Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = falling liquid films

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 3398 KiB  
Review
A Comprehensive Review on Studies of Flow Characteristics in Horizontal Tube Falling Film Heat Exchangers
by Zhenchuan Wang and Meijun Li
Energies 2025, 18(13), 3587; https://doi.org/10.3390/en18133587 - 7 Jul 2025
Viewed by 379
Abstract
The horizontal tube falling film heat exchangers (HTFFHEs), which exhibit remarkable advantages such as high efficiency in heat and mass transfer, low resistance, and a relatively simple structural configuration, have found extensive applications. Complex flow phenomena and the coupled processes of heat and [...] Read more.
The horizontal tube falling film heat exchangers (HTFFHEs), which exhibit remarkable advantages such as high efficiency in heat and mass transfer, low resistance, and a relatively simple structural configuration, have found extensive applications. Complex flow phenomena and the coupled processes of heat and mass transfer take place within it. Given that the heat and mass transfer predominantly occur at the gas-liquid interface, the flow characteristics therein emerge as a significant factor governing the performance of heat and mass transfer. This article elaborates on the progress of experimental and simulation research approaches with respect to flow characteristics. It systematically reviews the influence patterns of various operating parameters, namely parameters of gas, solution and internal medium, as well as structural parameters like tube diameter and tube spacing, on the flow characteristics, such as the flow regime between tubes, liquid film thickness, and wettability. This review serves to furnish theoretical underpinnings for optimizing the heat and mass transfer performance of the horizontal tube falling film heat exchanger. It is further indicated that the multi-dimensional flow characteristics and their quantitative characterizations under the impacts of different airflow features will constitute the focal research directions for horizontal tube falling film heat exchangers in the foreseeable future. Full article
Show Figures

Figure 1

19 pages, 3449 KiB  
Article
Optimization of Gas-Liquid Sulfonation in Cross-Shaped Microchannels for α-Olefin Sulfonate Synthesis
by Yao Li, Yingxin Mu, Muxuan Qin, Wei Zhang and Wenjin Zhou
Micromachines 2025, 16(6), 638; https://doi.org/10.3390/mi16060638 - 28 May 2025
Viewed by 901
Abstract
The gas-liquid sulfonation of α-olefin sulfonate (AOS) in falling film reactors faces significant limitations, primarily due to poor mass transfer efficiency and excessive byproduct formation. To overcome these challenges, a novel cross-shaped microchannel reactor was developed for the continuous gas-liquid sulfonation of α-olefin [...] Read more.
The gas-liquid sulfonation of α-olefin sulfonate (AOS) in falling film reactors faces significant limitations, primarily due to poor mass transfer efficiency and excessive byproduct formation. To overcome these challenges, a novel cross-shaped microchannel reactor was developed for the continuous gas-liquid sulfonation of α-olefin (AO) with gaseous sulfur trioxide (SO3). The influence of key process parameters, including gas-phase flow rate, reaction temperature, SO3/AO molar ratio, and SO3 volume fraction, on product characteristics and their interactions was systematically investigated using the single-factor experiment and response surface methodology (RSM). A high-precision empirical model (coefficient of determination, R2 = 0.9882) to predict product content was successfully constructed. To achieve multi-objective optimization considering product active substance content and energy efficiency, a strategy combining a two-population genetic algorithm with the entropy-weighted TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) method was implemented. Optimal conditions were determined as follows: gas-phase flow rate of 228 mL/min, reaction temperature of 52 °C, SO3/AO molar ratio of 1.27, and SO3 volume fraction of 4%. Compared to conditions optimized solely by RSM, this multi-objective approach achieved a significant 10% reduction in energy efficiency, with only a marginal 3.8% decrease in active substance content. This study demonstrates the feasibility and advantages of microreactors for the efficient and green synthesis of AOS. Full article
(This article belongs to the Section C:Chemistry)
Show Figures

