Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (74)

Search Parameters:
Keywords = extended warming event of 2014–2015

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 21399 KB  
Article
Temporal Variability of Major Stratospheric Sudden Warmings in CMIP5 Climate Change Scenarios
by Víctor Manuel Chávez-Pérez, Juan A. Añel, Citlalli Almaguer-Gómez and Laura de la Torre
Climate 2025, 13(10), 207; https://doi.org/10.3390/cli13100207 - 2 Oct 2025
Viewed by 529
Abstract
Major stratospheric sudden warmings are key processes in the coupling between the stratosphere and the troposphere, exerting a direct influence on mid-latitude climate variability. This study evaluates projected changes in the frequency of these phenomena during the 2006–2100 period using six high-top general [...] Read more.
Major stratospheric sudden warmings are key processes in the coupling between the stratosphere and the troposphere, exerting a direct influence on mid-latitude climate variability. This study evaluates projected changes in the frequency of these phenomena during the 2006–2100 period using six high-top general circulation models from the CMIP5 project under the Representative Concentration Pathway scenarios 2.6, 4.5, and 8.5. The analysis combines the full future period with a moving-window approach of 27 and 48 years, compared against both the satellite-era (1979–2005) and extended historical (1958–2005) periods. This methodology reveals that model responses are highly heterogeneous, with alternating periods of significant increases and decreases in event frequency, partially modulated by internal variability. The magnitude and statistical significance of the projected changes strongly depend on the chosen historical reference period, and most models tend to reproduce displacement-type polar vortex events preferentially over split-type events. These results indicate that assessments based solely on multi-model means or long aggregated periods may mask subperiods with robust signals, although some of these may arise by chance given the 5% significance threshold. This underscores the need for temporally resolved analyses to improve the understanding of stratospheric variability and its potential impact on climate predictability. Full article
(This article belongs to the Section Climate and Environment)
Show Figures

