Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,235)

Search Parameters:
Keywords = extractive fermentation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1771 KB  
Article
The Bog Bilberry Enigma: A Phytochemical and Ethnopharmacological Analysis of Vaccinium uliginosum L. Fruits in Regard to Their Alleged Toxicity
by Zuzana Vaneková, Martina Redl, Lorenz Fischer, Karin Ortmayr, Laura Jaakola and Judith M. Rollinger
Plants 2025, 14(17), 2645; https://doi.org/10.3390/plants14172645 (registering DOI) - 25 Aug 2025
Abstract
Vaccinium uliginosum (bog bilberry) is widely consumed in North America and Asia but has been historically avoided in many parts of Europe due to its alleged poisonous effects. We aimed to address this discrepancy in a systematic way with a combined phytochemical and [...] Read more.
Vaccinium uliginosum (bog bilberry) is widely consumed in North America and Asia but has been historically avoided in many parts of Europe due to its alleged poisonous effects. We aimed to address this discrepancy in a systematic way with a combined phytochemical and ethnopharmacological approach, using UHPLC and UHPSFC for the chemical analysis, model organisms Caenorhabditis elegans and human liver cells GFP-Huh-7 for the bioactivity and toxicity testing, as well as fermentation experiments. Phytochemical analysis revealed minimal differences in the metabolite pattern between European and North American samples, with no evidence of toxic alkaloids or harmful secondary metabolites. Extracts exhibited no strongly toxic effects in the tested concentrations, neither in vitro (cell viability) nor in vivo (C. elegans). Berries infected by Monilinia megalospora showed altered flavonoid and anthocyanin contents but no increased toxicity. Notably, bog bilberries demonstrated a fermentation potential superior to Vaccinium myrtillus, resulting in an alcohol content of 4.8–5.8% ABV in unsweetened juices, thus potentially explaining historical accounts of inebriation. In conclusion, direct toxicity derived from these fruits is unlikely, but the alcohol content due to fruit fermentation is a plausible explanation for the folklore names (“drunk, inebriating berry”). However, additional factors such as human error, individual intolerance, or endophytic activity need to be considered. Full article
(This article belongs to the Special Issue Ethnobotanical and Pharmacological Study of Medicinal Plants)
23 pages, 15932 KB  
Article
Integrated Approach Reveals Fermented Moringa oleifera Leaves Extracts’ Impact on Mouse Sleep
by Si Huang, Kuan Wu, Yuwei Guo, Hongyu Mu, Jun Sheng, Yang Tian, Jia Liu and Cunchao Zhao
Foods 2025, 14(17), 2952; https://doi.org/10.3390/foods14172952 - 25 Aug 2025
Abstract
Sleep disturbances are linked to metabolic and neurological dysregulation. Moringa oleifera leaves, rich in bioactive compounds, may improve sleep via gut–brain axis modulation. This study investigated the sleep-enhancing effects of fermented Moringa oleifera leaf extract (FM) in mice using metabolomics, gut microbiota analysis, [...] Read more.
Sleep disturbances are linked to metabolic and neurological dysregulation. Moringa oleifera leaves, rich in bioactive compounds, may improve sleep via gut–brain axis modulation. This study investigated the sleep-enhancing effects of fermented Moringa oleifera leaf extract (FM) in mice using metabolomics, gut microbiota analysis, network pharmacology, and molecular docking. A 1:1 combination of Lactobacillus plantarum GDMCC 1.2685 and L. swissii GDMCC 1.791 optimally fermented FM, increasing GABA by 1.67-fold and total amino acids to 46,058.20 ± 845.53 μg/g. FM shortened sleep latency, increased sleep duration, and elevated brain GABA while reducing glutamate (Glu) and Glu/GABA ratios. Hypothalamic metabolomics identified seven sleep-related metabolites, implicating glycerophospholipid, tryptophan, and purine metabolism pathways. FM also reduced Mycobacterium anisopliae (a gut bacterium associated with insomnia) and increased the Firmicutes/Bacteroidetes ratio. Network pharmacology revealed that FM’s effects were mediated via GABA, Glu, and serotonin (5-HT) pathways. These findings demonstrate that FM improves sleep by modulating hypothalamic neurotransmitters and gut microbiota, exerting sedative-hypnotic effects through amino acid, purine, and energy metabolism. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Graphical abstract