Graphical abstract

12 pages, 5416 KiB  
Article
Nitrogen Fixation via Catalyst-Free Water-Falling Film Dielectric Barrier Discharge Plasma: A Novel and Simple Strategy to Enhance Ammonia Selectivity
by Xu Yang, Yashuai Zhang, Honghua Liao, Congkui Tian, Jingwen Cui and Zhuo Liu
Appl. Sci. 2025, 15(3), 1410; https://doi.org/10.3390/app15031410 - 30 Jan 2025
Viewed by 1229
Abstract
Plasma–liquid reactions represent an emerging green chemical process for nitrogen fixation; however, these processes generally exhibit low selectivity for ammonium (NH4+). This limitation highlights the need to explore simple methods to increase NH4+; selectivity. In this study, [...] Read more.
Plasma–liquid reactions represent an emerging green chemical process for nitrogen fixation; however, these processes generally exhibit low selectivity for ammonium (NH4+). This limitation highlights the need to explore simple methods to increase NH4+; selectivity. In this study, a catalyst-free falling film dielectric barrier discharge plasma system was employed for the selective synthesis of NH4+. By manipulating the flow state of the discharge gas, NH4+ selectivity was found to increase by 138.4% in the sealed gas flow state compared to the flowing gas state. Furthermore, an increase in the discharge voltage positively influenced the NH4+ selectivity. This phenomenon can be attributed to higher energy input and longer reaction times, which facilitate the formation of nitrogen molecular ions, a critical intermediate in ammonia synthesis. The reaction products were analyzed by UV spectrophotometry and emission spectroscopy to investigate the underlying mechanisms of ammonia synthesis. This study reveals the highest reaction rate reported to date for ammonia synthesis via single-system plasma gas–liquid reactions and offers a novel way to improve both the yield and selectivity of ammonium synthesis via non-thermal plasma gas–liquid interactions. Full article
Show Figures

Figure 1

20 pages, 2071 KiB  
Article
Instability of a Film Falling Down a Bounded Plate and Its Application to Structured Packing
by Giulio Croce and Nicola Suzzi
Fluids 2025, 10(2), 30; https://doi.org/10.3390/fluids10020030 - 27 Jan 2025
Cited by 1 | Viewed by 846
Abstract
The instability of a film falling down a vertical plate with lateral walls, which is the base configuration describing the structured packing geometry, is numerically investigated via the lubrication theory. The solid substrate wettability is imposed through the disjoining pressure, while the assumption [...] Read more.
The instability of a film falling down a vertical plate with lateral walls, which is the base configuration describing the structured packing geometry, is numerically investigated via the lubrication theory. The solid substrate wettability is imposed through the disjoining pressure, while the assumption of a tiny, precursor film thickness allows for modelling a moving contact line. Contact angles up to 60, which falls in the range of structured packing applications, are investigated, thanks to the full implementation of the capillary pressure instead of the small slope approximation. Parametric computations are run for a film falling down a vertical plate bounded by lateral walls, changing the plate width and the flow characteristics. An in-house, finite volume method (FVM) code, previously developed in FORTRAN language and validated in the case of film instability and rivulet flow, is used. The number of observed rivulets, triggered by the instability induced by the lateral walls, is traced for each computation. The numerical results suggest that rivulets with a given wavelength, equal to the one provided by the linear stability analysis, are generated, but only those characterized by a wavelength greater than a minimum threshold, which depends on the substrate wettability, induce partial dewetting of the domain. This allowed for the development of a simplified, statistically based model to predict the effective interface area and the rivulet holdup (required to estimate the mass transfer rate in absorption/distillation applications). Compared to the literature models of the structured packing hydrodynamics, which usually assume a continuous wetting layer, the influence of the flow pattern (continuous film or ensemble of rivulets) on the liquid holdup and on the interfacial area is introduced. The predicted flow regime is successfully verified with evidence from the literature, involving a flow down a corrugated sheet. Full article
(This article belongs to the Special Issue Contact Line Dynamics and Droplet Spreading)
Show Figures