Figure 1

19 pages, 322 KB  
Article
Health Inequalities in Primary Care: A Comparative Analysis of Climate Change-Induced Expansion of Waterborne and Vector-Borne Diseases in the SADC Region
by Charles Musarurwa, Jane M. Kaifa, Mildred Ziweya, Annah Moyo, Wilfred Lunga and Olivia Kunguma
Int. J. Environ. Res. Public Health 2025, 22(8), 1242; https://doi.org/10.3390/ijerph22081242 - 8 Aug 2025
Viewed by 1226
Abstract
Climate change has magnified health disparities across the Southern African Development Community (SADC) region by destabilizing the critical natural systems, which include water security, food production, and disease ecology. The IPCC (2007) underscores the disproportionate impact on low-income populations characterized by limited adaptive [...] Read more.
Climate change has magnified health disparities across the Southern African Development Community (SADC) region by destabilizing the critical natural systems, which include water security, food production, and disease ecology. The IPCC (2007) underscores the disproportionate impact on low-income populations characterized by limited adaptive capacity, exacerbating existing vulnerabilities. Rising temperatures, erratic precipitation patterns, and increased frequency of extreme weather events ranging from prolonged droughts to catastrophic floods have created favourable conditions for the spread of waterborne diseases such as cholera, dysentery, and typhoid, as well as the expansion of vector-borne diseases zone also characterized by warmer and wetter conditions where diseases like malaria thrives. This study employed a comparative analysis of climate and health data across Malawi, Zimbabwe, Mozambique, and South Africa examining the interplay between climatic shifts and disease patterns. Through reviews of national surveillance reports, adaptation policies, and outbreak records, the analysis reveals the existence of critical gaps in preparedness and response. Zimbabwe’s Matabeleland region experienced a doubling of diarrheal diseases in 2019 due to drought-driven water shortages, forcing communities to rely on unsafe alternatives. Mozambique faced a similar crisis following Cyclone Idai in 2019, where floodwaters precipitated a threefold surge in cholera cases, predominantly affecting children under five. In Malawi, Cyclone Ana’s catastrophic flooding in 2022 contaminated water sources, leading to a devastating cholera outbreak that claimed over 1200 lives. Meanwhile, in South Africa, inadequate sanitation in KwaZulu-Natal’s informal settlements amplified cholera transmission during the 2023 rainy season. Malaria incidence has also risen in these regions, with warmer temperatures extending the geographic range of Anopheles mosquitoes and lengthening the transmission seasons. The findings underscore an urgent need for integrated, multisectoral interventions. Strengthening disease surveillance systems to incorporate climate data could enhance early warning capabilities, while national adaptation plans must prioritize health resilience by bridging gaps between water, agriculture, and infrastructure policies. Community-level interventions, such as water purification programs and targeted vector control, are essential to reduce outbreaks in high-risk areas. Beyond these findings, there is a critical need to invest in longitudinal research so as to elucidate the causal pathways between climate change and disease burden, particularly for understudied linkages like malaria expansion and urbanization. Without coordinated action, climate-related health inequalities will continue to widen, leaving marginalized populations increasingly vulnerable to preventable diseases. The SADC region must adopt evidence-based, equity-centred strategies to mitigate these growing threats and safeguard public health in a warming world. Full article
(This article belongs to the Special Issue Health Inequalities in Primary Care)
19 pages, 14381 KB  
Article
Temperature and Humidity Anomalies During the Summer Drought of 2022 over the Yangtze River Basin
by Dengao Li, Er Lu, Dian Yuan and Ruisi Liu
Atmosphere 2025, 16(8), 942; https://doi.org/10.3390/atmos16080942 - 6 Aug 2025
Cited by 1 | Viewed by 528
Abstract
In the summer of 2022, central and eastern China experienced prolonged extreme high temperatures and severe drought, leading to significant economic losses. To gain a more profound understanding of this drought event and furnish a reference for forecasting similar events in the future, [...] Read more.
In the summer of 2022, central and eastern China experienced prolonged extreme high temperatures and severe drought, leading to significant economic losses. To gain a more profound understanding of this drought event and furnish a reference for forecasting similar events in the future, this study examines the circulation anomalies associated with the drought. Employing a diagnostic method focused on temperature and moisture anomalies, this study introduces a novel approach to quantify and compare the relative significance of moisture transport and warm air dynamics in contributing to the drought. This study examines the atmospheric circulation anomalies linked to the drought event and compares the relative contributions of water vapor transport and warm air activity in causing the drought, using two parameters defined in the paper. The results show the following: (1) The West Pacific Subtropical High (WPSH) was more intense than usual and extended westward, consistently controlling the Yangtze River Basin. Simultaneously, the polar vortex area was smaller and weaker, the South Asian High area was larger and stronger, and it shifted eastward. These factors collectively led to weakened water vapor transport conditions and prevailing subsiding air motions in the Yangtze River Basin, causing frequent high temperatures. (2) By defining Iq and It to represent the contributions of moisture and temperature to precipitation, we found that the drought event in the Yangtze River Basin was driven by both reduced moisture supplies in the lower troposphere and higher-than-normal temperatures, with temperature playing a dominant role. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

