Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,154)

Search Parameters:
Keywords = fabric-first

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
142 pages, 16711 KB  
Review
Asymmetric Bio- and Organocatalysis: Historical Aspects and Concepts
by Pierre Vogel
Catalysts 2026, 16(2), 131; https://doi.org/10.3390/catal16020131 (registering DOI) - 1 Feb 2026
Abstract
For those who did not follow the invention and development of enantioselective catalysis, this review introduces pertinent historical aspects of the field and presents the scientific concepts of asymmetric bio- and organocatalysis. They are powerful technologies applied in organic laboratories and industry. They [...] Read more.
For those who did not follow the invention and development of enantioselective catalysis, this review introduces pertinent historical aspects of the field and presents the scientific concepts of asymmetric bio- and organocatalysis. They are powerful technologies applied in organic laboratories and industry. They realize chiral amplification by converting inexpensive achiral substrates and reagents into enantiomerically enriched products using readily recoverable solvents, if any are used. Racemic substrates can also be deracemized catalytically. More sustainable fabrications are now available that require neither toxic metallic species nor costly reaction conditions in terms of energy, atmosphere control, product purification, and safety. Nature has been the source of the first asymmetric catalysts (microorganisms, enzymes, alkaloids, amino acids, peptides, terpenoids, sugars, and their derivatives). They act as temporary chiral auxiliaries and lower the activation free energy of the reaction by altering the reaction mechanism. Reductions, oxidations, carbon-carbon and carbon-heteroatom bond-forming reactions are part of the process panoply. Asymmetric catalyzed multicomponent and domino reactions are becoming common. Typical modes of activation are proton transfers, hydrogen bonded complex formation, charged or uncharged acid/base pairing (e.g., σ-hole catalysts), formation of equilibria between achiral aldehydes and ketones with their chiral iminium salt or/and enamine intermediates, umpolung of aldehydes and ketones by reaction with N-heterocyclic carbenes (NHCs), phase transfer catalysis (PTC), etc. Often, the best enantioselectivities are observed with polyfunctional catalysts derived from natural compounds, but not always. They may combine to form chiral structures containing nitrogen, phosphorus, sulfur, selenium, and iodine functional moieties. Today, man-made enantiomerically enriched catalysts, if not enantiomerically pure, are available in both enantiomeric forms. Being robust, they are recovered and reused readily. Full article
(This article belongs to the Special Issue Recent Developments in Asymmetric Organocatalysis)
Show Figures

Graphical abstract

13 pages, 7067 KB  
Article
Sensitive Montmorillonite Evaporation Detector Based on Montmorillonite Monolayer Nanosheets
by Jiahao Zhao, Qinglin Jia, Xu Wang, Jinhui Zhang, Yizhen Xu, Hai Zhao, Benbo Zhao, Shixiong Sun, Minghao Zhang, Min Xia, Zhengmao Ding and Chao Wang
Polymers 2026, 18(3), 383; https://doi.org/10.3390/polym18030383 (registering DOI) - 31 Jan 2026
Abstract
Two-dimensional (2D) materials open up exciting possibilities for the study of ion transport behavior for green energy. Here, a simple and effective strategy to fabricate high-conductivity nanofluidic channels based on exfoliated montmorillonite (MTM) nanosheets is proposed. The resource-rich and low-cost layered MTM was [...] Read more.
Two-dimensional (2D) materials open up exciting possibilities for the study of ion transport behavior for green energy. Here, a simple and effective strategy to fabricate high-conductivity nanofluidic channels based on exfoliated montmorillonite (MTM) nanosheets is proposed. The resource-rich and low-cost layered MTM was first exfoliated into monolayer nanosheets using Exolit OP 550. Subsequently, the MTM nanosheets with Exolit OP 550 were assembled into 2D nanofluidic devices by the layer-by-layer self-assembly method. The results show that Exolit OP 550 exfoliates different types of layered MTM into monolayer nanosheets with uniform contrast and integrity. The reconstructed Na-MTM nanofluidic device has the highest ionic conductance. The ionic conductivity of the Na-MTM 2D nanofluidic device was effectively improved after Li+ modification with a higher charge density. After further optimizing the content of Exolit OP 550, the ion conductivity of the MTM nanofluidic device reached 4.66 × 10−4 S cm−1, which is 55.3% higher than the highest known value among the same nanofluidic devices. Interestingly, this nanofluidic device exhibited a very high sensitivity in detecting water evaporation, which can reach 10−12 S s−1 in resolution. This economically viable strategy may advance the study of low-dimensional ion transport properties in new energy coatings and the design of evaporation detectors. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Figure 1