Figure 1

21 pages, 3682 KiB  
Article
Three-Dimensional Long-Wave Instability of an Evaporation/Condensation Film
by Weiyang Jiang, Ruiqi Huang, Qiang Yang and Zijing Ding
Fluids 2024, 9(6), 143; https://doi.org/10.3390/fluids9060143 - 14 Jun 2024
Viewed by 1427
Abstract
This paper explores the stability and dynamics of a three-dimensional evaporating/condensing film while falling down a heated/cooled incline. Instead of using the Hertz–Knudsen–Langmuir relation, a more comprehensive phase-change boundary condition is employed. A nonlinear differential equation is derived based on the Benny-type equation, [...] Read more.
This paper explores the stability and dynamics of a three-dimensional evaporating/condensing film while falling down a heated/cooled incline. Instead of using the Hertz–Knudsen–Langmuir relation, a more comprehensive phase-change boundary condition is employed. A nonlinear differential equation is derived based on the Benny-type equation, which takes into account gravity, energy transport, vapor recoil, effective pressure, and evaporation. The impact of effective pressure and vapor recoil on instability is studied using a linear stability analysis. The results show that spanwise perturbations can amplify the destabilizing effects of vapor recoil, leading to instability. Energy transport along the interface has almost no effect on the stability of the system, but it does influence the linear wave speed. Nonlinear evolution demonstrates that, in contrast to the vapor recoil effect, effective pressure can improve stability and delay film rupture. The self-similar solution demonstrates that the minimal film thickness decreases as (trt)1/2 and (trt)1/3 under the dominance of evaporation and vapor recoil, respectively. Full article
(This article belongs to the Special Issue Evaporation, Condensation and Heat Transfer)
Show Figures

Figure 1

18 pages, 18984 KiB  
Article
Effect of Air Parameters on LiCl-H2O Film Flow Behavior in Liquid Desiccant Systems
by Yue Lyu, Yonggao Yin and Jingjing Wang
Buildings 2024, 14(5), 1474; https://doi.org/10.3390/buildings14051474 - 18 May 2024
Cited by 1 | Viewed by 1118
Abstract
The wettability and stability of a solution’s film on the filler surface are the key factors determining heat and mass transfer efficiency in liquid desiccant air conditioning systems. Therefore, this study investigates the effects of different air parameters on the flow behavior of [...] Read more.
The wettability and stability of a solution’s film on the filler surface are the key factors determining heat and mass transfer efficiency in liquid desiccant air conditioning systems. Therefore, this study investigates the effects of different air parameters on the flow behavior of a lithium chloride solution’s film. The effects of air velocity, air flow pattern, and pressure on the wettability and critical amount of spray are discussed. The results show that the main mechanism by which the air velocity affects the wettability is that the shear stress generated by the direction of the air velocity disperses the direction of the surface tension and weakens its effect on the liquid film distribution. In addition, in the counter flow pattern, the air flow blocks the liquid film from spreading longitudinally and destroys the stability of the liquid film at the liquid outlet, which increases the critical amount of spray. The pressure distribution is similar under different operating pressures when the flow is stable; thus, pressure has little effect on wettability. The simulation results under 8 atm are compared with the experimental results. It is found that the sudden increase in the amount of moisture removal when the amount of spray changes from 0.05 to 0.1 m3/(m·h) in the experiment is caused by the change in the liquid film flow state. In addition, the results show that within the range of air flow parameters for the liquid desiccant air conditioning system, air flow shear force is not the main factor affecting the stability of the solution’s film, and there is no secondary breakage of the solution’s film during the falling-film flow process. Full article
(This article belongs to the Special Issue Research on Indoor Air Environment and Energy Conservation)
Show Figures