12 pages, 3793 KB  
Article
Semi-Annual Climate Modes in the Western Hemisphere
by Mark R. Jury
Climate 2025, 13(6), 111; https://doi.org/10.3390/cli13060111 - 27 May 2025
Viewed by 756
Abstract
Semi-annual climate oscillations in the Western Hemisphere (20 S–35 N, 150 W–20 E) were studied via empirical orthogonal function (EOF) eigenvector loading patterns and principal component time scores from 1980 to 2023. The spatial loading maximum for 850 hPa zonal wind extended from [...] Read more.
Semi-annual climate oscillations in the Western Hemisphere (20 S–35 N, 150 W–20 E) were studied via empirical orthogonal function (EOF) eigenvector loading patterns and principal component time scores from 1980 to 2023. The spatial loading maximum for 850 hPa zonal wind extended from the north Atlantic to the east Pacific; channeling was evident over the southwestern Caribbean. The eigenvector loading maximum for precipitation reflected an equatorial trough, while the semi-annual SST formed a dipole with loading maxima in upwelling zones off Angola (10 E) and Peru (80 W). Weakened Caribbean trade winds and strengthened tropical convection correlated with a warm Atlantic/cool Pacific pattern (R = 0.46). Wavelet spectral analysis of principal component time scores found a persistent 6-month rhythm disrupted only by major El Nino Southern Oscillation events and anomalous mid-latitude conditions associated with negative-phase Arctic Oscillation. Historical climatologies revealed that 6-month cycles of wind, precipitation, and sea temperature were tightly coupled in the Western Hemisphere by heat surplus in the equatorial ocean diffused by meridional overturning Hadley cells. External forcing emerged in early 2010 when warm anomalies over Canada diverted the subtropical jet, suppressing subtropical trade winds and evaporative cooling and intensifying the equatorial trough across the Western Hemisphere. Climatic trends of increased jet-stream instability suggest that the semi-annual amplitude may grow over time. Full article
Show Figures

Figure 1

14 pages, 6252 KB  
Article
Influence of Satellite and Presatellite Periods on the Validation of Major Sudden Stratospheric Warmings in Historical CMIP5 Simulations
by Víctor Manuel Chávez-Pérez, Juan Antonio Añel, Citlalli Almaguer-Gómez and Laura de la Torre
Atmosphere 2025, 16(5), 628; https://doi.org/10.3390/atmos16050628 - 21 May 2025
Cited by 1 | Viewed by 644
Abstract
This study assesses the ability of fourteen CMIP5 climate models to reproduce the main characteristics of major stratospheric sudden warmings (SSWp) in historical simulations. Model performance is evaluated through comparisons with three reanalysis datasets, considering two periods: the satellite era (1979–2005) and an [...] Read more.
This study assesses the ability of fourteen CMIP5 climate models to reproduce the main characteristics of major stratospheric sudden warmings (SSWp) in historical simulations. Model performance is evaluated through comparisons with three reanalysis datasets, considering two periods: the satellite era (1979–2005) and an extended period including pre-satellite years (1958–2005). Results show that model consistency with reanalyses is significantly higher during the satellite period, with up to seven models showing no statistically significant differences (p > 0.05) in at least eight out of ten key diagnostics. In contrast, performance decreases in the extended period, likely due to greater observational uncertainty. A systematic overrepresentation of displacement-type events (SSWD) was found in most models, compared to the split-type dominance in reanalysis data. These findings highlight the importance of the validation period and event classification in model evaluation and establish a robust framework for future comparisons using CMIP6 models and newer reanalysis products. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

12 pages, 4286 KB  
Article
El Niño Magnitude and Western Pacific Warm Pool Displacement. Part II: Future Changes Under Global Warming
by Zhuoxin Gu and De-Zheng Sun
Climate 2025, 13(5), 97; https://doi.org/10.3390/cli13050097 - 9 May 2025
Cited by 1 | Viewed by 2072
Abstract
Observations reveal a strong correlation between the magnitude of El Niño and the displacement of the eastern edge of the western Pacific warm pool (WPWP). In Part I, this relationship was examined in the Coupled Model Intercomparison Project Phase 6 (CMIP6) models using [...] Read more.
Observations reveal a strong correlation between the magnitude of El Niño and the displacement of the eastern edge of the western Pacific warm pool (WPWP). In Part I, this relationship was examined in the Coupled Model Intercomparison Project Phase 6 (CMIP6) models using their historical simulations, and it was found to be comparable to that in the observations. The present study extends the analysis to future projections under two Shared Socioeconomic Pathway (SSP) scenarios—SSP245 and SSP585—to assess whether this strong relationship persists under global warming. It is found that El Niño magnitude and WPWP boundary displacement in most models under global warming are as strongly correlated as in the observations and their historical simulations. Moreover, most models project that stronger El Niño events will be accompanied by a greater eastward displacement of the WPWP boundary. For models with a positive response, the ensemble projects an increase in El Niño magnitude of 0.21 ± 0.03 °C (0.20 ± 0.03 °C) under the SSP245 (SSP585) scenario, accompanied by an eastward displacement of the WPWP by 11.7 ± 1.3° (11.1 ± 1.0°) in longitude. These results further support the notion that El Niño is a consequence of the eastward extension of the WPWP. Full article
Show Figures

