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Abstract: This article presents a static-errorless rotor position estimation method based on the linear
extended state observer (LESO) for interior permanent magnet synchronous motor (IPMSM) drives.
Two second-order LESOs are utilized to estimate the α-β axis back-EMFs. A third-order LESO is
incorporated into the quadrature phase-locked loop (QPLL) to achieve a high robustness of position
tracking against external disturbance. In addition, considering that the nonideal back-EMF will bring
DC and harmonic fluctuation errors to the estimated position, an enhanced LESO-based QPLL with
static-errorless rotor position estimation is proposed. On the one hand, the DC position esti mation
error caused by the phase lag of the back-EMF estimator is analyzed and compensated. On the other
hand, to suppress the position harmonic fluctuations induced from the nonsinusoidal back-EMFs, a
second-order generalize integrator (SOGI) is embedded in the feedforward path of the LESO-based
QPLL. The experimental results on the 1.0 kW IPMSM drive platform show that, compared to the
conventional method, the proposed method can achieve better position estimation performance both
in steady-state operation and in transient-state operation.

Keywords: interior permanent magnet synchronous motor (IPMSM); linear extended state observer
(LESO); sensorless control

1. Introduction

In recent years, interior permanent magnet synchronous motors (IPMSMs) have been
widely applied in household and industrial applications owing to the advantages of high
efficiency, high torque density, and good dynamic response [1]. In the typical field-oriented
control (FOC) topology of an IPMSM drive, the rotor position information is the key to the
accurate control of the motor’s torque and speed. Commonly, a position sensor mounted on
the shaft of the motor is adopted to measure the rotor position, which not only increases the
cost and size, but also reduces the system’s reliability. Therefore, it is of great significance
to develop position sensorless control techniques that enable cost-effective system design,
as well as provide reliable estimation of the position for the IPMSM drives.

IPMSM sensorless control methods are commonly divided into two types according
to the physics principle. The first type is the high-frequency signal injection (HFI)-based
methods [2,3]. The second type is the model-based methods [4–21]. In the medium-speed
and high-speed operating ranges, the model-based methods hold a dominant role among
various kinds of sensorless control methods. The typical topology of model-based method
comprises of two parts. The first part is a back-EMF estimator, which extracts the back-EMF
from the voltage and current information. The second part is a position/speed estimator,
which extracts the position and speed information from the estimated back-EMF. Currently,
a large number of methods have been proposed to estimate the back-EMF, for example, the
disturbance observer [4,5], the sliding-mode observer (SMO) [6–8], the model reference
adaptive system (MRAS) [9], and the extended Kalman filter (EKF) [10] [11,12].
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Recent years have witnessed great development and increasing applications of active
disturbance rejection control (ADRC) theory in the motor control and power electronics
fields [22–24]. As the core of ADRC, the extended state observer (ESO) shows great
prospects in the sensorless control field of IPMSMs. The main characteristics of the ESO
is that the unknown internal disturbance together with the external disturbances are
considered as the total disturbance. Then, the total disturbance is formulated as an extended
state, which will be estimated by the ESO [25]. As the system errors induced from the
sampling error, parameter variation, and other model uncertainties are all incorporated
into the total disturbance, the robustness of this observer will be remarkable. At present,
dozens of studies have proven its effectiveness in states and disturbance estimation [26–28].

Currently, the ESO is being increasingly applied in the sensorless control field of
PMSMs [13–17]. In [13], a linear ESO (LESO) was adopted to estimate the back-EMF of
an IPMSM. In [14], a sinusoidal interference estimator was inserted into the disturbance
estimation loop of the LESO to achieve accurate estimation of the back-EMF under limited
bandwidth. In [15], an enhanced LADRC for a sensorless IPMSM drive was proposed. The
enhanced LADRC consisted of two cascaded LESOs; one was designed to estimate the
back-EMF by treating it as the external disturbance, and the other one was designed to
estimate the internal disturbance such as parameter mismatch. In [16], a linear-nonlinear
switching ESO was proposed to improve the convergence rate as well as maintain the
estimation accuracy of the back-EMF.

Regardless of what kind of back-EMF estimator is chosen, it is necessary to extract
the rotor speed and position from the estimated back-EMF at the next stage of sensorless
control. The arctangent function can be used to directly calculate the position [13], and
the speed is calculated from the derivative of position. However, the derivative operation
will bring unexpected noise to the system. The quadrature phase-locked loop (QPLL)
is a better alternative for speed/position estimation [4,6,8,14–29]. The QPLL contains a
proportional-integral (PI)-type loop filter, which helps to achieve zero steady-state error
in tracking the DC signal. Currently, the QPLL has been extensively utilized in IPMSM
sensorless control owing to its easily tuned gains and simple structure. However, the
following drawbacks still exist that limit the overall performance of the sensorless control
system [30,31]:

(1) The second-order form makes it incapable of tracking ramp speed with zero steady-
state error. Therefore, the performance of the sensorless control system will suffer
from noticeable degradation during accelerating or decelerating operation.

(2) Limited closed-loop control capability when dealing with fast-varying external dis-
turbance. The internal PI regulator will cause unexpected overshoots. Therefore,
a sudden external disturbance will bring significant error to the estimated speed
and position.

(3) Unable to suppress sinusoidal disturbance. In practical applications, due to the
existence of inverter nonlinearities, the estimated back-EMF will contain distinct fifth-
and seventh-order harmonics [12]. Hence, the position error in the forward path of
the QPLL contains sixth-order harmonic fluctuations. Consequently, the estimated
position and speed will contain sixth-order harmonic fluctuations as well.