22 pages, 382 KB  
Article
Pulque: Beverage Transcending Historical Boundaries
by Diana Rodríguez-Vera, Roberto Rivera Pérez, Ivonne Maciel Arciniega-Martínez, Marvin A. Soriano-Ursúa, Aldo Arturo Reséndiz-Albor, Fernanda Magdaleno-Durán, Jazmín García-Machorro and José A. Morales-González
Histories 2025, 5(3), 41; https://doi.org/10.3390/histories5030041 - 23 Aug 2025
Abstract
Pulque, an available traditional Mexican fermented beverage, has deep ethnographic and cultural significance. It was originally consumed by pre-Columbian civilizations, including the Teotihuacanos, Mexicas, Otomies, Zapotecas, Mixtecas, and Maya. It was revered as a sacred drink [...] Read more.
Pulque, an available traditional Mexican fermented beverage, has deep ethnographic and cultural significance. It was originally consumed by pre-Columbian civilizations, including the Teotihuacanos, Mexicas, Otomies, Zapotecas, Mixtecas, and Maya. It was revered as a sacred drink with both ceremonial and medicinal uses, often reserved for elites and priests. Its production is based on the ancestral extraction and fermentation of aguamiel, a sweet sap obtained from agave plants. While advances in food technology have occurred, traditional techniques for obtaining and fermenting aguamiel remain prevalent, especially in rural communities, reflecting the resilience of indigenous knowledge systems. Recent interest in pulque has focused on its nutritional content and potential health benefits when consumed in moderation, though risks related to excessive intake remain a concern. Moreover, cultural initiatives aim to revitalize indigenous heritage through gastronomic promotion, tourism routes, and festive traditions. This study explores pulque’s production processes, its cultural symbolism, and its evolving role within Mexican society, suggesting that its survival reflects both continuity and adaptation in the face of modernity. This paper is also presented as a narrative integrative review to explore the biocultural significance of pulque across the anthropological, historical, biochemical, and public-health domains. Full article
(This article belongs to the Section Cultural History)
22 pages, 3091 KB  
Article
Effect of Storage Time on the Fermentation Quality, Bacterial Community Structure, and Metabolic Profiles of Jinmu Grain Grass Silage
by Yaqin Tang, Qianqian Wang, Qiuyan Li, Yasong Wang, Lei Gong, Wenju Zhang and Junli Niu
Microorganisms 2025, 13(9), 1973; https://doi.org/10.3390/microorganisms13091973 - 23 Aug 2025
Viewed by 43
Abstract
This study aimed to investigate the effect of storage time on the fermentation quality, bacterial community structure, and metabolic profiles of Jinmu grain grass silage. It was ensiled in vacuum bags for 60 days. Samples were collected after 0, 3, 7, 15, 30, [...] Read more.
This study aimed to investigate the effect of storage time on the fermentation quality, bacterial community structure, and metabolic profiles of Jinmu grain grass silage. It was ensiled in vacuum bags for 60 days. Samples were collected after 0, 3, 7, 15, 30, and 60 days of ensiling. Nutritional analysis revealed no significant differences in dry matter (DM), ether extract (EE), crude protein (CP), neutral detergent fiber (NDF), or acid detergent fiber (ADF) across storage periods (p > 0.05), but relative feeding value (RFV) significantly increased at 30 and 60 days (p < 0.05). Fermentation quality improved with prolonged storage, pH values declined to 4.01 at 60 days, while lactic acid (LA) and acetic acid (AA) increased significantly (p < 0.05). Butyric acid(BA) was undetected. 16S rDNA sequencing showed bacterial diversity (Chao1, Simpson, and Shannon indices) increased significantly at 30 and 60 days (p < 0.01); The relative abundance of Lacticaseibacillus, and Amylolactobacillus at 30 days were significantly higher than 0 and 60 days (p < 0.05); The relative abundance of Stenotrophomonas, Serratia, Comamonas, GKS98_freshwater_group, and Sphingobium at 60 days were significantly higher than 0 and 30 days (p < 0.05). Comprehensive targeted metabolomics identified 2958 metabolites. There were 256 differential metabolites shared by the comparison groups at 0, 30, and 60 days. The pathways for enrichment of differential metabolites mainly include plant hormone signal transduction, Histidine metabolism, arginine biosynthesis, etc. In conclusion, the storage time of Jinmu grain grass silage can enhance its fermentation quality by influencing microbial communities and metabolic pathways. Full article
(This article belongs to the Special Issue Molecular Studies of Microorganisms in Plant Growth and Utilization)
Show Figures