20 pages, 3685 KB  
Article
Profiled Wet Spinning of Polyurethane Composites for Soft Dry Electrodes in Transcutaneous Stimulation Applications
by Alexander V. Shokurov, Ee Qing Tee, Abigail Vogel, Gabriel Gmünder, Kai Röllin, Olivier Lambercy, Dane Donegan, Paulius Viskaitis and Carlo Menon
Materials 2026, 19(3), 557; https://doi.org/10.3390/ma19030557 - 30 Jan 2026
Viewed by 44
Abstract
Transcutaneous electrical nerve stimulation techniques (TENS) are rapidly gaining attention for their potential in various clinical applications. One such technique is transcutaneous auricular vagus nerve stimulation (taVNS), and it involves delivering nerve stimulation through the skin of the external ear. However, taVNS relies [...] Read more.
Transcutaneous electrical nerve stimulation techniques (TENS) are rapidly gaining attention for their potential in various clinical applications. One such technique is transcutaneous auricular vagus nerve stimulation (taVNS), and it involves delivering nerve stimulation through the skin of the external ear. However, taVNS relies on electrodes that must conform to the complex anatomy of the ear while maintaining stable electrical performance. Conventional taVNS electrodes, typically rigid metal or adhesive pads, are uncomfortable, difficult to position, prone to drying, and costly to produce. Here, we present and evaluate two complementary fabrication approaches for soft dry electrodes suitable for taVNS, which are compliant with curved anatomical features and can be operated without gel. The first employs wet spinning of a conductive elastomer into fibers, while the second extends this method to create hollow cylindrical geometries. The resulting spongy polymer composite electrodes exhibit tunable geometry, high conductivity, mechanical resilience under strain and compression, and low material impedance confirmed through bench and human testing, even under dry conditions. These properties are critical for in-ear and broader transcutaneous stimulation applications, highlighting the potential of these fabrication methods for next-generation soft bioelectronic interfaces. Full article
14 pages, 4557 KB  
Article
Mechanical Properties and Failure Mechanism of a Carbon Fiber/Silicone Rubber High-Temperature Flexible Textile Composite
by Jiandong Huang, Jie Mei, Hui Ning, Yue Zhuo, Hanxiang Shan, Fanfu Meng and Xueqi Jiang
Polymers 2026, 18(3), 358; https://doi.org/10.3390/polym18030358 - 29 Jan 2026
Viewed by 105
Abstract
To optimize the aerodynamic performance of the aircraft across its entire cross-section, wing shape control must be maintained based on flight operating conditions. A high-temperature flexible textile composite, which is the key to achieving the deformation of an aircraft wing, is urgently required [...] Read more.
To optimize the aerodynamic performance of the aircraft across its entire cross-section, wing shape control must be maintained based on flight operating conditions. A high-temperature flexible textile composite, which is the key to achieving the deformation of an aircraft wing, is urgently required in the deformable structure of high-speed aircraft. In this work, a novel type of flexible textile composite with enhanced temperature resistance was fabricated by plain-woven carbon fibers coated with silicone rubber. The material testing was carried out in a wind tunnel to simulate both the harsh temperature field distribution and the mechanical loads caused by aerodynamic forces under the flight profile. For the first time, temperatures exceeding 1000 °C were attained on the windward side of an aircraft wing with a peak recorded temperature of 1600 °C. The failure mechanisms of the flexible composites are revealed, and the thermal stability of the composites is evaluated. The results show that the significant tensile anisotropy in the flexible composites is along different off-axis angles, and the failure modes also change with the off-axis angle. The material does not show significant high-temperature oxidation ablation under thermo-mechanical coupling. This work reveals that under the triple action of such high temperatures, stress caused by wing surface tensioning, and the mechanical load caused by aerodynamic forces, the failure mechanism of the flexible textile composite is dominated by the mechanical load at high temperatures rather than by thermal instability, as is conventionally claimed. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

