Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (228)

Search Parameters:
Keywords = facility set-up

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 967 KB  
Article
Evaluating the Performance of Loop-Mediated Isothermal Amplification for the Detection of Listeria monocytogenes Biofilms on Stainless Steel Surfaces
by Carmen Pilar Garrido-Pérez, Marta López-Cabo and Alejandro Garrido-Maestu
Pathogens 2026, 15(1), 49; https://doi.org/10.3390/pathogens15010049 - 1 Jan 2026
Viewed by 269
Abstract
L. monocytogenes is the causative agent of human listeriosis, a deadly disease with fatality rates up to 20%. L. monocytogenes has the ability to grow under harsh environmental conditions. It can form biofilms in food industries, making it capable of persisting in facilities. [...] Read more.
L. monocytogenes is the causative agent of human listeriosis, a deadly disease with fatality rates up to 20%. L. monocytogenes has the ability to grow under harsh environmental conditions. It can form biofilms in food industries, making it capable of persisting in facilities. Given this scenario, it is of utmost importance to rapidly detect this bacterium not only in foods but also on food-contact surfaces. For the successful outcome of any given detection technology, it is imperative to properly process the samples. In the present work, PBS, LPT, and LPT-Pronase were compared to determine which one could provide better results in DNA-based detection. Additionally, the effect of a short TSB pre-enrichment was assessed. To better mimic a real scenario, L. monocytogenes monospecies and multispecies biofilms were analyzed. It was observed that supplementing LPT with pronase, a protein-degrading enzyme, could better detach the biofilm, which achieved a 0.5 cycle reduction compared to the other broths, and the pre-enrichment reduced the real-time PCR by ~2 cycles. The samples were analyzed by real-time PCR and colorimetric LAMP, and the same results were obtained with both techniques regardless of the concentration of L. monocytogenes present in the biofilm; the initial concentration was 1.8 log CFU/cm2 15 min after the pre-enrichment. The results were confirmed by real-time PCR, which demonstrated the applicability of the methodology to be applied in decentralized setups, such as food-processing facilities, with minimal laboratory infrastructure. Full article
(This article belongs to the Special Issue Diagnosis, Immunopathogenesis and Control of Bacterial Infections)
Show Figures

Figure 1

20 pages, 6994 KB  
Article
Design of Spectrometer Energy Measurement Setups for the Future EuPRAXIA@SPARC_LAB and SSRIP Linacs
by Danilo Quartullo, David Alesini, Alessandro Cianchi, Francesco Demurtas, Luigi Faillace, Giovanni Franzini, Andrea Ghigo, Anna Giribono, Riccardo Pompili, Lucia Sabbatini, Angelo Stella, Cristina Vaccarezza, Alessandro Vannozzi and Livio Verra
Instruments 2025, 9(4), 34; https://doi.org/10.3390/instruments9040034 - 17 Dec 2025
Viewed by 165
Abstract
EuPRAXIA@SPARC_LAB is an FEL (Free-Electron Laser) user facility currently under construction at INFN-LNF in the framework of the EuPRAXIA collaboration. The electron beam will be accelerated to 1 GeV by an X-band RF linac followed by a plasma wakefield acceleration stage. This high-brightness [...] Read more.
EuPRAXIA@SPARC_LAB is an FEL (Free-Electron Laser) user facility currently under construction at INFN-LNF in the framework of the EuPRAXIA collaboration. The electron beam will be accelerated to 1 GeV by an X-band RF linac followed by a plasma wakefield acceleration stage. This high-brightness linac requires diagnostic devices able to measure the beam parameters with high accuracy and resolution. To monitor the beam energy and its spread, magnetic dipoles and quadrupoles will be installed along the linac, in combination with viewing screens and CMOS cameras. Macroparticle beam dynamics simulations have been performed to determine the optimal energy measurement setup in terms of accuracy and resolution. Similar diagnostics evaluations have been carried out for the spectrometer installed at the 100 MeV RF linac of the radioactive beam facility SSRIP (IFIN-HH, Romania), whose commissioning, foreseen for 2026, will be performed by INFN-LNF in collaboration with IFIN-HH. Optics measurements have been performed to characterize the resolution and magnification of the optical system that will be used at SSRIP, and probably also at EuPRAXIA@SPARC_LAB, for beam energy monitoring. Full article
Show Figures