Figure 1

21 pages, 8075 KB  
Article
Antibacterial and Antibiofilm Properties of Postbiotics Derived from Lactiplantibacillus pentosus B1
by Marta Nowak-Lange, Katarzyna Niedziałkowska, Aleksandra Tończyk, Carola Parolin, Beatrice Vitali and Katarzyna Lisowska
Int. J. Mol. Sci. 2025, 26(17), 8169; https://doi.org/10.3390/ijms26178169 - 22 Aug 2025
Viewed by 193
Abstract
Lactic acid bacteria (LAB) are a promising source of postbiotics with potential applications in the cosmetic industry; however, strains isolated from fermented vegetables are rarely studied. This study aimed to characterize the bioactivity of postbiotics produced by Lactiplantibacillus pentosus B1 isolated from fermented [...] Read more.
Lactic acid bacteria (LAB) are a promising source of postbiotics with potential applications in the cosmetic industry; however, strains isolated from fermented vegetables are rarely studied. This study aimed to characterize the bioactivity of postbiotics produced by Lactiplantibacillus pentosus B1 isolated from fermented beetroot juice. An organic extract (ELCFS) and a lyophilizate (LLCFS) were prepared from cell free supernatant of B1 and assessed for antimicrobial activity (MIC, MBC), biofilm inhibition and eradication ability against Staphylococcus aureus, Escherichia coli, Streptococcus pyogenes and Cutibacterium acnes. Stability (temperature, time) and cytotoxicity were also examined. Metabolite composition was determined by GC-MS. MIC values were 10 g/L for ELCFS and 10–20 g/L for LLCFS. ELCFS completely inhibited biofilm formation at 10 g/L, and LLCFS at 25 g/L; partial inhibition was observed at lower concentrations (e.g., E. coli—32.99% at 1 g/L ELCFS; S. aureus and S. pyogenes—74.01% and 95.67%, respectively, at 5 g/L). Complete eradication of mature biofilm was obtained at 2.5 g/L (ELCFS) and 12.5 g/L (LLCFS), while a significant partial effect was observed from 0.04 g/L ELCFS for E. coli (29.3%) and 0.2 g/L LLCFS for S. pyogenes (23.2%). C. acnes showed the lowest sensitivity. A reduction in viability of eucaryotic cells was observed at ≥ 5 g/L ELCFS (90.32%) and 12.5—50 g/L LLCFS (55.87—89.20%). Importantly, concentrations causing partial inhibition and eradication of biofilm did not show cytotoxicity towards fibroblasts. The preparations were thermostable and retained activity over time; only incubation of ELCFS at elevated temperature significantly reduced its antimicrobial activity against the C. acnes strain. GC-MS analysis revealed five organic acids, with lactic acid dominating. The results confirm the potential of L. pentosus B1 as a source of stable, effective, and safe postbiotics for cosmetology applications. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