13 pages, 1929 KB  
Article
Impact of Ethylene Oxide Sterilization on PEDOT:PSS Electrophysiology Electrodes
by Ali Maziz, Clement Cointe, Benjamin Reig and Christian Bergaud
Sensors 2026, 26(3), 877; https://doi.org/10.3390/s26030877 - 29 Jan 2026
Viewed by 80
Abstract
Poly(3,4-ethylenedioxythiophene)–polystyrene sulfonate (PEDOT:PSS) is widely used to fabricate conductive organic coatings for electrodes in electrophysiology. As these devices move toward clinical translation, establishing sterilization methods that preserve their functional properties is essential. Ethylene oxide (EtO) is routinely used for sterilizing heat- and moisture-sensitive [...] Read more.
Poly(3,4-ethylenedioxythiophene)–polystyrene sulfonate (PEDOT:PSS) is widely used to fabricate conductive organic coatings for electrodes in electrophysiology. As these devices move toward clinical translation, establishing sterilization methods that preserve their functional properties is essential. Ethylene oxide (EtO) is routinely used for sterilizing heat- and moisture-sensitive medical devices due to its high penetration efficiency and low thermal load. However, the absence of systematic studies evaluating its impact on PEDOT:PSS raises concerns about the compatibility of EtO sterilization with organic electrophysiology interfaces. Here, we report the first comprehensive evaluation of EtO sterilization on PEDOT:PSS electrodes electrochemically deposited onto cortical interfaces designed for intraoperative monitoring and stimulation. EtO exposure induced only minimal changes in surface topography, with no detectable alteration of the electrical or electrochemical performance of the electrodes. Impedance spectroscopy, cyclic voltammetry, and charge-injection capacity measurements all revealed that EtO-treated electrodes retained properties comparable to untreated controls. Moreover, EtO-sterilized PEDOT:PSS coatings demonstrated robust long-term stability under accelerated lifetime testing, exhibiting negligible degradation over extended operation. These findings demonstrate that EtO sterilization is fully compatible with PEDOT:PSS-based bioelectronic interfaces and constitutes a viable pathway toward their safe and effective integration into clinical electrophysiology. This work represents an important step toward translating organic conducting polymer technologies into real-world biomedical applications. Full article
(This article belongs to the Special Issue Electrochemical Impedance Spectroscopy for Sensor Applications)
Show Figures

Figure 1

17 pages, 1650 KB  
Article
Inductor-Based Biosensors for Real-Time Monitoring in the Liquid Phase
by Miriam Hernandez, Patricia Noguera, Nuria Pastor-Navarro, Marcos Cantero-García, Rafael Masot-Peris, Miguel Alcañiz-Fillol and David Gimenez-Romero
Biosensors 2026, 16(2), 79; https://doi.org/10.3390/bios16020079 - 28 Jan 2026
Viewed by 134
Abstract
Current liquid-phase resonant biosensors, such as Quartz Crystal Microbalance, Surface Acoustic Wave, or Surface Plasmon Resonance, typically rely on specialized piezoelectric substrates or complex optical setups. These requirements often necessitate cleanroom fabrication, thereby limiting cost-effective scalability. This study presents a high-integration sensing platform [...] Read more.
Current liquid-phase resonant biosensors, such as Quartz Crystal Microbalance, Surface Acoustic Wave, or Surface Plasmon Resonance, typically rely on specialized piezoelectric substrates or complex optical setups. These requirements often necessitate cleanroom fabrication, thereby limiting cost-effective scalability. This study presents a high-integration sensing platform based on standard Printed Circuit Board (PCB) technology, incorporating an embedded inductor within a fluidic system for real-time monitoring. This design leverages industrial manufacturing standards to achieve a compact, low-cost, and scalable architecture. Detection is governed by shifts in the resonance frequency of an LC tank circuit; specifically, increases in bulk ionic strength induce a frequency decrease, whereas biomolecular adsorption at the sensor surface leads to a frequency increase. This phenomenon can be explained by the modulation of the inter-turn capacitance, which is modeled as a combination of capacitive elements accounting for contributions from the bulk electrolyte and the surface-bound dielectric layer. Such divergent responses provide an intrinsic self-discriminating capability, allowing for the analytical differentiation between surface interactions and bulk effects. To the best of our knowledge, this is the first demonstration of an inductor-based resonant sensor fully embedded in a PCB fluidic architecture for continuous liquid-phase analyte monitoring. Validated through a protein-antibody model (Bovine Serum Albumin-anti-Bovine Serum Albumin), the sensor demonstrated a limit of detection of 1.7 ppm (0.026 mM) and a linear dynamic range of 31–211 ppm (0.47–3.2 mM). These performance metrics, combined with a reproducibility of 4 ± 3%, indicate that the platform meets the requirements for robust analytical applications. Its inherent simplicity and potential for miniaturization position this technology as a viable candidate for point-of-care diagnostics in diverse environments. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Show Figures