Figure 1

16 pages, 5021 KiB  
Article
Turning Non-Sticking Surface into Sticky Surface: Correlation between Surface Topography and Contact Angle Hysteresis
by Jingyuan Bai, Xuejiao Wang, Meilin Zhang, Zhou Yang and Jin Zhang
Materials 2024, 17(9), 2006; https://doi.org/10.3390/ma17092006 - 25 Apr 2024
Viewed by 1390
Abstract
We present a surface modification technique that turns CuNi foam films with a high contact angle and non-sticking property into a sticky surface. By decorating with mesh-like biaxially oriented polypropylene (BOPP) and adjusting the surface parameters, the surface exhibits water-retaining capability even when [...] Read more.
We present a surface modification technique that turns CuNi foam films with a high contact angle and non-sticking property into a sticky surface. By decorating with mesh-like biaxially oriented polypropylene (BOPP) and adjusting the surface parameters, the surface exhibits water-retaining capability even when being held upside down. The wetting transition process of droplets falling on its surface were systematically studied using the finite element simulation method. It is found that the liquid filled the surface microstructure and curvy three-phase contact line. Moreover, we experimentally demonstrated that this surface can be further applied to capture underwater air bubbles. Full article
(This article belongs to the Special Issue The Microstructures and Advanced Functional Properties of Thin Films)
Show Figures

Figure 1

12 pages, 5015 KiB  
Article
Enhancing Pixel Charging Efficiency by Optimizing Thin-Film Transistor Dimensions in Gate Driver Circuits for Active-Matrix Liquid Crystal Displays
by Xiaoxin Ma, Xin Zou, Ruoyang Yan, Fion Sze Yan Yeung, Wanlong Zhang and Xiaocong Yuan
Micromachines 2024, 15(2), 263; https://doi.org/10.3390/mi15020263 - 10 Feb 2024
Viewed by 2227
Abstract
Flat panel displays are electronic displays that are thin and lightweight, making them ideal for use in a wide range of applications, from televisions and computer monitors to mobile devices and digital signage. The Thin-Film Transistor (TFT) layer is responsible for controlling the [...] Read more.
Flat panel displays are electronic displays that are thin and lightweight, making them ideal for use in a wide range of applications, from televisions and computer monitors to mobile devices and digital signage. The Thin-Film Transistor (TFT) layer is responsible for controlling the amount of light that passes through each pixel and is located behind the liquid crystal layer, enabling precise image control and high-quality display. As one of the important parameters to evaluate the display performance, the faster response time provides more frames in a second, which benefits many high-end applications, such as applications for playing games and watching movies. To further improve the response time, the single-pixel charging efficiency is investigated in this paper by optimizing the TFT dimensions in gate driver circuits in active-matrix liquid crystal displays. The accurate circuit simulation model is developed to minimize the signal’s fall time (Tf) by optimizing the TFT width-to-length ratio. Our results show that using a driving TFT width of 6790 μm and a reset TFT width of 640 μm resulted in a minimum Tf of 2.6572 μs, corresponding to a maximum pixel charging ratio of 90.61275%. These findings demonstrate the effectiveness of our optimization strategy in enhancing pixel charging efficiency and improving display performance. Full article
(This article belongs to the Special Issue Future Prospects of Thin-Film Transistors and Their Applications)
Show Figures

Figure 1

10 pages, 1796 KiB  
Communication
Air Purification Study Based on the Adhesion Effect between Low-Curvature Liquid Surfaces and Air Convection Friction
by Haotian Weng, Yaozhong Zhang, Xiaolu Huang, Hewei Yuan and Yafei Zhang
Atmosphere 2023, 14(12), 1831; https://doi.org/10.3390/atmos14121831 - 16 Dec 2023
Viewed by 1983
Abstract
Rapid urbanization and industrialization have heightened concerns about air quality worldwide. Conventional air purification methods, reliant on chemicals or energy-intensive processes, fall short in open spaces and in combating emerging pollutants. Addressing these limitations, this study presents a novel water-film air purification prototype [...] Read more.
Rapid urbanization and industrialization have heightened concerns about air quality worldwide. Conventional air purification methods, reliant on chemicals or energy-intensive processes, fall short in open spaces and in combating emerging pollutants. Addressing these limitations, this study presents a novel water-film air purification prototype leveraging the adhesion between low-curvature liquid surfaces and air convection friction. Uniquely designed, this prototype effectively targets toxic gases (e.g., formaldehyde, SO2, NO2) and particulate matter (such as PM2.5) while allowing continuous airflow. This research explores the adhesion and sedimentation capabilities of a low-curvature water solution surface under convection friction, reducing the surface energy to remove airborne pollutants efficiently. The prototype was able to reduce the initial concentration in a 30 m³ chamber within 180 min by 91% for formaldehyde, 78% for nitrogen dioxide (NO2), 99% for sulfur dioxide (SO2), and 96% for PM2.5. Experimentally validated indicators—decay constants, CADR, and purification efficiency—enable a comprehensive evaluation of the purification device, demonstrating its efficacy in mitigating air pollution. This innovative design, which is cost-effective due to its use of easily accessible components and water as the primary medium, indicates strong potential for large-scale deployment. This study points to an environmentally friendly and economical approach to air purification, shedding light on a promising direction for enhancing indoor air quality. Further optimization and exploration of diverse pollutants and environmental conditions will propel the practical applications of this pioneering technology. Full article
Show Figures