36 pages, 786 KB  
Review
Precision Fermentation as a Tool for Sustainable Cosmetic Ingredient Production
by Sara Silva, Israel Bautista-Hérnandez, Ricardo Gomez-García, Eduardo M. Costa and Manuela Machado
Appl. Sci. 2025, 15(17), 9246; https://doi.org/10.3390/app15179246 - 22 Aug 2025
Viewed by 123
Abstract
Precision fermentation, a highly controlled process of microbial fermentation, is emerging as a transformative tool to produce cosmetic ingredients. This technology leverages engineered micro-organisms to produce high-value compounds with applications in skincare, hair care, and other cosmetic formulations. Unlike traditional methods of ingredient [...] Read more.
Precision fermentation, a highly controlled process of microbial fermentation, is emerging as a transformative tool to produce cosmetic ingredients. This technology leverages engineered micro-organisms to produce high-value compounds with applications in skincare, hair care, and other cosmetic formulations. Unlike traditional methods of ingredient sourcing, which often rely on extraction from plants or animals, precision fermentation offers a sustainable and scalable alternative, minimizing environmental impact and enhancing the consistency of ingredient supply. This paper explores the potential of precision fermentation to revolutionize the cosmetic industry by enabling the production of complex molecules, such as peptides, proteins, and other bioactive compounds, which are essential for cosmetic efficacy. Using synthetic biology, micro-organisms such as yeast, bacteria, and fungi are programmed to biosynthesize specific cosmetic ingredients, which can include antioxidants, emulsifiers, and moisturizers. This technique not only ensures high purity and ingredients safety but also allows for the production of novel compounds that may be difficult or impossible to obtain through traditional methods. Furthermore, precision fermentation can be employed to address growing consumer demand for cruelty-free, vegan, and eco-friendly products, as it eliminates the need for animal-derived ingredients and reduces resource consumption associated with conventional farming and extraction processes. This review highlights key advancements in the field, discussing the challenges faced by industry, such as regulatory framework, and presents potential solutions for overcoming these obstacles. The paper concludes by examining the prospects of precision fermentation in cosmetics, forecasting how continued innovation in this area could further drive sustainability, ethical production practices, and the development of highly functional, scientifically advanced cosmetic products. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Figure 1

15 pages, 1730 KB  
Article
Effects of Strawberry Leaf Extract on the Quality Characteristics and Oxidation Stability of Dry Fermented Sausage During Ripening and Storage
by Ieva Račkauskienė, Jordi Rovira, Isabel Jaime, María Luisa González-San José and Petras Rimantas Venskutonis
Appl. Sci. 2025, 15(17), 9240; https://doi.org/10.3390/app15179240 - 22 Aug 2025
Viewed by 109
Abstract
Strawberry leaf extract (SLE) was used in dry fermented sausages, “Salchichón”, to enrich them with antioxidants. The effect of SLE on various characteristics was monitored during ripening and storage. SLE had a slight effect on microbiological characteristics; however, the pH after 3, 14, [...] Read more.
Strawberry leaf extract (SLE) was used in dry fermented sausages, “Salchichón”, to enrich them with antioxidants. The effect of SLE on various characteristics was monitored during ripening and storage. SLE had a slight effect on microbiological characteristics; however, the pH after 3, 14, and 21 days was slightly lower (4.51–4.55) in the samples with higher SLE concentration (0.5% + 1% dextrose). Peroxide value (PV) and thiobarbituric acid reactive substances (TBARS) values of sausages with SLE and with ascorbic acid (reference antioxidant), at the end of ripening, were similar. SLE acted as a pro-oxidant when the sausage was stored in the light; however, it showed antioxidant activity in the dark and at 50 °C storage conditions. Higher extract concentration reduced redness a* value and increased yellowness b* value in the CIELab colour system. Addition of SLE to dry fermented sausages has no negative effect on the ripening process; however, storage conditions of the final product should be carefully controlled. Sensory analysis of the final product showed that SLE imparts a recognisable herbal odour; however, it did not reduce the overall product acceptability. It may be concluded that SLE may be a promising ingredient for increasing the nutritional quality of fermented sausages. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Figure 1

13 pages, 1269 KB  
Article
High-Yield Vanillin Production Through RSM-Optimized Solid-State Fermentation Process from Brewer’s Spent Grains in a Single-Use Bag Bioreactor
by Ewa Szczepańska, Witold Pietrzak and Filip Boratyński
Molecules 2025, 30(17), 3452; https://doi.org/10.3390/molecules30173452 - 22 Aug 2025
Viewed by 166
Abstract
Vanillin is the compound of great interest to the industry. It is used to augment and enhance the aroma and taste of food preparations and also as a fragrance compound in perfumes and detergents. Currently, majority of the world’s supply consists of chemically [...] Read more.
Vanillin is the compound of great interest to the industry. It is used to augment and enhance the aroma and taste of food preparations and also as a fragrance compound in perfumes and detergents. Currently, majority of the world’s supply consists of chemically synthesized or lignin-derived vanillin. The application of biocatalysis for sustainable manufacturing of food ingredients, pharmaceutical intermediates, and fine chemicals is the key concept of modern industrial biotechnology. The main goal of this research was to conduct optimization procedures aimed at intensifying the microbial hydrolysis process of the lignin-rich plant raw materials and further bioconversion of the released ferulic acid to vanillin. The tests were performed in the solid-state fermentation system with strains selected during the screening stage on agri-food by-products such as brewer’s spent grain. A specially designed single-use bag bioreactor was used to carry out the process on a preparative scale with the most effective strain. The experiment was designed using the RSM, which allowed for an increase in biosynthesis efficiency from 363 mg/kg to 1413 mg/kg (an increase of 389%). The progress of the process was controlled by the use of chromatographic techniques (HPLC) by quantitative determination of vanillin content in the obtained extracts. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