Graphical abstract

25 pages, 3356 KB  
Review
PLA/Starch Composites: New Applications as Control Release Materials
by Zhibo Zhao, Yanan Li, Yunlong Xu, Jun Fu, Qingfei Duan, Zhenggui Wu, Muzaffar Makhkamov, Amjad Ali, Hongsheng Liu and Long Yu
Foods 2026, 15(3), 454; https://doi.org/10.3390/foods15030454 - 27 Jan 2026
Viewed by 305
Abstract
Poly(lactic acid) (PLA)/starch composites have attracted considerable attention as promising eco-friendly materials due to their renewable origins and complementary properties. The system synergized benefits including cost reduction and enhancing biodegradation through filled with starch, and reducing moisture sensitivity by adding PLA. In recent [...] Read more.
Poly(lactic acid) (PLA)/starch composites have attracted considerable attention as promising eco-friendly materials due to their renewable origins and complementary properties. The system synergized benefits including cost reduction and enhancing biodegradation through filled with starch, and reducing moisture sensitivity by adding PLA. In recent years, PLA/starch composites have also emerged as functional materials for controlled-release applications, benefiting from their inherent phase-separated structures and distinct water solubility and degradation behaviors of the two components. By tailoring starch content and dispersion, starch-rich domains can serve as water-responsive pathways within the PLA matrix, enabling tunable release of functional substances from films or coatings. This concept has been successfully demonstrated in applications such as antimicrobial food packaging and slow-release fertilizer coatings. This review first outlines the fundamental aspects of PLA/starch composites, including microstructure, interfacial compatibility, and biodegradability. It then focuses on their design and performance as controlled-release systems, covering fabrication strategies, structure–property relationships, and evaluation methods. Finally, the advantages and limitations of current PLA/starch-based controlled-release materials are critically discussed, and future research directions are proposed to guide the development of sustainable, multifunctional materials for food packaging and agricultural applications. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

10 pages, 2356 KB  
Article
Formation of Fluorine Vacancy (FV) Centers in Diamond
by Anand B. Puthirath, Jacob Elkins, Harikishan Kannan, Alyssa Horne, Jia-Shiang Chen, Hao Zhang, Valery N. Khabashesku, Abhijit Biswas, Xiang Zhang, Anthony Glen Birdwell, Tony G. Ivanov, Ulrich Kentsch, Shavkat Akhmadaliev, Robert Vajtai, Xuedan Ma, Aditya D. Mohite, Ranjit Pati and Pulickel M. Ajayan
Materials 2026, 19(3), 494; https://doi.org/10.3390/ma19030494 - 26 Jan 2026
Viewed by 180
Abstract
Diamond has been extensively examined as an appealing material for use in quantum optics and quantum information processing owing to the existence of various classes of optically active defects, referred to as “color centers,” which can be engineered into its crystal structure. Among [...] Read more.
Diamond has been extensively examined as an appealing material for use in quantum optics and quantum information processing owing to the existence of various classes of optically active defects, referred to as “color centers,” which can be engineered into its crystal structure. Among these defects, the negatively charged nitrogen-vacancy center (NV) stands out as the most prominent type. Despite the progress made, the number of emitters characterized by reproducible fabrication processes within the desired spectral range at room temperature, with limited or no damage to the parent diamond lattice, remains restricted. Herein, we are proposing for the first time the creation of the FV center in diamond via low-energy implantation, which is particularly interesting as it possesses characteristic light absorption and magnetic properties similar to NV centers. The low-energy ion-implanted FV centers in diamond show more desirable optical emission properties at room temperature (RT). Additionally, as per DFT calculations, the flat bands near the Fermi energy indicate dominant electron–electron interactions, an important prerequisite for observing emergent behavior as seen in systems such as twisted bi-layer graphene. Consequently, as-developed new luminescent defects such as Fluorine Vacancy Centers (FV) with desirable spectral and quantum emission properties would be a significant breakthrough in diamond-based quantum materials. Full article
(This article belongs to the Section Quantum Materials)
Show Figures