To overcome the above drawbacks of the conventional PI-type QPLL, a more efficient
estimator should be adopted to replace the PI regulator in the QPLL. In fact, the ESO, with
its unique advantages in handling disturbance and uncertainties, is a competitive candidate
for speed and position estimation.

Therefore, in this article, a static-errorless position estimation method based on the
LESO is proposed. Two second-order LESOs are designed to estimate the α- and β-axis
back-EMFs. A third-order LESO is incorporated into the QPLL to enhance the position
tracking performance and the robustness against external disturbance. To achieve static-
errorless position estimation, the proposed LESO-based QPLL is improved from two
aspects. On the one hand, the DC position estimation error induced from the phase lag of
the back-EMF estimator is analyzed and compensated. On the other hand, to suppress the
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position harmonic fluctuations induced from the nonsinusoidal back-EMFs, a second-order
generalize integrator (SOGI) is inserted into the feedforward path of the LESO-based QPLL.

The remaining parts of this article are organized as follows. Section 2 gives a brief
description of the LESO, and the LESO-based back-EMF estimator is designed. Section 3
analyzes the existing drawbacks of the conventional QPLL, followed by the design of the
LESO-based QPLL. To further diminish the position estimation error, Section 4 proposes an
enhanced LESO-based QPLL. The experimental results are presented in Section 5. Finally,
the conclusions are drawn in Section 6.

2. Design of the LESO-Based Back-EMF Estimator
2.1. Description of LESO

Consider the following first-order single-input-single-output (SISO) system:

.
x = f0(x, t) + f1(t) + bu0 (1)

where x is the state variable, u0 is the system input, b is the critical gain, f0(x, t) is the
known disturbance, and f1(t) is the unknown disturbances. The sum of f0(x, t) and f1(t)
denotes the total disturbance.

By extending the total disturbance as a new state, i.e., x1 = x, x2 = f1, the original
system is transformed into the following second-order system:{ .

x1 = x2 + f0(x, t) + bu0
.
x2 =

.
f 1(t)

(2)

Then, the corresponding LESO for system (2) is designed as:
ε1 = z1 − x1.
z1 = z2 + bu0 + f0(x, t)− β1ε1.
z2 = −β2ε1

(3)

where z1 is the estimation of x1, z2 is the estimation of the unknown disturbance x2,
and ε1 is the state estimation error. β1 and β2 are the observer gains. According to
Equations (2) and (3), the error dynamics of the LESO is obtained:

..
ε1 = −β1

.
ε1 − β2ε1 −

.
f 1(t) (4)

where
.
ε1 and

..
ε1 are the first-order and second-order derivative of ε1, respectively. According

to (3) and (4), the following transfer function can be derived:
ε1(s)
x2(s)

= −s
s2+β1s+β2

z2(s)
x2(s)

= β2
s2+β1s+β2

(5)

In Equation (5), it can be observed that the two transfer functions are independent of
the plant parameters. Thus, the LESO has high robustness against parameter variations. To
facilitate gain tuning and theoretical analysis, this article adopted a scaling- and bandwidth-
parameterization method proposed in [32]. Thus, the observer gains are parameterized
as follows: [

β1 β2
]
=
[

2ω0 ω2
0
]

(6)

where ω0 denotes the bandwidth of the LESO. A higher ω0 helps to improve the conver-
gence rate, but it will increase the observer’s sensitivity to noise. In practice, ω0 should be
properly designed in order to reach a tradeoff between the rapidity of convergence and the
immunity to noise.
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2.2. LESO-Based Back-EMF Estimator

The back-EMF model of the IPMSM is crucial for LESO design. In recent years,
the equivalent back-EMF model has attracted much attention in the IPMSM sensorless
control field [18]. This model inherits the concept of “active flux” [19]. In contrast to
the conventional extended back-EMF model [20], this model does not need motor speed
as an input, and it simplifies the mathematic model of the salient pole IPMSM into the
nonsalient pole SPMSM. The equation of the equivalent back-EMF model for the IPMSM is
expressed as:

uαβ = Rsiαβ + Lq
.
iαβ + eαβ (7)

with

eαβ = Eeq

[
− sin θe
cos θe

]
= ωe

[(
Ld − Lq

)
id + ψ f

][ − sin θe
cos θe

]
(8)

where uαβ =
[

uα uβ

]T and iαβ =
[

iα iβ

]T denote the stator voltage vector and the

stator current vector, respectively; eαβ =
[

eα eβ

]T denotes the equivalent back-EMF
vector; Eeq is the magnitude of the equivalent back-EMF; Rs is the stator resistance; Ld
and Lq are the d-q-axis inductances; ψ f is the flux linkage of permanent magnet; ωe is the
electric rotor velocity; θe is the electric rotor position.

Equation (8) can be rewritten as:

.
iαβ = −Rs

Lq
iαβ +

1
Lq

uαβ −
1
Lq

eαβ (9)

The key to the successful application of a LESO is to reformulate the practical control
plant to a cascaded integral plant and give out the definition of disturbance [22]. In
Equation (9), the system input, the known disturbance, and the unknown disturbance are
defined, respectively, as: 

b0u = uαβ/Lq
f0 = −Rsiαβ/Lq
f1 = −eαβ/Lq

(10)

Then, the corresponding LESO for system (9) can be designed to estimate the states
and the unknown disturbance:

ε1 = z1 − iαβ.
z1 = z2 + u/Lq + f0 − β1ε1.
z2 = −β2ε1

(11)

where z1 =
[

z1α z1β

]T denotes the estimated stator current; z2 =
[

z2α z2β

]T denotes

the estimated unknown disturbance; ε1 =
[

ε1α ε1β

]T denotes the current estimation
error; β1 and β2 are the observer gains, which are selected the same for the α- and β-axis
because the equivalent back-EMF model of the IPMSM has a symmetrical structure for
both axes.