15 pages, 2355 KB  
Article
Biodegradation of Carbon Tetrachloride in Groundwater: Microbial Community Shifts and Functional Genes Involvement in Enhanced Reductive Dechlorination
by Zhengwei Liu, Mingbo Sun, Wei Wang, Shaolei Zhao, Yan Xie, Xiaoyu Lin, Jingru Liu and Shucai Zhang
Toxics 2025, 13(8), 704; https://doi.org/10.3390/toxics13080704 - 21 Aug 2025
Viewed by 127
Abstract
Carbon tetrachloride (CT) is a toxic volatile chlorinated hydrocarbon, posing a serious hazard to ecosystem and human health. This study discussed the bioremediation possibility of groundwater contaminated by CT. Enhanced reductive dechlorination bioremediation (ERD) was used to promote the reductive dechlorination process of [...] Read more.
Carbon tetrachloride (CT) is a toxic volatile chlorinated hydrocarbon, posing a serious hazard to ecosystem and human health. This study discussed the bioremediation possibility of groundwater contaminated by CT. Enhanced reductive dechlorination bioremediation (ERD) was used to promote the reductive dechlorination process of CT by adding yeast extract as a supplementary electron donor. The microcosm samples of the Control and Experi group were setup in the experiment, and the CT degradation efficiency and microbial community structure changes over 150 days were monitored. The results showed that the Experi group achieved complete degradation of CT within 40 days, while the control group had no significant change. By analyzing the physical and chemical indexes such as VFAs, sulfate ions, oxidation–reduction potential, pH value and so on, the key changes in the degradation process of CT were revealed. Microbial community analysis showed that specific microorganisms such as Acinetobacter johnsonii, Aeromonas media and Enterobacter mori played a significant role in the degradation of CT. They may produce hydrogen through fermentation to provide electron donors for the reductive dechlorination of CT. In addition, the genes of reductive dehalogenase synthase related to CT degradation were also identified, which provided molecular evidence for understanding the biodegradation mechanism of CT. The results deliver a scientific basis for optimizing the bioremediation strategy of CT-contaminated groundwater. Full article
Show Figures

Figure 1

14 pages, 1236 KB  
Article
Physicochemical Properties and Antioxidant Profile of a Fermented Dairy Beverage Enriched with Coffee By-Products
by Maria Alexandraki, Ioannis Maisoglou, Michalis Koureas, Vasiliki Kossyva, Anastasia Tzereme, Ermioni Meleti, Mariastela Vrontaki, Vasileios Manouras, Lamprini Dimitriou, Eleni Malissiova and Athanasios Manouras
Beverages 2025, 11(4), 121; https://doi.org/10.3390/beverages11040121 - 20 Aug 2025
Viewed by 187
Abstract
Functional beverages are increasingly sought as components of a healthy diet, and goat milk offers a nutritious base with unique sensory attributes. This study aimed to develop a novel fermented goat milk beverage enriched with spent coffee grounds (SCG) extract, utilizing SCG’s high [...] Read more.
Functional beverages are increasingly sought as components of a healthy diet, and goat milk offers a nutritious base with unique sensory attributes. This study aimed to develop a novel fermented goat milk beverage enriched with spent coffee grounds (SCG) extract, utilizing SCG’s high natural antioxidant content to improve nutritional and functional properties. SCG was extracted via aqueous solid–liquid extraction and lyophilized; its extract was incorporated into goat milk–fructose blends at 0%, 1%, and 2% (w/v). Analyses included physicochemical characterization (pH, acidity, fat, and protein), total phenolic content, and antioxidant capacity via DPPH assay, alongside consumer sensory evaluation for acceptance and purchase intent. Results demonstrated that higher SCG extract levels significantly increased pH, phenolic concentrations, and radical scavenging activity while reducing titratable acidity. The 2% SCG formulation achieved the highest overall, taste, and aftertaste acceptance and purchase intention. These findings suggest that SCG-enriched goat dairy beverages are feasible functional foods with enhanced antioxidant properties and consumer appeal, promoting valorization of coffee by-products. Full article
Show Figures