Figure 1

29 pages, 10523 KB  
Article
Simulated Effects of Future Water Availability and Protected Species Habitat in a Perennial Wetland, Santa Barbara County, California
by Geoffrey Cromwell, Daniel P. Culling, Matthew J. Young and Joshua D. Larsen
Water 2025, 17(8), 1238; https://doi.org/10.3390/w17081238 - 21 Apr 2025
Viewed by 877
Abstract
This study evaluates the potential water availability in Barka Slough and the effects of changing hydrological conditions on the aquatic habitat of five protected species. Barka Slough is a historically perennial wetland at the downstream western end of the San Antonio Creek Valley [...] Read more.
This study evaluates the potential water availability in Barka Slough and the effects of changing hydrological conditions on the aquatic habitat of five protected species. Barka Slough is a historically perennial wetland at the downstream western end of the San Antonio Creek Valley watershed (SACVW). A previously published hydrologic model of the SACVW for 1948–2018 was extended to include 2019–2021 and then modified to simulate the future years of 2022–2051. Two models simulating the future years of 2022–2051 were constructed, each with different climate inputs: (1) a repeated historical climate and (2) a 2070-centered Drier Extreme Warming climate (2070 DEW). The model with the 2070 DEW climate had warmer temperatures and an increase in average annual precipitation driven by larger, albeit more infrequent, precipitation events than the model with the historical climate. Simulated groundwater pumpage resulted in cumulative groundwater storage depletion and groundwater-level decline in Barka Slough in both future models. The simulations indicate that Barka Slough may transition from a perennial to an ephemeral wetland. Streamflow, stream disconnection, and depth to groundwater are key habitat metrics for federally listed species in Barka Slough. Future seasonal conditions for each metric are more likely to affect federally listed species’ habitats under 2070 DEW climatic conditions. Future seasonal streamflow volume may negatively impact unarmored threespine stickleback (Gasterosteus aculeatus williamsoni) and tidewater goby (Eucyclogobis newberryi) habitats. Future seasonal stream disconnection may negatively impact the unarmored threespine stickleback habitat. Future groundwater-level decline may negatively impact Gambel’s watercress (Nasturtium gambelii) and La Graciosa thistle (Cirsium scariosum var. loncholepis) habitats and could influence the ability to use Barka Slough as a restoration or reintroduction site for these species. Results from this study can be used to inform water management decisions to sustain future groundwater availability in the SACVW. Full article
Show Figures