Graphical abstract

21 pages, 3679 KB  
Article
Academic Point-of-Care Manufacturing in Oral and Maxillofacial Surgery: A Retrospective Review at Gregorio Marañón University Hospital
by Manuel Tousidonis, Gonzalo Ruiz-de-Leon, Carlos Navarro-Cuellar, Santiago Ochandiano, Jose-Ignacio Salmeron, Rocio Franco Herrera, Jose Antonio Calvo-Haro and Ruben Perez-Mañanes
Medicina 2026, 62(1), 234; https://doi.org/10.3390/medicina62010234 - 22 Jan 2026
Viewed by 133
Abstract
Background and Objectives: Academic point-of-care (POC) manufacturing enables the in-hospital design and production of patient-specific medical devices within certified environments, integrating clinical practice, engineering, and translational research. This model represents a new academic ecosystem that accelerates innovation while maintaining compliance with medical device [...] Read more.
Background and Objectives: Academic point-of-care (POC) manufacturing enables the in-hospital design and production of patient-specific medical devices within certified environments, integrating clinical practice, engineering, and translational research. This model represents a new academic ecosystem that accelerates innovation while maintaining compliance with medical device regulations. Gregorio Marañón University Hospital has established one of the first ISO 13485-certified academic manufacturing facilities in Spain, providing on-site production of anatomical models, surgical guides, and custom implants for oral and maxillofacial surgery. This study presents a retrospective review of all devices produced between April 2017 and September 2025, analyzing their typology, materials, production parameters, and clinical applications. Materials and Methods: A descriptive, retrospective study was conducted on 442 3D-printed medical devices fabricated for oral and maxillofacial surgical cases. Recorded variables included device classification, indication, printing technology, material type, sterilization method, working and printing times, and clinical utility. Image segmentation and design were performed using 3D Slicer and Meshmixer. Manufacturing used fused deposition modeling (FDM) and stereolithography (SLA) technologies with PLA and biocompatible resin (Biomed Clear V1). Data were analyzed descriptively. Results: During the eight-year period, 442 devices were manufactured. Biomodels constituted the majority (approximately 68%), followed by surgical guides (20%) and patient-specific implants (7%). Trauma and oncology were the leading clinical indications, representing 45% and 33% of all devices, respectively. The orbital region was the most frequent anatomical site. FDM accounted for 63% of the printing technologies used, and PLA was the predominant material. The mean working time per device was 3.4 h and mean printing time 12.6 h. Most devices were applied to preoperative planning (59%) or intraoperative use (35%). Conclusions: Academic POC manufacturing offers a sustainable, clinically integrated model for translating digital workflows and additive manufacturing into daily surgical practice. The eight-year experience of Gregorio Marañón University Hospital demonstrates how academic production units can enhance surgical precision, accelerate innovation, and ensure regulatory compliance while promoting education and translational research in healthcare. Full article
(This article belongs to the Special Issue New Trends and Advances in Oral and Maxillofacial Surgery)
Show Figures