Graphical abstract

18 pages, 3684 KB  
Article
Enhancement of Mycelial Growth and Antifungal Activity by Combining Fermentation Optimization and Genetic Engineering in Streptomyces pratensis S10
by Lifang Hu, Yan Sun, Ruimin Jia, Xiaomin Dong, Xihui Shen and Yang Wang
Microorganisms 2025, 13(8), 1943; https://doi.org/10.3390/microorganisms13081943 - 20 Aug 2025
Viewed by 181
Abstract
The biocontrol strain Streptomyces pratensis S10 was isolated from tomato leaf mold. The fermentation broth of strain S10 can effectively control Fusarium head blight (FHB), caused by Fusarium graminearum. Enhancing antifungal activity is essential in advancing its commercialization. In this study, we [...] Read more.
The biocontrol strain Streptomyces pratensis S10 was isolated from tomato leaf mold. The fermentation broth of strain S10 can effectively control Fusarium head blight (FHB), caused by Fusarium graminearum. Enhancing antifungal activity is essential in advancing its commercialization. In this study, we aimed to improve the antifungal activity of S10 by integrating fermentation optimization and genetic engineering. Single-factor experiments revealed that seven parameters, namely corn flour, yeast extract, NaNO3, CaCO3, K2HPO4, KCl, ZnSO4·7H2O, and MnCl2·4H2O, were identified as significant components. A Plackett–Burman design (PDB) indicated that corn flour, yeast extract, and ZnSO4·7H2O were the most critical variables affecting its inhibitory activity and mycelial biomass. The fermentation medium was further determined based on the steepest climbing experiment and a Box–Behnken design (BBD), and the mycelial dry weight of S. pratensis S10 was improved from 2.13 g/L in Gauze’s synthetic No. 1 medium to 8.12 g/L in the optimized medium, closely aligning with the predicted value of 7.98 g/L. Under the optimized medium, the antifungal rate of F. graminearum increased from 67.36 to 82.2%. The spore suspension of strain S10 cultured in the optimized medium substantially improved its biocontrol efficacy against FHB. Moreover, disruption of the key gene tetR led to increased antifungal activity of strain S10 against F. graminearum. Importantly, the antifungal activity of ΔtetR was greatly increased under the optimized fermentation medium. This study suggests that the gene tetR negatively regulates bioactive compound biosynthesis, and the optimized medium provides favorable conditions for the growth of S10. These observations establish an extended basis for the large-scale bioactive metabolite secretion of S. pratensis S10, providing a strong foundation for sustainable FHB management in agriculture. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

28 pages, 1337 KB  
Review
Recent Advances in Microbial Bioconversion as an Approach to Boost Hydroxytyrosol Recovery from Olive Mill Wastewater
by Irene Maria Zingale, Anna Elisabetta Maccarronello, Claudia Carbone, Cinzia Lucia Randazzo, Teresa Musumeci and Cinzia Caggia
Fermentation 2025, 11(8), 477; https://doi.org/10.3390/fermentation11080477 - 20 Aug 2025
Viewed by 347
Abstract
Olive mill wastewater (OMWW) is a highly complex matrix derived from olive oil extraction, containing phenolic compounds, lipids, minerals, and organic acids. Hydroxytyrosol (HT), an outstanding antioxidant and health-promoting phenolic compound, has garnered significant interest as a natural preservative and functional ingredient. Enzymatic [...] Read more.
Olive mill wastewater (OMWW) is a highly complex matrix derived from olive oil extraction, containing phenolic compounds, lipids, minerals, and organic acids. Hydroxytyrosol (HT), an outstanding antioxidant and health-promoting phenolic compound, has garnered significant interest as a natural preservative and functional ingredient. Enzymatic hydrolysis, utilizing purified enzymes to cleave glycosidic or ester bonds, and microbial bioconversion, employing whole microorganisms with their intrinsic enzymes and metabolic pathways, are effective biotechnological strategies for fostering the release of HT from its conjugated forms. These approaches offer great potential for the sustainable recovery of HT from OMWW, contributing to the valorization of this environmentally impactful agro-industrial by-product. Processed OMWW can lead to clean-label HT-enriched foods and beverages, capitalizing on by-product valorization and improving food safety and quality. In this review, the most important aspects of the chemistry, technology, and microbiology of OMWW were explored in depth. Recent trends and findings in terms of both enzymatic and microbial bioconversion processes are critically discussed, including spontaneous and driven fermentation, using selected microbial strains. These approaches are presented as economically viable options for obtaining HT-enriched OMWW for applications in the food and nutraceutical sectors. The selected topics aim to provide the reader with a solid background while inspiring and facilitating future research and innovation. Full article
(This article belongs to the Special Issue Microbial Upcycling of Organic Waste to Biofuels and Biochemicals)
Show Figures