Figure 1

20 pages, 8262 KB  
Article
Seismic Measurements Using Distributed Acoustic Sensing (DAS) for Underwater Soft Sediment Characterization: Insights from Laboratory- and Field-Scale Measurements
by Edwin Obando Hernandez, Matteo Rossi, Roeland Nieboer, Manos Pefkos, Wiebe de Boer and Pieter Doornenbal
Sensors 2025, 25(23), 7234; https://doi.org/10.3390/s25237234 - 27 Nov 2025
Viewed by 618
Abstract
Scholte wave surveys were conducted at both the laboratory and field scales to evaluate the reliability of distributed acoustic sensing (DAS) with a fiber-optic cable resting on top of unconsolidated sedimentary deposits to determine the distribution of S-wave velocity underneath. Laboratory measurements performed [...] Read more.
Scholte wave surveys were conducted at both the laboratory and field scales to evaluate the reliability of distributed acoustic sensing (DAS) with a fiber-optic cable resting on top of unconsolidated sedimentary deposits to determine the distribution of S-wave velocity underneath. Laboratory measurements performed in a controlled environment at the Deltares Laboratory facility demonstrated that DAS retrieves low- and high-frequency energy associated with Scholte and guided waves. The recorded DAS signals provided consistent Scholte wave signals, which depicted coherent phase velocity energy that was used to accurately depict S-wave velocity layering. We observed the presence of guided waves at higher frequencies, which appeared to be enhanced as the source position was moved away from the fiber-optic cable. A field survey was carried out using a linear set-up in a shallow lake, where a fiber-optic cable was placed on top of a sediment layer with a thickness of 5–10 m. The results from DAS were validated using standard hydrophone measurements performed simultaneously. The 2D S-wave velocity cross-section retrieved by DAS appeared to be in good agreement with the results obtained from hydrophone measurements, especially when detecting the main velocity transition occurring at a 7–10 m depth from the free surface. Full article
(This article belongs to the Special Issue Distributed Acoustic Sensing and Applications)
Show Figures

Figure 1

15 pages, 11203 KB  
Article
Designing a Femtosecond-Resolution Bunch Length Monitor Using Coherent Transition Radiation Images
by Ana Guisao-Betancur, Joseph Wolfenden, Erik Mansten, Sara Thorin, Johan Lundquist, Oliver Grimm and Carsten P. Welsch
Instruments 2025, 9(4), 29; https://doi.org/10.3390/instruments9040029 - 25 Nov 2025
Viewed by 450
Abstract
Ultrashort bunch length measurements are crucial for characterizing electron beams in short-pulse accelerators, including novel accelerators like EuPRAXIA and those used for free-electron lasers (FELs). This work provides an overview of the design process and the current status of a single-shot bunch length [...] Read more.
Ultrashort bunch length measurements are crucial for characterizing electron beams in short-pulse accelerators, including novel accelerators like EuPRAXIA and those used for free-electron lasers (FELs). This work provides an overview of the design process and the current status of a single-shot bunch length monitor prototype based on a broadband spatial imaging system for coherent transition radiation (CTR), which was recently installed at the MAX IV short-pulse facility (SPF). The THz-based imaging system was designed using optical system simulation software for full bunch simulation. CTR images were captured experimentally, followed by image analysis for comparison with reference bunch length data from the transverse deflecting cavity (TDC). This paper presents the conceptualization and design choices for the optical system of the bunch length monitor, the current experimental set-up, the installation details, and preliminary positive observations confirming the potential of this method as a novel approach to bunch length monitoring using spatial CTR images and a scalar technique, with potential for future bunch profile measurements. Full article
(This article belongs to the Special Issue Plasma Accelerator Technologies)
Show Figures