Figure 1

16 pages, 4272 KiB  
Article
Liquid Mixing on Falling Films: Marker-Free, Molecule-Sensitive 3D Mapping Using Raman Imaging
by Marcel Nachtmann, Daniel Feger, Felix Wühler, Matthias Rädle and Stephan Scholl
Sensors 2023, 23(13), 5846; https://doi.org/10.3390/s23135846 - 23 Jun 2023
Viewed by 1286
Abstract
Following up on a proof of concept, this publication presents a new method for mixing mapping on falling liquid films. On falling liquid films, different surfaces, plain or structured, are common. Regarding mixing of different components, the surface has a significant effect on [...] Read more.
Following up on a proof of concept, this publication presents a new method for mixing mapping on falling liquid films. On falling liquid films, different surfaces, plain or structured, are common. Regarding mixing of different components, the surface has a significant effect on its capabilities and performance. The presented approach combines marker-free and molecule-sensitive measurements with cross-section mapping to emphasize the mixing capabilities of different surfaces. As an example of the mixing capabilities on falling films, the mixing of sodium sulfate with tap water is presented, followed by a comparison between a plain surface and a pillow plate. The method relies upon point-by-point Raman imaging with a custom-built high-working-distance, low-depth-of-focus probe. To compensate for the long-time measurements, the continuous plant is in its steady state, which means the local mixing state is constant, and the differences are based on the liquids’ position on the falling film, not on time. Starting with two separate streams, the mixing progresses by falling down the surface. In conclusion, Raman imaging is capable of monitoring mixing without any film disturbance and provides detailed information on liquid flow in falling films. Full article
(This article belongs to the Special Issue Optical Imaging and Biophotonic Sensors (OIBS))
Show Figures

Figure 1

11 pages, 3387 KiB  
Article
Pulsed Laser Spot Welding Thermal-Shock-Induced Microcracking of Inconel 718 Thin Sheet Alloy
by Mingli Shi, Xin Ye, Yuanhao Wang and Di Wu
Materials 2023, 16(10), 3775; https://doi.org/10.3390/ma16103775 - 17 May 2023
Cited by 1 | Viewed by 1570
Abstract
This paper investigates the change in solidification microcrack susceptibility under the influence of thermal-shock-induced effects for pulsed laser spot welding molten pools with different waveforms, powers, frequencies, and pulse widths. During the welding process, the temperature of the molten pool under the effect [...] Read more.
This paper investigates the change in solidification microcrack susceptibility under the influence of thermal-shock-induced effects for pulsed laser spot welding molten pools with different waveforms, powers, frequencies, and pulse widths. During the welding process, the temperature of the molten pool under the effect of thermal shock changes sharply, triggering pressure waves, creating cavities in the molten pool paste area, and forming crack sources during solidification. The microstructure near the cracks was analyzed using a SEM (scanning electron microscope) and EDS (electronic differential system), and it was found that bias precipitation occurred during the rapid solidification of the melt pool, and a large amount of Nb elements were enriched in the interdendritic and grain boundaries, which eventually formed a liquid film with a low melting point, known as a Laves phase. When cavities appear in the liquid film, the chance of crack source formation is further increased. Using a slow rise and slow fall waveform is good for reducing cracks; reducing the peak laser power to 1000 w is good for reducing cracks in the solder joint; increasing the pulse width to 20 ms reduces the degree of crack damage; reducing the pulse frequency to 10 hz reduces the degree of crack damage. Full article
Show Figures