Graphical abstract

17 pages, 3947 KB  
Article
Banana Pseudostem By-Product: A Sustainable Source of Prebiotics and Protection for Probiotic Lactic Acid Bacteria Under Gastrointestinal Conditions
by Márcia Maria de Souza Moretti, Tais Fernanda Borgonovi, Svetoslav Dimitrov Todorov and Ana Lúcia Barretto Penna
Fermentation 2025, 11(8), 476; https://doi.org/10.3390/fermentation11080476 - 20 Aug 2025
Viewed by 235
Abstract
Agricultural by-products, such as banana pseudostems (BPS), present a sustainable solution for waste reduction and the recovery of valuable metabolites with biotechnological applications. This study investigated the potential of BPS as a substrate for bio-fermentation, specifically for the cultivation of lactic acid bacteria [...] Read more.
Agricultural by-products, such as banana pseudostems (BPS), present a sustainable solution for waste reduction and the recovery of valuable metabolites with biotechnological applications. This study investigated the potential of BPS as a substrate for bio-fermentation, specifically for the cultivation of lactic acid bacteria (LAB). Maçã cultivar BPSs (MBPS) and Nanica cultivar BPSs (NBPS) flour samples showed differences in carbohydrate composition, especially in resistant starch (16.7 and 2.7%), cellulose (27.0 and 52.4%), and hemicellulose (25.4 and 33.8%), respectively. Phenolic compound content in NBPS was higher than in MBPS (193.9 and 153.5 GAE/100 g, respectively). The BPS starches and flour were well assimilated by the probiotic LAB cultures. Limosilactobacillus fermentum SJRP30 and SJRP43 showed significant growth in media with gelatinized Maçã flour (GMF) and non-gelatinized Nanica flour (NGNF) BPS by-products (Log 9.18 and 9.75 CFU/mL, respectively), while Lacticaseibacillus rhamnosus GG exhibited the highest growth (Log 11.31 CFU/mL) in the medium with NGNF BPS by-products. The probiotic Lbs. casei SJRP146 and Lmb. fermentum SJRP30 and SJRP43 presented high enzymatic activity and the ability to assimilate D-xylose. Only Lactobacillus delbrueckii subsp. bulgaricus SJRP57 and SJRP49 were able to assimilate starch. Their prebiotic potential under in vitro gastrointestinal digestion was evidenced by promoting the selected probiotic bacteria’s protection and maintaining their viable cells after challenging conditions, likely associated with the BPS composition. Lab. delbrueckii subsp. bulgaricus SJRP57, Lacticaseibacillus casei SJRP145, and Lmb. fermentum SJRP43 performed similarly to the commercial strain Lbs. rhamnosus GG. These results demonstrate the feasibility of using cost-effective and abundant agricultural waste as a promising sustainable ingredient with potential prebiotic activity, via eco-friendly production methods that do not require chemical or enzymatic extraction. The prebiotic potential under in vitro gastrointestinal digestion was evidenced by promoting the selected probiotic bacteria’s protection and maintaining their viable cells after challenging conditions, likely associated with the BPS composition. These results demonstrate the feasibility of cost-effective and abundantly available agricultural waste using eco-friendly production (without chemical or enzymatic extraction methods), as a promising sustainable ingredient with potential prebiotic activity. Full article
(This article belongs to the Special Issue Fermentation of Organic Waste for High-Value-Added Product Production)
Show Figures