Figure 1

39 pages, 5498 KB  
Article
Energy Performance Upgrade of Municipal and Public Buildings and Facilities
by Dimitris Al. Katsaprakakis, George M. Stavrakakis, Nikos Savvakis, Eirini Dakanali, Yiannis Yiannakoudakis, George Zidianakis, Aristotelis Tsekouras, Efi Giannopoulou and Sofia Yfanti
Energies 2025, 18(21), 5798; https://doi.org/10.3390/en18215798 - 3 Nov 2025
Viewed by 653
Abstract
This article presents the accumulated technical and scientific knowledge from energy performance upgrade work in emblematic and essential municipal and public buildings in Crete and the Greek islands, such as the Venetian historical building Loggia, which is used as the Heraklion City Hall, [...] Read more.
This article presents the accumulated technical and scientific knowledge from energy performance upgrade work in emblematic and essential municipal and public buildings in Crete and the Greek islands, such as the Venetian historical building Loggia, which is used as the Heraklion City Hall, the Natural History Museum of Crete, Pancretan Stadium, the municipal swimming pool of the municipality of Minoa Pediadas, the indoor sports hall in Leros, primary schools, high schools and a cultural center. Each one of the aforementioned buildings has a distinct use, thus covering almost all different categories of municipal or public buildings and facilities. The applied energy performance upgrade process in general terms is: (1) Mapping of the current situation, regarding the existing infrastructure and final energy consumption. (2) Formulation and sizing of the proposed passive measures and calculation of the new indoor heating and cooling loads. (3) Selection, sizing and siting of the proposed active measures and calculation of the new expecting energy sources consumption. (4) Sizing and siting of power and heat production systems from renewable energy sources (RES). Through the work accomplished and presented in this article, practically all the most technically and economically feasible passive and active measures were studied: insulation of opaque surfaces, opening overhangs, natural ventilation, replacement of openings, daylighting solar tubes, open-loop geo-exchange plants, refrigerant or water distribution networks, air-to-water heat pumps, solar thermal collectors, lighting systems, automation systems, photovoltaics etc. The main results of the research showed energy savings through passive and active systems that can exceed 70%, depending mainly on the existing energy performance of the facility. By introducing photovoltaic plants operating under the net-metering mode, energy performance upgrades up to zero-energy facilities can be achieved. The payback periods range from 12 to 45 years. The setup budgets of the presented projects range from a few hundred thousand euros to 7 million euros. Full article
(This article belongs to the Special Issue Thermal Comfort and Energy Performance in Building)
Show Figures

Figure 1

26 pages, 4603 KB  
Article
Decision-Driven Analytics in Smart Factories: Enterprise Architecture Framework for Use Case Specification and Engineering (FUSE)
by Julian Weller and Roman Dumitrescu
Electronics 2025, 14(21), 4271; https://doi.org/10.3390/electronics14214271 - 31 Oct 2025
Viewed by 968
Abstract
This paper presents a comprehensive design framework for Enterprise Architecture aimed at facilitating decision-driven analytics in smart factories. The motivation behind this research lies in challenges faced by manufacturing companies, such as skilled labor shortages and increasing global competition, alongside the imperative for [...] Read more.
This paper presents a comprehensive design framework for Enterprise Architecture aimed at facilitating decision-driven analytics in smart factories. The motivation behind this research lies in challenges faced by manufacturing companies, such as skilled labor shortages and increasing global competition, alongside the imperative for sustainable production. This journal provides a novel approach for designing and documenting prescriptive analytics use cases in manufacturing environments. The framework addresses the need for effective integration of advanced data analytics and prescriptive analytics solutions within existing production environments, thereby enhancing operational efficiency and decision-making processes. A Design Science Research approach is used to iteratively derive a framework based on stakeholder needs and activities along the prescriptive analytics use case development cycle. The resulting framework is demonstrated and evaluated in an IoT Factory setup in a research facility. From a practical perspective, the framework supports manufacturing companies in systematically designing prescriptive analytics use cases. From a research perspective, it contributes to the body of knowledge on Enterprise Architecture Management (EAM) by operationalizing the design of prescriptive analytics use cases in manufacturing contexts. The main contributions of this study include the development of a framework that supports the planning, design, and integration of prescriptive analytics use cases. This framework fosters interdisciplinary collaboration and aids in managing the complexity of data-driven projects. Full article
Show Figures

Figure 1

28 pages, 2591 KB  
Review
Standard Sample Preparation for Serial Femtosecond Crystallography
by Christina Schmidt, Kristina Lorenzen, Joachim Schulz and Huijong Han
Biomolecules 2025, 15(11), 1488; https://doi.org/10.3390/biom15111488 - 22 Oct 2025
Viewed by 779
Abstract
The development of serial crystallography (SX), including serial synchrotron crystallography (SSX) at synchrotron sources and serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs), has facilitated the collection of high-resolution diffraction data from micron-sized crystals, providing unique insights into the structures and dynamics [...] Read more.
The development of serial crystallography (SX), including serial synchrotron crystallography (SSX) at synchrotron sources and serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs), has facilitated the collection of high-resolution diffraction data from micron-sized crystals, providing unique insights into the structures and dynamics of biomolecules at room temperature. Standard samples are essential for the commissioning of new XFEL instruments and the validation of experimental setups. In this review, we summarize currently used standard proteins and describe representative microcrystal preparation workflows for four widely adopted models, lysozyme, myoglobin, iq-mEmerald, and photoactive yellow protein (PYP), drawing on established methodologies and accumulated experience from their applications at the European XFEL. By consolidating existing knowledge and integrating protocols that have been systematically refined and optimized through our experimental efforts, this review aims to provide practical guidance for the serial crystallography community, thereby enhancing reproducibility and ensuring consistent experimental performance across facilities. Full article
(This article belongs to the Special Issue Innovative Biomolecular Structure Analysis Techniques)
Show Figures