Figure 1

23 pages, 8321 KiB  
Article
Thin Film Evaporation Modeling of the Liquid Microlayer Region in a Dewetting Water Bubble
by Ermiyas Lakew, Amirhosein Sarchami, Giovanni Giustini, Hyungdae Kim and Kishan Bellur
Fluids 2023, 8(4), 126; https://doi.org/10.3390/fluids8040126 - 4 Apr 2023
Cited by 6 | Viewed by 3962
Abstract
Understanding the mechanism of bubble growth is crucial to modeling boiling heat transfer and enabling the development of technological applications, such as energy systems and thermal management processes, which rely on boiling to achieve the high heat fluxes required for their operation. This [...] Read more.
Understanding the mechanism of bubble growth is crucial to modeling boiling heat transfer and enabling the development of technological applications, such as energy systems and thermal management processes, which rely on boiling to achieve the high heat fluxes required for their operation. This paper presents analyses of the evaporation of “microlayers”, i.e., ultra-thin layers of liquid present beneath steam bubbles growing at the heated surface in the atmospheric pressure nucleate of boiling water. Evaporation of the microlayer is believed to be a major contributor to the phase change heat transfer, but its evolution, spatio-temporal stability, and impact on macroscale bubble dynamics are still poorly understood. Mass, momentum, and energy transfer in the microlayer are modeled with a lubrication theory approach that accounts for capillary and intermolecular forces and interfacial mass transfer. The model is embodied in a third-order nonlinear film evolution equation, which is solved numerically. Variable wall-temperature boundary conditions are applied at the solid–liquid interface to account for conjugate heat transfer due to evaporative heat loss at the liquid–vapor interface. Predictions obtained with the current approach compare favorably with experimental measurements of microlayer evaporation. By comparing film profiles at a sequence of times into the ebullition cycle of a single bubble, likely values of evaporative heat transfer coefficients were inferred and found to fall within the range of previously reported estimates. The result suggests that the coefficients may not be a constant, as previously assumed, but instead something that varies with time during the ebullition cycle. Full article
(This article belongs to the Special Issue Contact Line Dynamics and Droplet Spreading)
Show Figures

Figure 1

15 pages, 1554 KiB  
Article
Solitary-like Wave Dynamics in Thin Liquid Films over a Vibrated Inclined Plane
by Ivan S. Maksymov and Andrey Pototsky
Appl. Sci. 2023, 13(3), 1888; https://doi.org/10.3390/app13031888 - 1 Feb 2023
Cited by 4 | Viewed by 2109
Abstract
Solitary-like surface waves that originate from the spatio-temporal evolution of falling liquid films have been the subject of theoretical and experimental research due to their unique properties that are not readily observed in other physical systems. Here we investigate, experimentally and theoretically, the [...] Read more.
Solitary-like surface waves that originate from the spatio-temporal evolution of falling liquid films have been the subject of theoretical and experimental research due to their unique properties that are not readily observed in other physical systems. Here we investigate, experimentally and theoretically, the dynamics of solitary-like surface waves in a liquid layer on an inclined plane that is subjected to a harmonic low-frequency vibration in a range from 30 to 50 Hz. We employ a standard boundary layer model, which describes large-amplitude deformations of the film surface, assuming that it has a self-similar parabolic longitudinal flow velocity profile, to confirm the experimental results and to explain the interplay between the short-wavelength Faraday instability and long-wavelength gravitational instability. In particular, we demonstrate that the vibration results in a decrease in the average and peak amplitude of the long solitary-like surface waves. However, the speed of these waves remains largely unaffected by the vibration, implying that they may propagate over large distances almost without changing their amplitude, thus rendering them suitable for a number of practical applications, where the immunity of pulses that carry information to external vibrations is required. Full article
(This article belongs to the Section Fluid Science and Technology)
Show Figures