Figure 1

56 pages, 6343 KB  
Review
Advanced 3D/4D Bioprinting of Flexible Conductive Materials for Regenerative Medicine: From Bioinspired Design to Intelligent Regeneration
by Kuikui Zhang, Lezhou Fang, Can Xu, Weiwei Zhou, Xiaoqiu Deng, Chenkun Shan, Quanling Zhang and Lijia Pan
Micro 2026, 6(1), 8; https://doi.org/10.3390/micro6010008 - 21 Jan 2026
Viewed by 137
Abstract
Regenerative medicine is increasingly leveraging the synergies between bioinspired conductive biomaterials and 3D/4D bioprinting to replicate the native electroactive and hierarchical microenvironments essential for functional tissue restoration. However, a critical gap remains in the intelligent integration of these technologies to achieve dynamic, responsive [...] Read more.
Regenerative medicine is increasingly leveraging the synergies between bioinspired conductive biomaterials and 3D/4D bioprinting to replicate the native electroactive and hierarchical microenvironments essential for functional tissue restoration. However, a critical gap remains in the intelligent integration of these technologies to achieve dynamic, responsive tissue regeneration. This review introduces a “bioinspired material–printing–function” triad framework to systematically synthesize recent advances in: (1) tunable conductive materials (polymers, carbon-based systems, metals, MXenes) designed to mimic the electrophysiological properties of native tissues; (2) advanced 3D/4D printing technologies (vat photopolymerization, extrusion, inkjet, and emerging modalities) enabling the fabrication of biomimetic architectures; and (3) functional applications in neural, cardiac, and musculoskeletal tissue engineering. We highlight how bioinspired conductive scaffolds enhance electrophysiological behaviors—emulating natural processes such as promoting axon regeneration cardiomyocyte synchronization, and osteogenic mineralization. Crucially, we identify multi-material 4D bioprinting as a transformative bioinspired approach to overcome conductivity–degradation trade-offs and enable shape-adaptive, smart scaffolds that dynamically respond to physiological cues, mirroring the adaptive nature of living tissues. This work provides the first roadmap toward intelligent electroactive regeneration, shifting the paradigm from static implants to dynamic, biomimetic bioelectronic microenvironments. Future translation will require leveraging AI-driven bioinspired design and organ-on-a-chip validation to address challenges in vascularization, biosafety, and clinical scalability. Full article
Show Figures

Figure 1

17 pages, 8979 KB  
Article
Study on Physical Simulation of Shale Gas Dissipation Behavior: A Case Study for Northern Guizhou, China
by Baofeng Lan, Hongqi Liu, Chun Luo, Shaopeng Li, Haishen Jiang and Dong Chen
Processes 2026, 14(2), 368; https://doi.org/10.3390/pr14020368 - 21 Jan 2026
Viewed by 112
Abstract
The Longmaxi from the Anchang Syncline in northern Guizhou exhibits a high degree of thermal evolution of organic matter and significant variation in gas content. Because the synclinal is narrow, steep, and internally faulted, the mechanisms controlling shale gas preservation and escape remain [...] Read more.
The Longmaxi from the Anchang Syncline in northern Guizhou exhibits a high degree of thermal evolution of organic matter and significant variation in gas content. Because the synclinal is narrow, steep, and internally faulted, the mechanisms controlling shale gas preservation and escape remain poorly understood, complicating development planning and engineering design. Research on oil and gas migration and accumulation mechanisms in synclinal structures is therefore essential. To address this issue, three proportionally scaled strata—pure shale, gray shale, and sandy shale—were fabricated, and faults and artificial fractures with different displacements and inclinations were introduced. The simulation system consisted of two glass tanks (No. 1 and No. 2). Each tank had three rows of eight transmitting electrodes on one side, and a row of eight receiving electrodes on the opposite side. Tank 1 remained fixed, while Tank 2 could be hydraulically tilted up to 65° to simulate air and water migration under varying formation inclinations. A gas-water injection device was connected at the base. Gas was first injected slowly into the model. After injecting a measured volume (recorded via the flowmeter), the system was allowed to rest for 24–48 h to ensure uniform gas distribution. Water was then injected to displace the gas. During displacement, Tank 1 remained horizontal, and Tank 2 was inclined at a preset angle. An embedded monitoring program automatically recorded resistivity data from the 48 electrodes, and water-driven gas migration was analyzed through resistivity changes. A gas escape rate parameter (Gd), based on differences in gas saturation, was developed to quantify escape velocity. The simulation results show that gas escape increased with formation inclination. Beyond a critical angle, the escape rate slowed and approached a maximum. Faults and fractures significantly enhanced gas escape. Full article
Show Figures