Figure 1

28 pages, 4311 KB  
Article
Development of Alginate–Pullulan Capsules for Targeted Delivery of Herbal Dietary Supplements in Functional Fermented Milk Products
by Alibek Muratbayev, Berik Idyryshev, Aitbek Kakimov, Aigerim Bepeyeva, Madina Jumazhanova, Marzhan Tashybayeva, Gulmira Zhumadilova, Nazerke Muratzhankyzy, Zhadyra Imangaliyeva and Aray Bazanova
Foods 2025, 14(16), 2878; https://doi.org/10.3390/foods14162878 - 19 Aug 2025
Viewed by 328
Abstract
The present study develops and optimizes a jet-cutting encapsulation method using a laboratory-scale encapsulator to incorporate herbal dietary supplements into fermented milk products. Sodium alginate and pullulan were selected as core and coating polymers, respectively, after rheological screening demonstrated that 1% alginate (η [...] Read more.
The present study develops and optimizes a jet-cutting encapsulation method using a laboratory-scale encapsulator to incorporate herbal dietary supplements into fermented milk products. Sodium alginate and pullulan were selected as core and coating polymers, respectively, after rheological screening demonstrated that 1% alginate (η ≈ 350–450 Pa·s at 22–25 °C) and 2% pullulan (η ≈ 400 Pa·s at 25–30 °C) provide a balance between atomization, shell integrity, and fluidity. Under optimized conditions, capsules of 1.00 ± 0.05 mm diameter and high sphericity (aspect ratio 1.08 ± 0.03) were produced. In vitro gastrointestinal simulation confirmed capsule stability in simulated gastric fluid (pH 2.0) and complete disintegration within 120 min in simulated intestinal fluid (pH 7.2). Inclusion of 8% (w/w) capsules in a fermented milk beverage preserved appearance, texture, flavor, and color while increasing viscosity from 2.0 to 4.0 Pa·s. Titratable acidity rose from 87 °T at 24 h to 119 °T at 120 h, with sensory quality remaining acceptable; substantial gas formation and excessive sourness occurred only after 168 h, defining a 5-day refrigerated shelf life. These findings demonstrate that the 1% alginate–pullulan capsule system successfully protects plant extracts during gastric transit and enables targeted intestinal release, while maintaining the sensory and rheological properties of the fortified fermented milk product. Full article
(This article belongs to the Section Dairy)
Show Figures

Figure 1

19 pages, 1573 KB  
Article
Cellulase Production by Ultraviolet-Derived Mutant Trichoderma sp. Mut-4 Under Submerged Fermentation: Parameter Optimization and Large-Scale Application
by Iksu Ha, Seungjun Kim, Yun-Yeong Lee, Junseo Lee and Jeonghee Yun
Int. J. Mol. Sci. 2025, 26(16), 8000; https://doi.org/10.3390/ijms26168000 - 19 Aug 2025
Viewed by 209
Abstract
This study aimed to optimize the parameters, including medium formulations and culture conditions, for submerged fermentation (SmF) systems using a mutant strain of Trichoderma sp., Mut-4. Optimization was performed using the one-factor-at-a-time (OFAT) method to enhance cellulase activity and productivity. Parameters such as [...] Read more.
This study aimed to optimize the parameters, including medium formulations and culture conditions, for submerged fermentation (SmF) systems using a mutant strain of Trichoderma sp., Mut-4. Optimization was performed using the one-factor-at-a-time (OFAT) method to enhance cellulase activity and productivity. Parameters such as the blending ratio of carbon sources, type of nitrogen source, and initial pH were evaluated for their effects on enzyme activity and productivity. The optimal conditions were determined to be as follows: a 3:1 Avicel-to-cellulose ratio, yeast extract as the nitrogen source, and an initial pH of 5.5. Under these conditions, cellulase production was initiated earlier, and the activity of all cellulase components, along with protein concentration, increased by 1.17- to 1.43-fold at the flask scale and by 1.3- to 2.0-fold at the reactor scale. These results demonstrate the superior activity and productivity of Mut-4 under optimized conditions, highlighting its potential for application in large-scale cellulase production. Full article
(This article belongs to the Special Issue Conversion and Valorization of Lignocellulosic Biomass)
Show Figures

Figure 1

Back to TopTop