Figure 1

13 pages, 3160 KiB  
Article
Frequency-Tuned Porous Polyethylene Glycol Films Obtained in Atmospheric-Pressure Dielectric Barrier Discharge (DBD) Plasma
by Bogdan-George Rusu, Cristian Ursu, Mihaela Olaru and Mihail Barboiu
Appl. Sci. 2023, 13(3), 1785; https://doi.org/10.3390/app13031785 - 30 Jan 2023
Cited by 2 | Viewed by 2015
Abstract
This study focuses on the fabrication of plasma-polymerized polyethylene glycol (pp-PEG) with porous morphology in a pulsed dielectric barrier discharge (DBD) plasma under atmospheric pressure. The signal frequency that modulates the plasma discharge was found to have a major influence on the pp-PEG [...] Read more.
This study focuses on the fabrication of plasma-polymerized polyethylene glycol (pp-PEG) with porous morphology in a pulsed dielectric barrier discharge (DBD) plasma under atmospheric pressure. The signal frequency that modulates the plasma discharge was found to have a major influence on the pp-PEG film morphology. The recorded discharge current–voltage characteristic allowed us to establish a homogeneous regime of the DBD plasma operated in helium gas flow upon the frequency range 2–10 kHz. The as-prepared pp-PEG films were characterized by the Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and liquid-phase chromatography (HPLC) techniques. The performed analysis revealed that as the discharge frequency increases, the morphology of the obtained films becomes porous due to the plasma-induced stronger monomer fragmentation. To gain knowledge about the plasma species and the interaction processes that impact the film morphology, optical emission spectroscopy (OES) and intensified charge-coupled device (ICCD) fast imaging technique were applied. The determined vibrational (Tvib) and rotational (Trot) temperatures exhibit a decrease with the introduction of monomer vapors into the discharge gap. For instance, Trot drops from approximately 475 K to 350 K, and Tvib falls from 2850 K to 2650 K for a monomer vapor injection rate of 16 µL/min. This was attributed to the energy losses of the plasma-generated particles, as the inelastic collisions augment with the injection of a monomer. Concurrently with the change in temperature, the discharge current varies significantly for the investigated frequency range and exhibits a drop at high frequencies. This discharge current drop was explained by an enhancement of the recombination rate of charged particles and seems to confirm the prevalence of a plasma-induced monomer fragmentation process at high frequencies. Full article
(This article belongs to the Special Issue Recent Advances in Atmospheric-Pressure Plasma Technology, 2nd Volume)
Show Figures

Figure 1

16 pages, 2704 KiB  
Article
Liquid Nanofilms’ Condensation Inside a Heat Exchanger by Mixed Convection
by Abdelaziz Nasr and Abdulmajeed S. Al-Ghamdi
Appl. Sci. 2022, 12(21), 11190; https://doi.org/10.3390/app122111190 - 4 Nov 2022
Cited by 5 | Viewed by 1467
Abstract
Liquid nanofilm is used in industrial applications, such as heat exchangers, water desalination systems, heat pumps, distillation systems, cooling systems, and complex engineering systems. The present work focuses on the numerical investigation of the condensation of falling liquid film containing different types of [...] Read more.
Liquid nanofilm is used in industrial applications, such as heat exchangers, water desalination systems, heat pumps, distillation systems, cooling systems, and complex engineering systems. The present work focuses on the numerical investigation of the condensation of falling liquid film containing different types of nanoparticles with a low-volume fraction. The nanofluid film falls inside a heat exchanger by mixed convection. The heat exchanger is composed of two parallel vertical plates. One of the plates is wetted and heated, while the other plate is isothermal and dry. The effect of the dispersion of the Cu or Al nanoparticles in the liquid on the heat exchange, mass exchange, and condensation process was analysed. The results showed that the heat transfer was enhanced by the dispersion of the nanoparticles in the water. The copper–water nanofluid presented the highest efficiency compared to the aluminium–water nanofluid and to the basic fluid (pure water) in terms of the heat and mass exchange. Full article
Show Figures

Figure 1

Back to TopTop