Figure 1

14 pages, 2686 KB  
Article
Development of Novel Wearable Biosensor for Continuous Monitoring of Central Body Motion
by Mariana Gonzalez Utrilla, Bruce Henderson, Stuart Kelly, Osian Meredith, Basak Tas, Will Lawn, Elizabeth Appiah-Kusi, John F. Dillon and John Strang
Appl. Sci. 2025, 15(20), 11027; https://doi.org/10.3390/app152011027 - 14 Oct 2025
Viewed by 694
Abstract
Accidental opioid overdose and Sudden Unexpected Death in Epilepsy (SUDEP) represent major forms of preventable mortality, often involving sudden-onset catastrophic events that could be survivable with rapid detection and intervention. The current physiological monitoring technologies are potentially applicable, but face challenges, including complex [...] Read more.
Accidental opioid overdose and Sudden Unexpected Death in Epilepsy (SUDEP) represent major forms of preventable mortality, often involving sudden-onset catastrophic events that could be survivable with rapid detection and intervention. The current physiological monitoring technologies are potentially applicable, but face challenges, including complex setups, poor patient compliance, high costs, and uncertainty about community-based use. Paradoxically, simple clinical observation in supervised injection facilities has proven highly effective, suggesting observable changes in central body motion may be sufficient to detect life-threatening events. We describe a novel wearable biosensor for continuous central body motion monitoring, offering a potential early warning system for life-threatening events. The biosensor incorporates a low-power, triaxial MEMS accelerometer within a discreet, chest-worn device, enabling long-term monitoring with minimal user burden. Two system architectures are described: stored data for retrospective analysis/research, and an in-development system for real-time overdose detection and response. Early user research highlights the importance of accuracy, discretion, and trust for adoption among people who use opioids. The initial clinical data collection, including the OD-SEEN study, demonstrates feasibility for capturing motion data during real-world opioid use. This technology represents a promising advancement in non-invasive monitoring, with potential to improve the outcomes for at-risk populations with multiple health conditions. Full article
(This article belongs to the Special Issue Applications of Emerging Biomedical Devices and Systems)
Show Figures

Figure 1

18 pages, 4717 KB  
Article
Improved Smoke Exhaust Efficiency Through Modification of Ventilation Fan Orientation in Underground Parking Lots
by Tae-Ju Lee, Eui-Young Oh and Hyung-Jun Song
Fire 2025, 8(10), 398; https://doi.org/10.3390/fire8100398 - 13 Oct 2025
Viewed by 1266
Abstract
With the enlargement of underground parking lots, the risk of massive smoke and toxic gases generated during a fire will be increased, resulting in significant casualties, property damage, and difficulties in firefighting operations. To address these issues, installation of ventilation fans and inducer [...] Read more.
With the enlargement of underground parking lots, the risk of massive smoke and toxic gases generated during a fire will be increased, resulting in significant casualties, property damage, and difficulties in firefighting operations. To address these issues, installation of ventilation fans and inducer fans together has been proposed to extract smoke and hazardous gases more efficiently to the outside. However, the disturbance of ventilation caused by simultaneous operation of inducer fans and ventilation fans limits smoke extraction efficiency. In some worst cases, smoke disturbance may even lead to further smoke spread. Therefore, this study aims to suggest an efficient smoke extraction strategy for underground parking lots equipped with ventilation and inducer fans by optimizing the orientation of ventilation fans in the event of vehicle fires. Computational fluid dynamics-based simulation results showed that installing ventilation fan intakes and exhausts perpendicularly (PE, 90° apart) was more effective in controlling smoke than installing them in parallel (PA, horizontally facing each other). In the case of PE, the smoke stagnation area around the intakes decreased markedly from 38.18% to 3.68%. Although the smoke area near the exhausts increased in the PE configuration (53.66%) compared with the PA configuration (26.13%), this indicates that smoke was being effectively transported from the intakes to the exhausts. Furthermore, the overall smoke distribution across the entire space decreased by 4.5% under the PE setup compared with the PA setup. As the intake and exhaust flow rates of the fans increased, the efficiency of smoke removal was enhanced under the PE configuration. Consequently, in environments equipped with both ventilation and inducer fans with given conditions, perpendicular installation of fan intakes and exhausts is more efficient. These results are expected to provide practical design guidelines for ensuring effective smoke extraction in underground parking facilities. Full article
Show Figures