When the LESO becomes stable, the estimations of stator currents and the unknown
disturbances will converge. Then, the estimated equivalent back-EMF can be obtained:

êαβ = −Lqz2 (12)

3. Design of the LESO-Based QPLL

According to Equation (8), the estimated equivalent back-EMF contains the rotor
position information. By adopting a properly designed QPLL, the rotor position and speed
information can be extracted from the estimated back-EMF, thereby achieving closed-loop
sensorless control of the IPMSM.



Energies 2022, 15, 1943 5 of 20

3.1. Conventional QPLL

The typical structure of a conventional QPLL is shown in Figure 1. It consists of
three parts: a phase detector (PD), a PI-type loop filter (LF), and a voltage-controlled
oscillator (VCO). The QPLL is designed to be a closed-loop structure, where the output
phase can automatically synchronize with the input phase through closed-loop regulation.
In Figure 1, a phase detector is applied to extract the input phase information from the
estimated back-EMFs. However, according to Equation (8), the magnitude of the estimated
back-EMF varies with the rotor speed. Thus, the QPLL will show different frequency
responses at different speeds. To deal with this problem, the back-EMF normalization
method is commonly adopted [29], which helps the QPLL to maintain consistent frequency
response at different operation speeds.
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The output of the phase detector in Figure 1 is expressed as:

εθ = −êα cos θ̂e − êβ sin θ̂e
= Êeq

(
sin θe cos θ̂e − cos θe sin θ̂e

)
= Êeq sin

(
θe − θ̂e

)
≈ Êeq

(
θe − θ̂e

) (13)

After normalization, the transfer function of QPLL is expressed as:

GQPLL(s) =
ω̂e(s)
ωe(s)

=
θ̂e(s)
θe(s)

=
Kps + Ki

s2 + Kps + Ki
(14)

where Kp and Ki are the proportional and integral gain, respectively. By placing the two
poles of Equation (14) at the same point on the left real axis of the complex plane, the gains
can be tuned as: [

Kp Ki
]
=
[

2σ σ2 ] (15)

where σ denotes the bandwidth of the QPLL. A larger σ indicates a faster tracking rate;
meanwhile, it introduces more noise to the estimation result.

With a well-tuned bandwidth, the QPLL can provide accurate estimations of position
and speed during steady-state operation. However, due to the fundamental limitations of
the PI regulator, it is still challenging for the conventional QPLL to provide reliable estima-
tion during transient-state operation. For example, the QPLL cannot achieve zero estimation
error when tracking ramp speed [14]. In addition, the limited anti-disturbance capability
will bring unexpected overshoots to the estimation results when the system encounters
fast-varying external disturbance. Therefore, to improve the overall performance of the
sensorless control system, it is necessary to develop a more efficient position estimator.

3.2. Design of LESO-Based QPLL

Owing to the unique disturbance estimation capability, the LESO can not only be used
for back-EMF estimation, but also has the potential to facilitate the speed and position
estimation. To achieve more accurate estimation under transient-state operation, the
conventional QPLL is improved by replacing the PI regulator with a third-order LESO.
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To construct the LESO-based QPLL, the mechanical motion dynamics of the IPMSM
should be considered first: { .

θe = ωe
.

ωe =
np
J Te −

np
J TL − B

J ωe
(16)

where np is the number of pole pairs, B is the viscous friction coefficient (N·m·s/rad), J is
the moment of inertia (kg·m2), TL is the load torque (N·m), and Te is the electromagnetic
torque (N·m). For the employed IPMSM, Te is expressed as:

Te =
3
2

np

[
ψ f +

(
Ld − Lq

)
id

]
iq (17)

The key to the successful construction of a LESO is to reformulate the practical control
plant to a cascaded integral plant and give out the definition of disturbance [22]. The
known and unknown disturbance for system (16) can be defined as:

.
θe = ωe
.

ωe = f0θ + f1θ +
np
J T∗e

f0θ =
np
J (Te − T∗e )− B

J ω̂e

f1θ = − np
J TL − B

J (ωe − ω̂e) + nθ(t)

(18)

where T∗e is the torque reference; nθ(t) is the unmodeled dynamics and noise; f0θ and f1θ

denote the known disturbance and the unknown disturbance, respectively; ω̂e denotes the
estimated rotor speed.

The known disturbance f0θ represents the disturbance that can be directly or indirectly
obtained. The unknown disturbance f1θ represents the disturbance that cannot be acquired.
Obviously, TL, ωe, and nθ(t) are unmeasurable in the sensorless control system. In addition,
f1θ consists of the load torque term and the difference term between ωe and ω̂e. Therefore,
the load torque fluctuation and the sudden speed variation will both be considered in the
disturbance model.

Then, a third-order LESO for system (18) can be designed by regarding the unknown
disturbance f1θ as an extended state:

εθ = θ̂e − θe.
θ̂e = ω̂e − β1θεθ.
ω̂e = f̂1θ + f0θ +

np
J T∗e − β2θεθ

.
f̂ 1θ = −β3θεθ

(19)

where θ̂e, ω̂e, and f̂1θ are, respectively, the estimations of θe, ωe, and f1θ ; ε1n is the position
estimation error; β1θ , β2θ , and β3θ are the observer gains. By setting the bandwidth of the
LESO to σ, the observer gains are tuned as:[

β1θ β2θ β3θ

]
=
[

3σ 3σ2 σ3 ] (20)