Figure 1

32 pages, 22462 KB  
Article
Spatiotemporal Dynamics of Marine Heatwaves and Ocean Acidification Affecting Coral Environments in the Philippines
by Rose Angeli Tabanao Macagga and Po-Chun Hsu
Remote Sens. 2025, 17(6), 1048; https://doi.org/10.3390/rs17061048 - 17 Mar 2025
Cited by 1 | Viewed by 3351
Abstract
The coral reefs in the Philippines are facing an unprecedented crisis. This study, based on a comprehensive analysis of marine heatwaves (MHWs), degree heating weeks (DHWs), and ocean acidification (OA) indices derived from satellite observations and reanalysis data, reveals how thermal stress and [...] Read more.
The coral reefs in the Philippines are facing an unprecedented crisis. This study, based on a comprehensive analysis of marine heatwaves (MHWs), degree heating weeks (DHWs), and ocean acidification (OA) indices derived from satellite observations and reanalysis data, reveals how thermal stress and OA have progressively eroded coral ecosystems from 1985 to 2022. This study analyzed 12 critical coral habitats adjacent to the Philippines. The monthly average sea surface temperature (SST) in the study area ranged from 26.6 °C to 29.3 °C. The coast of Lingayen Gulf was identified as the most vulnerable coral reef site in the Philippines, followed by Davao Oriental and Polillo Island. The coast of Lingayen Gulf recorded the highest total MHW days in 2022, amounting to 293 days. The coast of Lingayen Gulf also reached the highest DHW values in July and August 2022, with 8.94 °C weeks, while Davao Oriental experienced the most extended average duration of MHWs in 2020, lasting 90.5 days per event. Large-scale climate features such as the El Niño–Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) significantly influenced the study area’s SST anomalies and MHW events. High-risk coral bleaching periods, such as 1988–1989, 1998–1999, 2007–2008, and 2009–2010, were characterized by transitions from El Niño and positive PDO phases, to La Niña and negative PDO phases. However, since 2015, global warming has led to high cumulative heat stress without specific climate background patterns. We propose a Coral Marine Environmental Vulnerability Index (CoralVI) to integrate the spatiotemporal dynamics of warming and acidification and their impacts on coral habitats. The data show a rapid increase in the marine environmental vulnerability of coral habitats in the Philippines in recent years, extending to almost the entire coastline, posing significant threats to coral survival. Full article
Show Figures

Figure 1

32 pages, 2134 KB  
Article
Probabilistic Risk Assessment (PRA) for Sustainable Water Resource Management: A Future Flood Inundation Example
by Nick Martin, Francisco Peña and David Powers
Water 2025, 17(6), 816; https://doi.org/10.3390/w17060816 - 12 Mar 2025
Viewed by 1026
Abstract
Sustainable decision making addresses resource and cost sharing among current and future generations. Adaptation costs are incurred by current and damage mitigation costs are borne by future generations. Circularity extends sustainability by including resource regeneration and benefits from resource re-use. Climate change and [...] Read more.
Sustainable decision making addresses resource and cost sharing among current and future generations. Adaptation costs are incurred by current and damage mitigation costs are borne by future generations. Circularity extends sustainability by including resource regeneration and benefits from resource re-use. Climate change and associated global warming are producing more frequent extreme events with different probabilities of occurrence than historically observed. Traditional approaches to asset and infrastructure design tend to be backward-looking for weather- and climate-related bases and to introduce too little variability to compensate for uncertainty, resulting in infrastructure that was designed for irrelevant future conditions. An example dynamic probabilistic risk assessment (PRA) for flood inundation is developed and implemented to examine the usefulness and limitations of PRA for sustainable water resource management. It specifically addresses the issue of sustainable decision making related to outdated but historically regulatory-compliant assets under non-stationary climatic conditions. Weather attribution provides improved extreme event frequency expectations to, generates the dynamic component of, and allows for incorporation of additional uncertainty to the PRA. Results from the PRA provide decision making optimization between current adaptation and future mitigation costs. A limitation of PRA is that it analyzes failure and risk and not benefits accruing from resource regeneration. Full article
(This article belongs to the Special Issue Climate Change Adaptation and Water Resources Management)
Show Figures

