources efficiently. However, malicious attackers can attempt security attacks because communication in smart farming is conducted via public channels. Therefore, an authentication scheme is necessary to ensure security in smart farming. In 2024, Rahaman et al. proposed a privacy-centric authentication scheme for smart farm monitoring. However, we demonstrated that their scheme is vulnerable to stolen mobile device, impersonation, and ephemeral secret leakage attacks. This paper suggests a secure and privacy-preserving scheme to resolve the security defects of the scheme proposed by Rahaman et al. We also verified the security of our scheme through “the Burrows-Abadi-Needham (BAN) logic”, “Real-or-Random (RoR) model”, and “Automated Validation of Internet Security Protocols and Application (AVISPA) tool”. Furthermore, a performance analysis of the proposed scheme compared with related studies was conducted. The comparison result proves that our scheme was more efficient and secure than related studies in the smart farming environment. Full article
(This article belongs to the Special Issue Trends in Information Systems and Security)
Show Figures

Figure 1

42 pages, 3505 KiB  
Review
Computer Vision Meets Generative Models in Agriculture: Technological Advances, Challenges and Opportunities
by Xirun Min, Yuwen Ye, Shuming Xiong and Xiao Chen
Appl. Sci. 2025, 15(14), 7663; https://doi.org/10.3390/app15147663 - 8 Jul 2025
Viewed by 812
Abstract
The integration of computer vision (CV) and generative artificial intelligence (GenAI) into smart agriculture has revolutionised traditional farming practices by enabling real-time monitoring, automation, and data-driven decision-making. This review systematically examines the applications of CV in key agricultural domains, such as crop health [...] Read more.
The integration of computer vision (CV) and generative artificial intelligence (GenAI) into smart agriculture has revolutionised traditional farming practices by enabling real-time monitoring, automation, and data-driven decision-making. This review systematically examines the applications of CV in key agricultural domains, such as crop health monitoring, precision farming, harvesting automation, and livestock management, while highlighting the transformative role of GenAI in addressing data scarcity and enhancing model robustness. Advanced techniques, including convolutional neural networks (CNNs), YOLO variants, and transformer-based architectures, are analysed for their effectiveness in tasks like pest detection, fruit maturity classification, and field management. The survey reveals that generative models, such as generative adversarial networks (GANs) and diffusion models, significantly improve dataset diversity and model generalisation, particularly in low-resource scenarios. However, challenges persist, including environmental variability, edge deployment limitations, and the need for interpretable systems. Emerging trends, such as vision–language models and federated learning, offer promising avenues for future research. The study concludes that the synergy of CV and GenAI holds immense potential for advancing smart agriculture, though scalable, adaptive, and trustworthy solutions remain critical for widespread adoption. This comprehensive analysis provides valuable insights for researchers and practitioners aiming to harness AI-driven innovations in agricultural ecosystems. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

26 pages, 346 KiB  
Article
Hematological Parameters of Clinically Healthy Indigenous Greek Goats (Capra prisca) and Their Associations with Parasitological Findings, Age and Reproductive Stage
by Konstantinos V. Arsenopoulos, Eleni Michalopoulou, Eleftherios Triantafyllou, George C. Fthenakis and Elias Papadopoulos
Agriculture 2025, 15(13), 1445; https://doi.org/10.3390/agriculture15131445 - 4 Jul 2025
Viewed by 257
Abstract
Objectives: The present study aimed to determine the reference intervals for complete blood count and total protein parameters in Greek indigenous Capra prisca goats and to evaluate their associations with parasitic burden, age and reproductive stage. Methods: Two-hundred clinically health goats were grouped [...] Read more.
Objectives: The present study aimed to determine the reference intervals for complete blood count and total protein parameters in Greek indigenous Capra prisca goats and to evaluate their associations with parasitic burden, age and reproductive stage. Methods: Two-hundred clinically health goats were grouped by parasite status (gastrointestinal nematodes, Eimeria spp., and lungworm infection), age (3–6-month-old growing kids; lactating non-pregnant goats ≤ 3 or >3 years old) and reproductive stage (non-lactating pregnant goats; lactating non-pregnant goats). Blood samples were analyzed for erythrogram, leukogram and megakaryocytic parameters using an automated analyzer and manual blood smears. Total plasma proteins were measured using refractometry. Results: Gastrointestinal nematode-infected animals (>300 eggs per gram of feces) were associated with a significant reduction in red blood cell counts and hematocrit estimation, and an increase in mean corpuscular hemoglobin and mean corpuscular hemoglobin concentrations, while lungworm-infected animals were associated with decreased red blood cells, red cell distribution width and neutrophils, and increased lymphocytes compared to non-infected animals. Eimeria spp. affected only basophils in growing kids. Age influenced all erythrocytic and leukocytic parameters (apart from neutrophils and monocytes), as well as all megakaryocytic parameters and total proteins, with younger animals showing higher red and white blood cell counts and platelets compared to adults. Pregnant does had elevated hemoglobin, hematocrit, neutrophils and monocytes compared with lactating non-pregnant does. Conclusions: The calculated 95% reference intervals for our demographic groups of animals provide a useful diagnostic framework for assessing Capra prisca health in Greek goat farming. Full article
(This article belongs to the Section Farm Animal Production)
23 pages, 9135 KiB  
Article
Stone Detection on Agricultural Land Using Thermal Imagery from Unmanned Aerial Systems
by Florian Thürkow, Mike Teucher, Detlef Thürkow and Milena Mohri
AgriEngineering 2025, 7(7), 203; https://doi.org/10.3390/agriengineering7070203 - 1 Jul 2025
Viewed by 566
Abstract
Stones in agricultural fields pose a recurring challenge, particularly due to their potential to damage agricultural machinery and disrupt field operations. As modern agriculture moves toward automation and precision farming, efficient stone detection has become a critical concern. This study explores the potential [...] Read more.
Stones in agricultural fields pose a recurring challenge, particularly due to their potential to damage agricultural machinery and disrupt field operations. As modern agriculture moves toward automation and precision farming, efficient stone detection has become a critical concern. This study explores the potential of thermal imaging as a non-invasive method for detecting stones under varying environmental conditions. A series of controlled laboratory experiments and field investigations confirmed the assumption that stones exhibit higher surface temperatures than the surrounding soil, especially when soil moisture is high and air temperatures are cooling rapidly. This temperature difference is attributed to the higher thermal inertia of stones, which allows them to absorb and retain heat longer than soil, as well as to the evaporative cooling from moist soil. These findings demonstrate the viability of thermal cameras as a tool for stone detection in precision farming. Incorporating this technology with GPS mapping enables the generation of accurate location data, facilitating targeted stone removal and reducing equipment damage. This approach aligns with the goals of sustainable agricultural engineering by supporting field automation, minimizing mechanical inefficiencies, and promoting data-driven decisions. Thermal imaging thereby contributes to the evolution of next-generation agricultural systems. Full article
(This article belongs to the Special Issue Recent Trends and Advances in Agricultural Engineering)
Show Figures