Figure 2 shows the block diagram of the proposed LESO-based QPLL. It should be
noted that the error obtained from the phase detector is θe − θ̂e. However, the estimation
error of the LESO is defined as θ̂e − θe. Therefore, a unit negative gain is inserted into the
block diagram.
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3.3. Comparison between the Conventional QPLL and the LESO-Based QPLL
3.3.1. Comparison of the Tracking Performance

Transforming Equation (19) into the frequency-domain, the following transfer func-
tions can be derived:

θ̂e(s) =
β1s2 + β2s + β3

λ(s)
θe(s) +

s
λ(s)

[
fon(s) +

np

J
Te
∗(s)

]
(21)

where λ(s) is the characteristic polynomial of the LESO:

λ(s) = s3 + β1θ s2 + β2θ s + β3θ (22)

Then, the position tracking error of the LESO-based QPLL can be expressed as:

Gε_LESO(s) =
θ̂e(s)− θe(s)

θe(s)
=

−s3

s3 + β1θ s2 + β2θ s + β3θ
(23)

Meanwhile, according to (14), the position tracking error transfer function of the
conventional QPLL is written as:

Gε_QPLL(s) =
θ̂e(s)− θe(s)

θe(s)
=

−s2

s2 + Kps + Ki
(24)

To evaluate the tracking performance of the conventional QPLL and the LESO-based
QPLL, three typical reference signals are given: the step position, the step speed, and the
ramp speed. The reference signals in the frequency domain are respectively expressed as:

Um(s) =
m
s

, Um(s) =
n
s2 , Ur(s) =

r
s3 (25)

where m, n, and r are the position amplitude, the speed amplitude, and the acceleration
amplitude of the reference signals, respectively. Then, by applying the final value theorem:

εθss = lim
t→∞

εθ(t) = lim
s→0

sGε(s)U(s) (26)

the steady-state position tracking error of the two QPLLs can be obtained, as shown in
Table 1. It can be found that the position error of the conventional QPLL cannot converge
to zero when tracking the ramp speed reference. The error can be reduced by increasing
Ki, but this will increase the overshoots during transient-state operation. As for the LESO-
based QPLL, it achieves zero tracking error for the three reference signals. Therefore, it has
better tracking performance than the conventional one.
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Table 1. Steady-state position tracking error of the two QPLLs under different reference signals.

Reference Signal εθss of Conventional QPLL εθss of LESO-Based QPLL

Step position 0 0
Step speed 0 0

Ramp speed r/Ki 0

3.3.2. Comparison of the Disturbance Rejection Capability

According to the mechanical motion dynamics of the IPMSM shown in Equation (16),
a sudden variation in the external load torque will bring a disturbance to the rotor speed. If
the rapidly changing speed goes beyond the bandwidth of the estimator, obvious speed
and position estimation errors will occur. To facilitate the subsequent analysis, the torque
disturbance is regarded as an acceleration disturbance d(t), the unit of which is m/s2.
According to Equation (21), the influence of the acceleration disturbance on the estimated
position of the LESO-based QPLL can be described by the following transfer function:

Gd_LESO(s) =
θ̂e(s)
d(s)

=
s

s3 + β1θ s2 + β2θ s + β3θ
=

s

(s + σ)3 (27)

For the conventional QPLL, the disturbance is not shown in Figure 1. However, as
such a disturbance is an acceleration disturbance, it can therefore be modeled into the
QPLL, as shown in Figure 3.
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Then, the influence of the acceleration disturbance on the estimated position of the
conventional QPLL can be described by the following transfer function:

Gd_QPLL(s) =
θ̂e(s)
d(s)

=
1

s2 + Kps + Ki
=

1

(s + σ)2 (28)

The disturbance rejection capability of the conventional QPLL and the LESO-based
QPLL is compared in Figure 4, where the Bode diagrams of Gd_QPLL(s) and Gd_LESO(s)
are illustrated. The bandwidth is set to σ = 200 rad/s. Thus, Kp = 400, Ki = 4× 104,
β1θ = 600, β2θ = 1.2× 105, and β3θ = 8× 106. It can be found that the LESO-based QPLL
has a better disturbance rejection capability compared to the conventional one, especially
in the low-frequency range. Therefore, the LESO-based QPLL can provide a more reliable
estimation of position under the influence of the external load torque disturbance.
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4. Enhanced LESO-Based QPLL with Static-Errorless Position Estimation

The above-designed LESO-based QPLL estimates the rotor position and speed by
tracking the phase and frequency of the estimated back-EMF. Therefore, accurate back-
EMF is the precondition for reliable estimation of the position and speed. However, in a
practical IPMSM sensorless control system, the estimated back-EMF is nonideal. First, due
to frequency characteristics of the back-EMF estimator, there commonly exists a phase lag
between the actual back-EMF and the estimated back-EMF. Secondly, due to the existence
of dead-time, and the turn-on and turn-off delay of power electronic device, the inverter
shows nonlinear characteristics. The voltage distortion caused by inverter nonlinearity will
bring distinct fifth and seventh-order harmonic contents to the phase current, thus bringing
the same order harmonics to the estimated back-EMFs [12].

The nonideal estimated back-EMF will bring DC and harmonic contents to the esti-
mated position, thereby degrading the overall performance of the sensorless control system.
To deal with such a problem, an enhanced LESO-based QPLL with static-errorless position
estimation is proposed in this section.

4.1. DC Position Error Elimination

According to Section 2, the transfer function between the estimated back-EMF and the
actual back-EMF can be expressed as:

êαβ(s)
eαβ(s)

=
β2

s2 + β1s + β2
=

ω2
0

(s + ω0)
2 (29)

It can be seen from Equation (29) that the transfer function resembles a second-order
low-pass filter. Thus, the estimated back-EMF will lag behind the actual back-EMF, and the
resulting estimated position will lag behind the actual position as well. According to (5),
the phase lag caused by the back-EMF estimator is derived as:

∆θdc(ωe) = arctan

(
2ω0ωe

ω2
0 −ω2

e

)
(30)

where ωe is the frequency of the back-EMF, which is equal to the electric rotor speed. In the
sensorless control system, ωe is replaced by its estimated value ω̂e. Then, by compensating
for such phase lag, the DC position error can be eliminated.