Figure 1

16 pages, 3542 KB  
Article
AquaVib: Enabling the Separate Evaluation of Effects Induced by Acoustic Pressure and Particle Motion on Aquatic Organisms
by Pablo Pla, Christ A. F. de Jong, Mike van der Schaar, Marta Solé and Michel André
J. Mar. Sci. Eng. 2025, 13(10), 1885; https://doi.org/10.3390/jmse13101885 - 1 Oct 2025
Viewed by 555
Abstract
Scientific awareness is rising regarding fish and sea invertebrates’ sensitivity to the sound field’s particle motion component. The AquaVib, a distinctive laboratory setup, provides a practical methodology for controlled sound exposure experiments on small aquatic organisms, enabling a separate assessment of their acoustic [...] Read more.
Scientific awareness is rising regarding fish and sea invertebrates’ sensitivity to the sound field’s particle motion component. The AquaVib, a distinctive laboratory setup, provides a practical methodology for controlled sound exposure experiments on small aquatic organisms, enabling a separate assessment of their acoustic pressure- and particle motion-elicited responses across a range of realistic scenarios. The chosen facility design permits the reproduction of realistic sound exposures at different kinetic-to-potential energy ratios, with characteristics similar to underwater-radiated noise from human activities such as shipping or offshore installations (<1 kHz). It provides a cost-efficient multimodal approach to investigate potential physiological, pathological, and ultrastructural effects on small aquatic organisms at any stage of maturity. This study details the vibroacoustic characterization of the AquaVib system, identifies key challenges, and outlines planned improvements. The ultimate goal of the presented approach is to contribute to the scientific community and competent authorities in covering the main gaps in current knowledge on the sensitivity of aquatic organisms to the particle motion component and to identify and quantify potential acute and long-term detrimental effects arising from human activities. Full article
(This article belongs to the Special Issue Recent Advances in Marine Bioacoustics)
Show Figures

Figure 1

11 pages, 758 KB  
Article
Measurement of the 33S(n,α)30Si Thermal Cross-Section with Slow Neutrons at ILL
by Javier Praena, Begoña Fernández, Miguel Macías, Ignacio Porras, María Pedrosa-Rivera, Hanna Koivunoro, Marta Sabaté-Gilarte and Fernando Arias de Saavedra
Quantum Beam Sci. 2025, 9(3), 27; https://doi.org/10.3390/qubs9030027 - 22 Sep 2025
Viewed by 949
Abstract
This work is focused on an accurate experimental determination of the thermal 33S(n,α)30Si cross-section. This cross-section is a critical parameter for the potential use of 33S as a cooperative target in boron neutron capture therapy [...] Read more.
This work is focused on an accurate experimental determination of the thermal 33S(n,α)30Si cross-section. This cross-section is a critical parameter for the potential use of 33S as a cooperative target in boron neutron capture therapy or to understand its role in the stellar nucleosynthesis of 36S. At present, there are large discrepancies in this experimental value; therefore, in this work we measured it relative to the 10B(n,α)7Li standard cross-section at the high flux reactor of the Institut Laue-Langevin. The experimental setup was based on a double-sided silicon strip detector. Two 33S samples were used. One 10B sample was used as reference. Particular attention was taken to the characterization of the mass thickness of the samples before and after the experiment because of the high volatility of 33S. Such work was already published in a dedicated paper. A cross-check of the 10B sample was carried out with the neutron flux monitor at the n_TOF-CERN facility. The obtained cross-section of (280 ± 33) mb is significantly higher than the existing data. Full article
(This article belongs to the Special Issue Quantum Beam Science: Feature Papers 2025)
Show Figures