Figure 1

34 pages, 4254 KB  
Article
Optimized Strategy for Energy Management in an EV Fast Charging Microgrid Considering Storage Degradation
by Joelson Lopes da Paixão, Alzenira da Rosa Abaide, Gabriel Henrique Danielsson, Jordan Passinato Sausen, Leonardo Nogueira Fontoura da Silva and Nelson Knak Neto
Energies 2025, 18(5), 1060; https://doi.org/10.3390/en18051060 - 21 Feb 2025
Cited by 1 | Viewed by 1071
Abstract
Current environmental challenges demand immediate action, especially in the transport sector, which is one of the largest CO2 emitters. Vehicle electrification is considered an essential strategy for emission mitigation and combating global warming. This study presents methodologies for the modeling and energy [...] Read more.
Current environmental challenges demand immediate action, especially in the transport sector, which is one of the largest CO2 emitters. Vehicle electrification is considered an essential strategy for emission mitigation and combating global warming. This study presents methodologies for the modeling and energy management of microgrids (MGs) designed as charging stations for electric vehicles (EVs). Algorithms were developed to estimate daily energy generation and charging events in the MG. These data feed an energy management algorithm aimed at minimizing the costs associated with energy trading operations, as well as the charging and discharging cycles of the battery energy storage system (BESS). The problem constraints ensure the safe operation of the system, availability of backup energy for off-grid conditions, preference for reduced tariffs, and optimized management of the BESS charge and discharge rates, considering battery wear. The grid-connected MG used in our case study consists of a wind turbine (WT), photovoltaic system (PVS), BESS, and an electric vehicle fast charging station (EVFCS). Located on a highway, the MG was designed to provide fast charging, extending the range of EVs and reducing drivers’ range anxiety. The results of this study demonstrated the effectiveness of the proposed energy management approach, with the optimization algorithm efficiently managing energy flows within the MG while prioritizing lower operational costs. The inclusion of the battery wear model makes the optimizer more selective in terms of battery usage, operating it in cycles that minimize BESS wear and effectively prolong its lifespan. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

14 pages, 3806 KB  
Article
Using Snake Roadkill Patterns to Indicate Effects of Climate Change on Snakes in Taiwan
by Tzu-Ming Liu
Sustainability 2025, 17(4), 1580; https://doi.org/10.3390/su17041580 - 14 Feb 2025
Cited by 3 | Viewed by 1280
Abstract
This study investigates the impacts of climate change on snake behavior and distribution in Taiwan by analyzing roadkill data from the Taiwan Roadkill Observation Network (TaiRON). Focusing on data from 2012 to 2019, the analysis reveals temporal and spatial changes in snake roadkill [...] Read more.
This study investigates the impacts of climate change on snake behavior and distribution in Taiwan by analyzing roadkill data from the Taiwan Roadkill Observation Network (TaiRON). Focusing on data from 2012 to 2019, the analysis reveals temporal and spatial changes in snake roadkill patterns, shedding light on the ecological effects of a warming climate. From 2012 to 2019, the number of snake roadkill events exhibited a rising trend, particularly during peak activity months from May to October, which accounted for over 70% of annual cases. However, a notable increase was observed in January, traditionally a low-activity period, with roadkill numbers rising 14.9-fold and proportions increasing nearly 6-fold over the study period. This shift suggests that warmer winters are extending the active period for snakes, potentially altering their seasonal behaviors. Spatially, snake roadkill numbers showed a northward and upward migration, reflecting a response to rising temperatures and habitat shifts to higher-altitude regions. These migratory trends, while adaptive, expose snakes to heightened roadkill risks in newly occupied habitats. The findings underscore the potential of roadkill data as a robust ecological monitoring tool for understanding species responses to climate change. By integrating citizen science with ecological and spatial analyses, this research highlights the critical role of environmental changes in driving snake activity and distribution shifts. This study emphasizes the need for climate-adaptive conservation strategies, including road design improvements and biodiversity-focused policies, to mitigate roadkill risks and safeguard snake populations. These insights contribute to broader efforts in ecological conservation and the formulation of evidence-based policies to address the impacts of climate change on cold-blooded animals. Full article
Show Figures