4.2. Harmonic Position Error Suppression
4.2.1. Analysis of the Harmonic Position Error

In practical applications, the voltage distortion caused by inverter nonlinearity will
bring distinct harmonics to the phase current, thus bringing the same order harmonics
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to the estimated back-EMFs. According to [8], the estimated back-EMF considering the
harmonic contents is expressed as:

êα = −Êex sin(ωet + θei)−
n
∑

k=1
Ê6k±1 sin[(6k± 1)ωet + θ6k±1]

êβ = Êex cos(ωet + θei) +
n
∑

k=1
Ê6k±1 cos[(6k± 1)ωet + θ6k±1]

(31)

where Êex and Ê6k±1 represent the amplitude of the fundamental and harmonic contents;
θei and θ6k±1 represent the corresponding initial phase.

The estimated position can be expressed as:

θ̂e = ω̂et + θ̂ei (32)

where θ̂ei is the initial phase of the estimated position.
Then, the position error can be obtained from the phase detector of the LESO-based

QPLL. After normalization, the position error can be expressed as:

εθ = 1√
ê2

α+ê2
β

(
−êα cos θ̂e − êβ sin θ̂e

)
= 1√

ê2
α+ê2

β

{
Êex sin

[
(ωe − ω̂e)t + (θei − θ̂ei)

]
+

n
∑

k=1
Ê6k±1 sin

[
((1± 6k)ωe − ω̂e)t + (θ6k±1 − θ̂ei)

]}
≈
(
θe − θ̂e

)
+ 1√

ê2
α+ê2

β

n
∑

k=1
Ê6k±1 sin

(
±6kωe + (θ6k±1 − θ̂ei)

)
(33)

As can be seen in Equation (33), the position error is composed of two parts. The first
part is the regular term, which is used to obtain the estimated position. The second part is
the (6k)th-order harmonic term resulting from the nonideal back-EMF. Particularly, the sixth-
order harmonic content is the dominant content, which will cause significant fluctuation to
the estimated position and further deteriorate the system’s steady-state performance.

4.2.2. Harmonic Position Error Suppression Based on SOGI

At present, various methods have been proposed to suppress the sixth-order harmon-
ics in the estimated position, such as the adaptive linear neural (ADALINE)-network-based
filter [8], the second-order generalized integrator (SOGI) [12], or the adaptive notch filter
(ANF) [33]. However, these methods all focus on eliminating the harmonic contents of the
estimated back-EMFs. Therefore, at least four filters should be utilized to eliminate the fifth
and seventh-order harmonic contents in the α- and β-axis back-EMFs, which increases the
system’s complexity and computational burden.

In fact, it can be noticed in Equation (33) that the harmonic position error induced
from the nonideal back-EMF appears in the feedforward path of the LESO-based QPLL.
Therefore, it is possible that the position harmonics can be directly suppressed inside the
LESO-based QPLL, rather than through eliminating the harmonic back-EMFs.

In this section, a single SOGI is inserted into the LESO-based QPLL to eliminate
the sixth-order harmonic content of position error. The transfer function of the SOGI is
expressed as:

GSOGI(s) =
s2 + ω2

re
s2 + kωres + ω2

re
(34)

where ωre is the resonant frequency of the SOGI. In the frequency domain, the SOGI can be
regarded as a band-stop filter. The center frequency of the stopband is ωre, and the width
of the stopband is set by k. A smaller k corresponds to a smaller stopband. Figure 5 shows
the Bode diagram of the SOGI, where ωre = 600 rad/s. Obviously, there is a notch peak at
ωre. Thus, the SOGI can be utilized to suppress the selective frequency signals.
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Figure 5. Bode diagram of the GSOGI(s) (ωre = 600 rad/s).

The harmonics contents in the estimated position can be adaptively suppressed by
incorporating the SOGI into the feedforward path of the LESO-based QPLL, as shown
in Figure 6. As the sixth-order harmonic is the dominant harmonic content, the resonant
frequency of the SOGI is set to ωre = 6ω̂e.
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Figure 6. Block diagram of the enhanced LESO-based QPLL.

The harmonics suppression capability of the SOGI is strongly related to the accuracy
of the estimated speed. In practical applications, the estimated speed may fluctuate within
a small range. To maintain the harmonics suppression capability, the SOGI should have
a good tolerance to the variation in ω̂e. Thus, a large k can be adopted. However, a large
k will lead to a large phase delay in the whole frequency range; thus, the system’s phase
margin will reduce. Therefore, a trade-off between the harmonics suppression capability
and the system’s stability should be made.