Figure 1

14 pages, 2287 KB  
Article
Applicability of Reynolds Analogy and Visualization of Coolant Flow Mixing in Downcomer of Land-Based Water-Cooled SMR
by Anton Riazanov, Sergei Dmitriev, Aleksandr Dobrov, Denis Doronkov, Aleksey Pronin, Tatiana Demkina, Daniil Kuritsin, Danil Nikolaev and Dmitriy Solntsev
Fluids 2025, 10(9), 244; https://doi.org/10.3390/fluids10090244 - 16 Sep 2025
Viewed by 588
Abstract
This article presents an experimental study on the hydrodynamics of coolant flow within the pressure vessel of a small modular reactor (SMR) cooled with water, including areas such as the annular downcomer, bottom chamber, and core-simulating channels that are being developed for use [...] Read more.
This article presents an experimental study on the hydrodynamics of coolant flow within the pressure vessel of a small modular reactor (SMR) cooled with water, including areas such as the annular downcomer, bottom chamber, and core-simulating channels that are being developed for use in land-based nuclear power plants. This paper describes the experimental setup and test model, measurement techniques used, experimental conditions under which this research was conducted, and results obtained. This study was conducted at the Nizhny Novgorod State Technical University (NNSTU) using a high-pressure aerodynamic testing facility and a scale model that included structural components similar to those found in loop-type reactors. Experiments were performed with Reynolds numbers (Re) ranging from 20,000 to 50,000 in the annular downcomer space of the test model. Two independent techniques were used to simulate the non-uniform flow field in the pressure vessel: passive impurity injection (adding propane to the airflow) and hot tracer (heating one of the reactor circulation loops). The axial velocity field at the inlet to the reactor core was also investigated. This study provided information about the spatial distribution of a tracer within the coolant flow in the annular downcomer and bottom chamber of the pressure vessel. Data on the distribution of the contrasting admixture are presented in plots. The swirling nature of the coolant flow within the pressurized vessel was analyzed. It was shown that the intensity of mixing within the bottom chamber of the pressure vessel is influenced by the presence of a central vortex. Parameters associated with the mixing of admixtures within the model for the pressure vessel were estimated. Additionally, the possibility for simulating flow with different temperature mixing processes using isothermal models was observed. Full article
(This article belongs to the Special Issue Flow Visualization: Experiments and Techniques, 2nd Edition)
Show Figures