Figure 1

32 pages, 2233 KB  
Article
A Blockchain-Based Security Model for Aquatic Product Transactions Based on VRF-ZKP and Dynamic Reputation
by Luxi Yu, Ming Chen, Yibo Zou, Yan Ge and Wenjuan Wang
Mathematics 2026, 14(2), 352; https://doi.org/10.3390/math14020352 - 20 Jan 2026
Viewed by 131
Abstract
With the rapid development of online aquatic product trading, traditional centralized platforms are facing increasing pressure in terms of data security, privacy protection, and trust. Problems such as tampering with transaction records, weak identity authentication, privacy leakage, and the difficulty of balancing matching [...] Read more.
With the rapid development of online aquatic product trading, traditional centralized platforms are facing increasing pressure in terms of data security, privacy protection, and trust. Problems such as tampering with transaction records, weak identity authentication, privacy leakage, and the difficulty of balancing matching efficiency with security limit the further development of these platforms. To address these issues, this paper proposes a blockchain-based identity authentication and access control scheme for online aquatic product trading. The scheme first introduces a dual authentication mechanism that combines a verifiable random function with a Schnorr-based zero-knowledge proof, providing strong decentralized identity verification and resistance to replay attacks. It then designs a dynamic access control strategy based on a multi-dimensional reputation model, which converts user behavior, attributes, and historical transaction performance into a comprehensive trust score used to determine fine-grained access rights. In addition, an AES-PEKS hybrid encryption method is employed to support encrypted keyword search and order matching while protecting the confidentiality of order data. This paper implements a multi-channel architecture for aquatic product trading prototype system on Hyperledger Fabric. This system separates registration, order processing, and reputation management into different channels to improve concurrency and enhance privacy protection. Security analysis shows that the proposed solution effectively defends against replay attacks, key leaks, data tampering, and privacy theft. Performance evaluation further demonstrates that, compared to a single-chain architecture, the multi-channel design, while increasing security mechanisms, maintains a stable throughput of approximately 223 tx/s even when concurrency reaches 600–800 tx/s, ensuring normal operation of the trading system. These results indicate that this solution provides a practical technical approach and system-level reference for building secure, reliable, and efficient online aquatic product trading platforms. Full article
Show Figures

Figure 1

16 pages, 3029 KB  
Article
Durable Anti-Icing Slippery Surface with Y-Shaped Composite Porous Structure Prepared by Two-Step Anodic Oxidation
by Chanxi Yan, Gaoping Liu, Qing Zhu, Yashi Zhou and Yuan Yuan
Coatings 2026, 16(1), 135; https://doi.org/10.3390/coatings16010135 - 20 Jan 2026
Viewed by 143
Abstract
Ice accumulation on power transmission lines poses serious threats to operational safety and can lead to substantial social and economic impacts. While various anti-icing coatings have been investigated, their performance is often limited by the effectiveness and durability of anti-icing. Slippery lubricant-infused porous [...] Read more.
Ice accumulation on power transmission lines poses serious threats to operational safety and can lead to substantial social and economic impacts. While various anti-icing coatings have been investigated, their performance is often limited by the effectiveness and durability of anti-icing. Slippery lubricant-infused porous surfaces (SLIPSs) have shown remarkable anti-icing properties and durability, aided by their lubricant-infused and self-healing capability. In this study, SLIPSs were successfully fabricated on aluminum substrates using a two-step anodization process. The effects of the anodizing parameter of the current density on pore diameter and depth at each stage were systematically investigated. Compared to untreated aluminum and superhydrophobic coatings (SHCs), SLIPSs presented good anti-icing properties. First, at −6 °C, droplets slid off the surface completely within 4340.5 ms without pinning, indicating sustained droplet-shedding capability. It also significantly delayed ice formation, extending the freezing time to 80 min—eight times longer than that of the untreated surface. Moreover, the SLIPSs also exhibited ultra-low ice adhesion, with an initial strength of only 6.93 kPa. Meanwhile, after 100 frosting–defrosting cycles, SLIPSs could still maintain low ice adhesion strength (<20 kPa). The prepared SLIPS with a Y-shaped pore structure demonstrates good potential for anti-icing. Full article
(This article belongs to the Special Issue Durability of Transmission Lines)
Show Figures