4.3. Design of the Enhanced LESO-Based QPLL

By adopting the improvements proposed in Sections 4.1 and 4.2, the DC and the
sixth-order harmonic contents of the position estimation error induced by the nonideal
estimated back-EMF can be eliminated. The block diagram of the enhanced LESO-based
QPLL with static-errorless position estimation is shown in Figure 7. The resonant frequency
of the SOGI is updated by the estimated speed to achieve adaptive harmonic suppression.
Meanwhile, the estimated speed is also used for DC error elimination. Finally, the DC and
the sixth-order harmonic contents of the position error can be suppressed in a wide-speed
operating range, thereby improving the steady-state performance of the IPMSM sensorless
control system.
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4.4. Analysis of the Enhanced LESO-Based QPLL

The open-loop transfer function and the closed-loop transfer function of the enhanced
LESO-based QPLL can be obtained:

Go(s) =
s2 + ω2

re
s2 + kωres + ω2

re

s3 + β1θ s2 + β2θ s + β3θ

s3 =
(s + σ)3(s2 + ω2

re
)

s3(s2 + kωres + ω2
re)

(35)

Gc(s) =
Go(s)

1 + Go(s)
=

(s + σ)3(s2 + ω2
re
)

s3(s2 + kωres + ω2
re) + (s + σ)3(s2 + ω2

re)
(36)

The Bode diagrams of Go(s) and Gc(s) are shown in Figure 8a,b, respectively. The
bandwidth of the LESO is set to σ = 100 rad/s. The parameters for the SOGI are set to
k = 0.1 and ωre = [500, 600, 700] rad/s. It can be noticed that both Go(s) and Gc(s) have
a notch peak at ωre. Therefore, any position harmonics with the frequency of ωre can be
effectively suppressed. In addition, it can be found that the phase margins of Go(s) under
different ωre are almost the same, and the cut-off frequencies of Gc(s) under different ωre
are almost the same as well. Hence, the enhanced LESO-based QPLL has a consistent
performance under different operating speeds.
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presented in Table 2. Obviously, as σ  increases, the phase margin increases, and the 
dominant poles move closer to the imaginary axis. Therefore, a smaller σ  is beneficial 
to the system’s stability and response time. However, the crossover frequency decreases 
as σ  decreases; thus, the capability of tracking fast-varying signals decreases. In practi-
cal applications, a trade-off between the system’s stability and the tracking performance 
should be made. 

  

Figure 8. Bode diagram: (a) Bode diagram of Go(s) under different ωre. (b) Bode diagram of Gc(s)
under different ωre.

The influence of the observer bandwidth σ on the performance of the enhanced
LESO-based QPLL is also investigated. Figure 9a shows the Bode diagram of Go(s) under
different σ, where k = 0.1, ωre = 600 rad/s, and σ = [80, 120, 160] rad/s. Figure 9b shows
the closed-loop pole distribution of Gc(s), where σ increases from 60 rad/s to 160 rad/s.
Some key metrics of the enhanced LESO-based QPLL under different σ are presented in
Table 2. Obviously, as σ increases, the phase margin increases, and the dominant poles
move closer to the imaginary axis. Therefore, a smaller σ is beneficial to the system’s
stability and response time. However, the crossover frequency decreases as σ decreases;
thus, the capability of tracking fast-varying signals decreases. In practical applications, a
trade-off between the system’s stability and the tracking performance should be made.
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Table 2. Key metrics of the enhanced LESO-based QPLL under different σ.

Bandwidth Crossover Frequency Phase Margin Dominant Poles

σ = 80 rad/s 244 rad/s 68◦ −26.8 ± 587.7j
σ = 120 rad/s 365 rad/s 66◦ −22.9 ± 583.2j
σ = 160 rad/s 478 rad/s 58◦ −18.3 ± 580.1j

5. Experimental Verification

In this section, the effectiveness of the proposed IPMSM sensorless control method
is verified through experimental study. The photo and the diagram of the experimental
platform are demonstrated in Figure 10. During the experiment, the test IPMSM is driven
by an inverter. The parameters of the IPMSM are given in Table 3. An induction motor
coupled with the test IPMSM provides the load torque. The proposed control algorithm
is ran on the dSPACE real-time platform. An optical encoder mounted on the shaft of the
rotor is utilized to obtain the real position, which is merely for comparison purposes.
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Table 3. IPMSM parameters.

Parameters Symbols Values

Rated Power PN 1.0 kW
Rated Speed ωN 1500 rpm
Rated Torque TN 5 N·m

Number of Pole Pairs np 3
Rotor Flux Linkage ψ f 0.142 V·s

Stator Resistance Rs 0.75 Ω
d-axis Inductance Ld 3.5 mH
q-axis Inductance Lq 9.8 mH

Load Inertia J 0.0174 kg·m2

Viscous Friction Coefficient B 0.00075 N·m·s/rad

The block diagram of the IPMSM sensorless control system is shown in Figure 11. In
the following experiments, the PWM switching frequency is set to 5 kHz. The DC-link
voltage is set to 200 V. The deadtime of PWM is set to 4 µs. The whole algorithm is tested
under the field-oriented control (FOC) structure with i∗d = 0. A simple I-f -based open-loop
start-up method in [33] is utilized for start-up purposes and the system is switched to
closed-loop sensorless operation at 100 rpm. The gains for speed loop PI regulators under
sensorless control are set to kn

p = 1.5 and kn
i = 10. The gains for d- and q-axis current loop

PI regulators are set to kd
p = 3.3,kq

p = 9.2, and kd
i = kq

i = 705, respectively. The bandwidth
for the LESO-based back-EMF estimator is set to ω0 = 2000 rad/s. The bandwidth for the
conventional QPLL and the enhanced LESO-based QPLL are both set to σ = 150 rad/s.
The parameter for the SOGI is set to k = 0.5.
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5.1. Verification of Steady-State Performation
5.1.1. Steady-State Performance of the Sensorless Control System with the
Conventional QPLL

Figure 12 shows the experimental results of the estimated back-EMF, the estimated
position, and the position estimation error under no load. The back-EMF is estimated by
the LESO-based back-EMF estimator, and the position is obtained by the conventional
QPLL. As can be seen in Figure 12a,b, the position error contains sixth-order harmonic
fluctuations. The magnitude of the fluctuation at 300 rpm is around 2◦, which is larger than
that at 1500 rpm. This is because the magnitude of the back-EMF is proportional to the
speed; thus, the voltage distortion caused by inverter nonlinearities plays a more significant
role at low speed. Then, the position error harmonics is more significant at low speed.
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load. It can be seen that the fluctuations in position error and speed error using the pro-
posed method are significantly smaller than those with the conventional method. 