Figure 1

21 pages, 2134 KiB  
Article
Optimizing Trajectories for Rechargeable Agricultural Robots in Greenhouse Climatic Sensing Using Deep Reinforcement Learning with Proximal Policy Optimization Algorithm
by Ashraf Sharifi, Sara Migliorini and Davide Quaglia
Future Internet 2025, 17(7), 296; https://doi.org/10.3390/fi17070296 - 30 Jun 2025
Viewed by 237
Abstract
The experimentation of agricultural robots has been increasing in recent years, both in greenhouses and open fields. While agricultural robots are inherently useful for automating various farming tasks, their presence can also be leveraged to collect measurements along their paths. This approach enables [...] Read more.
The experimentation of agricultural robots has been increasing in recent years, both in greenhouses and open fields. While agricultural robots are inherently useful for automating various farming tasks, their presence can also be leveraged to collect measurements along their paths. This approach enables the creation of a complete and detailed picture of the climate conditions inside a greenhouse, reducing the need to distribute a large number of physical devices among the crops. In this regard, choosing the best visiting sequence of the Points of Interest (PoIs) regarding where to perform the measurements deserves particular attention. This trajectory planning has to carefully combine the amount and significance of the collected data with the energy requirements of the robot. In this paper, we propose a method based on Deep Reinforcement Learning enriched with a Proximal Policy Optimization (PPO) algorithm for determining the best trajectory an agricultural robot must follow to balance the number of measurements and autonomy adequately. The proposed approach has been applied to a real-world case study regarding a greenhouse in Verona (Italy) and compared with other existing state-of-the-art approaches. Full article
(This article belongs to the Special Issue Smart Technology: Artificial Intelligence, Robotics and Algorithms)
Show Figures

Graphical abstract

28 pages, 1634 KiB  
Review
AI-Powered Vocalization Analysis in Poultry: Systematic Review of Health, Behavior, and Welfare Monitoring
by Venkatraman Manikandan and Suresh Neethirajan
Sensors 2025, 25(13), 4058; https://doi.org/10.3390/s25134058 - 29 Jun 2025
Viewed by 899
Abstract
Artificial intelligence and bioacoustics represent a paradigm shift in non-invasive poultry welfare monitoring through advanced vocalization analysis. This comprehensive systematic review critically examines the transformative evolution from traditional acoustic feature extraction—including Mel-Frequency Cepstral Coefficients (MFCCs), spectral entropy, and spectrograms—to cutting-edge deep learning architectures [...] Read more.
Artificial intelligence and bioacoustics represent a paradigm shift in non-invasive poultry welfare monitoring through advanced vocalization analysis. This comprehensive systematic review critically examines the transformative evolution from traditional acoustic feature extraction—including Mel-Frequency Cepstral Coefficients (MFCCs), spectral entropy, and spectrograms—to cutting-edge deep learning architectures encompassing Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) networks, attention mechanisms, and groundbreaking self-supervised models such as wav2vec2 and Whisper. The investigation reveals compelling evidence for edge computing deployment via TinyML frameworks, addressing critical scalability challenges in commercial poultry environments characterized by acoustic complexity and computational constraints. Advanced applications spanning emotion recognition, disease detection, and behavioral phenotyping demonstrate unprecedented potential for real-time welfare assessment. Through rigorous bibliometric co-occurrence mapping and thematic clustering analysis, this review exposes persistent methodological bottlenecks: dataset standardization deficits, evaluation protocol inconsistencies, and algorithmic interpretability limitations. Critical knowledge gaps emerge in cross-species domain generalization and contextual acoustic adaptation, demanding urgent research prioritization. The findings underscore explainable AI integration as essential for establishing stakeholder trust and regulatory compliance in automated welfare monitoring systems. This synthesis positions acoustic AI as a cornerstone technology enabling ethical, transparent, and scientifically robust precision livestock farming, bridging computational innovation with biological relevance for sustainable poultry production systems. Future research directions emphasize multi-modal sensor integration, standardized evaluation frameworks, and domain-adaptive models capable of generalizing across diverse poultry breeds, housing conditions, and environmental contexts while maintaining interpretability for practical farm deployment. Full article
(This article belongs to the Special Issue Feature Papers in Smart Agriculture 2025)
Show Figures

Figure 1

Back to TopTop