Figure 1

21 pages, 5085 KB  
Article
Design Method of Variable Cross-Section Winding for Coating-Cooled Tapered Permanent Magnet Linear Synchronous Motors
by Qiang Tan, Junhao Pian, Jing Li and Wuji Wei
Electronics 2026, 15(2), 439; https://doi.org/10.3390/electronics15020439 - 19 Jan 2026
Viewed by 123
Abstract
To solve slot temperature accumulation in high thrust density permanent magnet linear synchronous motors (PMLSMs), this paper proposes an additive manufacturing (AM)-based variable cross-section winding design for coating-cooled tapered PMLSMs. Integrating the magnetic circuit features of tapered PMLSMs and AM windings’ technical merits, [...] Read more.
To solve slot temperature accumulation in high thrust density permanent magnet linear synchronous motors (PMLSMs), this paper proposes an additive manufacturing (AM)-based variable cross-section winding design for coating-cooled tapered PMLSMs. Integrating the magnetic circuit features of tapered PMLSMs and AM windings’ technical merits, the motor’s operating mechanism and electromagnetic distribution are analyzed. With the coating cooling structure as the thermal management foundation, simulation reveals the motor’s temperature distribution under water cooling, defining core slot thermal management requirements. A novel cross-section winding design is then presented: first, a lumped-parameter thermal network model quantifies the coupling between the winding cross-sectional area and slot heat source distribution; second, a greedy algorithm optimizes the winding cross-section globally to reduce the slot hot-spot temperature and suppress temperature rise. Validated by a fabricated tapered PMLSM stator prototype and static temperature-rise experiments, the results confirm that winding cross-section reconstruction optimizes heat distribution effectively, offering a new approach for temperature rise suppression in high thrust density PMLSMs. Full article
Show Figures

Figure 1

14 pages, 2995 KB  
Article
Foam-Based Wearable Devices Embedded with Shear-Thickening Fluids for Biomedical Protective Applications
by Oluwaseyi Oyetunji and Abolghassem Zabihollah
Materials 2026, 19(2), 391; https://doi.org/10.3390/ma19020391 - 19 Jan 2026
Viewed by 341
Abstract
Falls are a leading cause of bone fractures among the elderly, particularly hip fractures resulting from side falls. This research deals with the feasibility of application of shear-thickening fluids (STFs) to design self-protective wearable devices to rapidly respond to sudden impact due to [...] Read more.
Falls are a leading cause of bone fractures among the elderly, particularly hip fractures resulting from side falls. This research deals with the feasibility of application of shear-thickening fluids (STFs) to design self-protective wearable devices to rapidly respond to sudden impact due to falls. The device consists of a lightweight, flexible foam structure embedded with STF-filled compartments, which remain soft during normal movements but stiffen upon sudden impact, effectively dissipating energy and reducing force trans-mission to the bones. First, a foam-based sandwich panel filled with STF is fabricated and subjected to several falling scenarios through a ball drop test. The induced strain of the device with and without STF is measured using Fiber Bragg Grating (FBG) sensors. Then, the effect of localized STF is explored by fabricating a soft 3D-printed (TPU) sandwich panel filled with STF at selected cavities. It was observed that the application of STF reduces the induced strain by approximately 50% for the TPU skin device and 30% for the foam-based device. This adaptive response mechanism offers a balance between comfort and protection, ensuring wearability for daily use while significantly lowering fracture risks. The proposed solution aims to enhance fall-related injury prevention for the elderly, improving their quality of life and reducing healthcare burdens associated with fall-related fractures. Full article
Show Figures

Figure 1

Back to TopTop