Figure 12. Experimental results of the estimated back-EMF, the estimated position, and the position
error under no load (conventional QPLL).

In Figure 13, the IPMSM is operating under rated load (5 N·m). It is obvious that the
harmonic content of the estimated back-EMF is much more significant than that under
no load. As a result, the position harmonics is also much more significant. The position
error fluctuates six times in one electric position period, and the magnitude is about 6.5◦ at
300 rpm and 2◦ at 1500 rpm. In addition, it should be noted that the DC error of the position
is around −5◦ at 300 rpm and −22◦ at 1500 rpm. This is because the estimated back-EMF
lags behind the actual one. Then, the resulting estimated position will lag behind the actual
one as well. According to above experimental results, it can be seen that the conventional
QPLL is not capable of providing reliable estimation of the position in practical application.
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5.1.2. Sensorless Operating at Different Speeds

In Figure 14, the experimental results of the sensorless control system with the conven-
tional QPLL and with the enhanced LESO-based QPLL at different speeds are presented
and compared. The test machine operates under no load, and the speed command is set
from 300 rpm to 1500 rpm at intervals of 300 rpm. As can be seen in Figure 14a,b for
the conventional QPLL, the DC content of the position estimation error increases with
the speed. However, for the enhanced LESO-based QPLL, the DC content of the position
estimation error is within 2◦ during the wide-speed range.
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In Figure 15, the experimental results of the two methods are compared under rated
load. It can be seen that the fluctuations in position error and speed error using the proposed
method are significantly smaller than those with the conventional method. Therefore, the
effectiveness of the enhanced LESO-based QPLL in steady-state operation is verified.
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5.2. Verification of Transient-State Performance

In Figure 16, the experimental results of the sensorless control system with the conven-
tional QPLL and with the enhanced LESO-based QPLL under step load torque disturbance
are compared. The command speed of the test machine is set to 300 rpm. The load machine
provides a step load torque from rated load (5 N·m) to no load. During the off-load tran-
sient, the maximum position estimation error of the conventional QPLL reaches up to 75◦,
and the maximum speed estimation error reaches up to 20 rpm. However, the maximum
position error of the enhanced LESO-based QPLL is less than 18◦, and the maximum speed
error is only 5 rpm.

Figure 17 presents the experimental comparison of the two methods under step
load torque disturbance at 1500 rpm. The maximum position error and speed error are,
respectively, 8◦ and 5 rpm for the conventional QPLL. However, for the enhanced LESO-
based QPLL, the maximum position error and speed error are, respectively, 5◦ and 2 rpm.
According to the experimental results, it can be concluded that the proposed method has
better robustness against the load torque disturbance.



Energies 2022, 15, 1943 17 of 20Energies 2022, 15, 1943 18 of 21 
 

 

[75rpm/div]

[20°/div]

[10rpm/div]
0

-5

300

Off load

 

[75rpm/div]

[20°/div]

0

0

[10rpm/div]

300

Off load

 

(a) Conventional QPLL (b) Enhanced LESO-based QPLL 

Figure 16. Experimental results of the real speed, the position estimation error, and the speed esti-
mation error at 300 rpm under load torque disturbance (5 N·m → 0 N·m). 

[75rpm/div]

[10°/div]

[10rpm/div]
0

-20

1500

Off load
[75rpm/div]

[10rpm/div]

[10°/div]

0

0

1500

Off load

(a) Conventional QPLL  (b) Enhanced LESO-based QPLL 

Figure 17. Experimental results of the real speed, the position estimation error, and the speed esti-
mation error at 1500 rpm under load torque disturbance (5 N·m → 0 N·m). 

5.3. Influence of Parameter Mismatches 
The steady-state performance and the transient-state performance of the proposed 

enhanced LESO-based QPLL has been verified in above experiments. In this experiment, 
the influence of q-axis inductance and stator resistance mismatches on the proposed sen-
sorless control method is investigated.  

Figure 18a,b, respectively, show the experimental results with q-axis inductance mis-
match and stator resistance mismatch at 300 rpm under rated load. During the experi-
ment, the parameter changes from 50% nominal value to 200% nominal value. As can be 
seen in Figure 18a, the position error is about −9° when ˆ 0.5q qL L=  and −25° when 
ˆ 2q qL L= , while the speed error is nearly the same during the whole process. In Figure 18b, 

the position error and speed error remain almost unchanged even though ˆ
sR  increases 

from 0.5 sR  to 2 sR .  
Figure 19 shows the experimental results at 1500 rpm. In Figure 19a, the position 

error is about −12° when ˆ 0.5q qL L=  and −40° when ˆ 2q qL L= , while the speed error is 
nearly the same during the whole process. In Figure 19b, the position error and speed 
error remain almost unchanged even though ˆ

sR  increases from 0.5 sR  to 2 sR . 
From above results, it can be concluded that the proposed sensorless control method 

has strong robustness against resistance mismatch. However, q-axis inductance mismatch 
will bring significant errors to the estimated position, especially at high speed. In addition, 
as the back-EMF estimator does not require the information of d-axis inductance, this 
method obviously has strong robustness against d-axis inductance mismatch. 

Figure 16. Experimental results of the real speed, the position estimation error, and the speed
estimation error at 300 rpm under load torque disturbance (5 N·m→ 0 N·m).