Figure 1

11 pages, 617 KB  
Review
Wide-Awake Local Anesthesia with No Tourniquet (WALANT) Carpal Tunnel Release in the Clinic: A Clinical Practice Update
by T. Hunter Stocker-Downing, Rebecca McAllister, Sean Chan, Ian Mullikin and Kevin Krul
J. Clin. Med. 2025, 14(18), 6407; https://doi.org/10.3390/jcm14186407 - 11 Sep 2025
Viewed by 1657
Abstract
Background: Wide-awake local anesthesia with no tourniquet (WALANT) carpal tunnel release (CTR), performed in the clinic setting, has emerged as a safe, efficient, and cost-effective alternative to traditional operating room (OR)-based decompression. With increasing adoption in clinic settings, WALANT CTR offers the potential [...] Read more.
Background: Wide-awake local anesthesia with no tourniquet (WALANT) carpal tunnel release (CTR), performed in the clinic setting, has emerged as a safe, efficient, and cost-effective alternative to traditional operating room (OR)-based decompression. With increasing adoption in clinic settings, WALANT CTR offers the potential to improve access, reduce costs, and maintain excellent patient outcomes. Purpose: This clinical practice update provides an evidence-based summary of clinic-based WALANT CTR, including patient selection, procedural setup, safety profile, cost implications, and system-level considerations for implementation. Recent Findings: Multiple prospective and retrospective studies confirm the safety of WALANT CTR in the clinic setting, with complication rates comparable to OR-based procedures and no increase in surgical-site infections when field sterility is used. Cost analyses report a 70–85% reduction in facility costs per operative case, and patient satisfaction remains consistently high, even among those with anxiety disorders or psychiatric conditions. Adjunctive interventions such as virtual reality technology devices and noise-canceling headphones further enhance the awake surgical experience. Institutional adoption remains variable, with barriers including sterility concerns, billing uncertainty, and credentialing logistics. This clinical update offers detailed, practical guidance on implementing WALANT CTR for surgeons and staff, covering scheduling, staff training, clinical integration, billing, and compliance considerations. Summary: Clinic-based WALANT CTR is a high-value, patient-centered approach supported by a growing body of literature. With appropriate patient selection, streamlined workflows, and institutional support, this model can optimize surgical care delivery in both resource-rich and limited environments. Full article
(This article belongs to the Special Issue Hand Surgery: Clinical Advances and Practice Updates)
25 pages, 6248 KB  
Article
Analysis of Disruption of Airflow and Particle Distribution by Surgical Personnel and Lighting Fixture in Operating Rooms
by Vikas Valsala Krishnankutty, Chandrasekharan Muraleedharan and Arun Palatel
Fluids 2025, 10(9), 225; https://doi.org/10.3390/fluids10090225 - 27 Aug 2025
Cited by 1 | Viewed by 1412
Abstract
Surgical procedures have significantly contributed to the increased life expectancy of the global population. The surgical procedures are carried out in specialised rooms within a healthcare facility normally designated as operating rooms or operating theatres. These rooms require meticulously designed heating, ventilating, and [...] Read more.
Surgical procedures have significantly contributed to the increased life expectancy of the global population. The surgical procedures are carried out in specialised rooms within a healthcare facility normally designated as operating rooms or operating theatres. These rooms require meticulously designed heating, ventilating, and air conditioning systems to ensure optimal thermal comfort, strict sterility, and effective removal of airborne contaminants and anaesthetic gases. The performance of the system directly affects the risk of surgical site infections and associated post-operative complications. This study presents a computational fluid dynamics analysis of disturbance on airflow and particulate distribution within a representative operating room by the surgical staff and lighting fixtures concerning supply air velocity. The removal of the maximum possible particulate matter, precise control of air temperature and humidity, and unidirectional airflow in the surgical field were incorporated as key design strategies. The species transport model simulations revealed that while laminar airflow offers superior protection in terms of surgical site sterility, its performance is sensitive to disruptions caused by surgical lighting configurations and variations in supply air velocity. The findings highlight the complexities involved in maintaining optimal airflow conditions and underscore the need for integrative air conditioning design approaches that account for optimal design of surgical lighting and operational setups. Full article
(This article belongs to the Section Geophysical and Environmental Fluid Mechanics)
Show Figures

Figure 1

24 pages, 5801 KB  
Article
Copper-Decorated Catalytic Carbon/Ceramic Hollow Fibers for NO Reduction: Enhanced Performance via Tangential Flow Reactor Design and Process Intensification
by George V. Theodorakopoulos, Sergios K. Papageorgiou, Fotios K. Katsaros, Konstantinos G. Beltsios and George Em. Romanos
Fibers 2025, 13(9), 112; https://doi.org/10.3390/fib13090112 - 22 Aug 2025
Viewed by 669
Abstract
In this study, high-yield biopolymer/ceramic hollow fibers were fabricated via a facile, modified polyol process in a spinneret setup, enabling the controlled adsorption of Cu2+ ions. Post sintering transformed these into catalytic copper-decorated carbon/ceramic (alumina) composite hollow fibers, with alginate serving as [...] Read more.
In this study, high-yield biopolymer/ceramic hollow fibers were fabricated via a facile, modified polyol process in a spinneret setup, enabling the controlled adsorption of Cu2+ ions. Post sintering transformed these into catalytic copper-decorated carbon/ceramic (alumina) composite hollow fibers, with alginate serving as both a metal ion binder and a copper nanoparticle stabilizer. The resulting hollow fibers featured porous walls with a high surface area and were densely decorated with copper nanoparticles. Their structural and morphological characteristics were analyzed, and their NO reduction performance was assessed in a continuous flow configuration, where the gas stream passed through both the shell and lumen sides of a fiber bundle in a tangential flow mode. This study also examined the stability, longevity and regeneration potential of the catalytic fibers, including the mechanisms of deactivation and reactivation. Carbon content was found to be decisive for catalytic performance. High-carbon fibers exhibited a light-off temperature of 250 °C, maintained about 90% N2 selectivity and sustained a consistently high NO reduction efficiency for over 300 h, even without reducing gases like CO. In contrast, low-carbon fibers displayed a higher light-off temperature of 350 °C and a reduced catalytic efficiency. The results indicate that carbon enhances both activity and selectivity, counterbalancing deactivation effects. Owing to their scalability, durability and effectiveness, these catalytic fibers and their corresponding bundle-type reactor configuration represent a promising technology for advanced NO abatement. Full article
Show Figures

Figure 1

Back to TopTop