Energies 2022, 15, 1943 18 of 21 
 

 

[75rpm/div]

[20°/div]

[10rpm/div]
0

-5

300

Off load

 

[75rpm/div]

[20°/div]

0

0

[10rpm/div]

300

Off load

 

(a) Conventional QPLL (b) Enhanced LESO-based QPLL 

Figure 16. Experimental results of the real speed, the position estimation error, and the speed esti-
mation error at 300 rpm under load torque disturbance (5 N·m → 0 N·m). 

[75rpm/div]

[10°/div]

[10rpm/div]
0

-20

1500

Off load
[75rpm/div]

[10rpm/div]

[10°/div]

0

0

1500

Off load

(a) Conventional QPLL  (b) Enhanced LESO-based QPLL 

Figure 17. Experimental results of the real speed, the position estimation error, and the speed esti-
mation error at 1500 rpm under load torque disturbance (5 N·m → 0 N·m). 

5.3. Influence of Parameter Mismatches 
The steady-state performance and the transient-state performance of the proposed 

enhanced LESO-based QPLL has been verified in above experiments. In this experiment, 
the influence of q-axis inductance and stator resistance mismatches on the proposed sen-
sorless control method is investigated.  

Figure 18a,b, respectively, show the experimental results with q-axis inductance mis-
match and stator resistance mismatch at 300 rpm under rated load. During the experi-
ment, the parameter changes from 50% nominal value to 200% nominal value. As can be 
seen in Figure 18a, the position error is about −9° when ˆ 0.5q qL L=  and −25° when 
ˆ 2q qL L= , while the speed error is nearly the same during the whole process. In Figure 18b, 

the position error and speed error remain almost unchanged even though ˆ
sR  increases 

from 0.5 sR  to 2 sR .  
Figure 19 shows the experimental results at 1500 rpm. In Figure 19a, the position 

error is about −12° when ˆ 0.5q qL L=  and −40° when ˆ 2q qL L= , while the speed error is 
nearly the same during the whole process. In Figure 19b, the position error and speed 
error remain almost unchanged even though ˆ

sR  increases from 0.5 sR  to 2 sR . 
From above results, it can be concluded that the proposed sensorless control method 

has strong robustness against resistance mismatch. However, q-axis inductance mismatch 
will bring significant errors to the estimated position, especially at high speed. In addition, 
as the back-EMF estimator does not require the information of d-axis inductance, this 
method obviously has strong robustness against d-axis inductance mismatch. 

Figure 17. Experimental results of the real speed, the position estimation error, and the speed
estimation error at 1500 rpm under load torque disturbance (5 N·m→ 0 N·m).

5.3. Influence of Parameter Mismatches

The steady-state performance and the transient-state performance of the proposed
enhanced LESO-based QPLL has been verified in above experiments. In this experiment, the
influence of q-axis inductance and stator resistance mismatches on the proposed sensorless
control method is investigated.

Figure 18a,b, respectively, show the experimental results with q-axis inductance mis-
match and stator resistance mismatch at 300 rpm under rated load. During the experiment,
the parameter changes from 50% nominal value to 200% nominal value. As can be seen
in Figure 18a, the position error is about −9◦ when L̂q = 0.5Lq and −25◦ when L̂q = 2Lq,
while the speed error is nearly the same during the whole process. In Figure 18b, the
position error and speed error remain almost unchanged even though R̂s increases from
0.5Rs to 2Rs.

Figure 19 shows the experimental results at 1500 rpm. In Figure 19a, the position error
is about −12◦ when L̂q = 0.5Lq and −40◦ when L̂q = 2Lq, while the speed error is nearly
the same during the whole process. In Figure 19b, the position error and speed error remain
almost unchanged even though R̂s increases from 0.5Rs to 2Rs.
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From above results, it can be concluded that the proposed sensorless control method
has strong robustness against resistance mismatch. However, q-axis inductance mismatch
will bring significant errors to the estimated position, especially at high speed. In addition,
as the back-EMF estimator does not require the information of d-axis inductance, this
method obviously has strong robustness against d-axis inductance mismatch.

6. Conclusions

To improve the transient-state performance, as well as the steady-state performance of
the IPMSM sensorless control system, this article proposes a static-errorless rotor position
estimation method based on the LESO. Two second-order LESOs are utilized to estimate
the α-β axis back-EMFs. A third-order LESO is incorporated into the QPLL to enhance
the position tracking performance and the robustness against external disturbance. Then,
considering that the nonideal back-EMF will bring DC and harmonic fluctuation errors to
the estimated position, an enhanced LESO-based QPLL with static-errorless rotor position
estimation is proposed. On the one hand, the DC position estimation error caused by
the phase lag of the back-EMF estimator is analyzed and compensated. On the other
hand, to suppress the position harmonics induced from the nonsinusoidal back-EMFs, a
SOGI is inserted into the feedforward path of the LESO-based QPLL. The experimental
results show that compared to the conventional method, the proposed method achieves
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better position estimation performance both in transient-state and in steady-state operation.
During steady-state operation, the fluctuation in the estimated position using the proposed
method is reduced to 1◦. During the acceleration transient, the DC error of the estimated
position does not exceed 2◦. In addition, when encountering a large load torque disturbance
at 1500 rpm, the maximum speed variation is reduced from 67 rpm to 40 rpm.

The improved sensorless control method proposed in this article is only applica-
ble in middle- and high-speed ranges. In the low-speed range, the HFI-based method
is commonly adopted. As the HFI-based method normally contains a PI-type position
estimator, it will also encounter problems such as unexpected overshoots and a limited
disturbance rejection capability. In our future research, we will consider introducing the
proposed third-order LESO into the HFI-based method so as to improve the low-speed
operation performance.
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