Figure 1

18 pages, 19968 KB  
Article
How Do Changes in Grassland Phenology and Its Responses to Extreme Climatic Events in Central Asia?
by Xinwei Wang, Jianhao Li, Jianghua Zheng, Liang Liu, Xiaojing Yu, Ruikang Tian and Mengxiang Xing
Land 2025, 14(1), 160; https://doi.org/10.3390/land14010160 - 14 Jan 2025
Cited by 1 | Viewed by 1033
Abstract
Extreme climate events have become more frequent under global warming, significantly affecting vegetation phenology and carbon cycles in Central Asia. However, the mediating effects of intensity of compound drought and heat events (CDHEs) and compound moisture and heat events (CMHEs) on grassland phenology [...] Read more.
Extreme climate events have become more frequent under global warming, significantly affecting vegetation phenology and carbon cycles in Central Asia. However, the mediating effects of intensity of compound drought and heat events (CDHEs) and compound moisture and heat events (CMHEs) on grassland phenology and their trends in the relative contributions to grassland phenology over time have remained unclear. Based on the calculation results of grassland phenology and compound events (CEs), this study used trend analysis, partial least squares regression structural equation modeling (PLS-SEM), and ridge regression analysis to investigate the mediating effect and the temporal trend in relative contribution of CEs to grassland phenology in Central Asia, and the magnitude of sensitivity of grassland phenology to CEs. This study revealed that the start of season (SOS) was advanced by 0.4 d·a−1, end of season (EOS) was delayed by 0.5 d·a−1, and length of season (LOS) extended by 0.8 d·a−1 in 1982–2022. The duration of the CDHEs (0−37 days) was greater than that of the CMHEs (0−9 days) in Central Asia. The direct effects of CDHEs and CMHEs on grassland phenology were generally negative, except for the direct positive effect of CDHEs on LOS. The indirect effects of temperature and precipitation on grassland phenology through CDHEs and CMHEs were greater than their direct effects on phenology. The relative contribution of CDHEs to grassland phenology was consistently greater than that of CMHEs, and both the relative contribution curves showed a significant upward trend. The sensitivity of grassland phenology to CDHEs was higher than its sensitivity to CMHEs at 0.79 (SOS), 1.18 (EOS), and 0.72 (LOS). Our results emphasize the mediating effects of CDHEs and CMHEs on grassland phenology. Under the influence of CDHEs and CMHEs, the LOS will further lengthen in the future. Full article
Show Figures

Figure 1

13 pages, 9172 KB  
Technical Note
Surge Mechanisms of Garmo Glacier: Integrating Multi-Source Data for Insights into Acceleration and Hydrological Control
by Kunpeng Wu, Jing Feng, Pingping Cheng, Tobias Bolch, Zongli Jiang, Shiyin Liu and Adnan Ahmad Tahir
Remote Sens. 2024, 16(24), 4619; https://doi.org/10.3390/rs16244619 - 10 Dec 2024
Cited by 1 | Viewed by 1356
Abstract
Understanding the mechanisms of glacial surging is crucial, as surges can lead to severe hazards and significantly impact a glacier’s mass balance. We used various remote sensing data to investigate the surge of Garmo Glacier in the western Pamir. Our findings indicate that [...] Read more.
Understanding the mechanisms of glacial surging is crucial, as surges can lead to severe hazards and significantly impact a glacier’s mass balance. We used various remote sensing data to investigate the surge of Garmo Glacier in the western Pamir. Our findings indicate that the glacier surged between 27 April and 30 September 2022, with peak speeds reaching 8.3 ± 0.03 m d−1. During April 2020 and September 2022, the receiving zone thickened by 37.9 ± 0.55 m, while the reservoir zone decreased by 35.2 ± 0.55 m on average. The velocity decomposition suggests that this meltwater gradually warmed the glacier bed, accelerating the glacier during the pre-surge phase. During the surge, substantial drainage events coincided with sharp deceleration, ultimately halting the surge and suggesting hydrological control. Extreme climate events may not immediately trigger glacial surges; they can substantially impact glacial surging processes over an extended period. Full article
Show Figures

Graphical abstract

14 pages, 4382 KB  
Article
Investigations on Stubble-Burning Aerosols over a Rural Location Using Ground-Based, Model, and Spaceborne Data
by Katta Vijayakumar, Panuganti China Sattilingam Devara and Saurabh Yadav
Atmosphere 2024, 15(11), 1383; https://doi.org/10.3390/atmos15111383 - 17 Nov 2024
Cited by 1 | Viewed by 1518
Abstract
Agriculture crop residue burning has become a major environmental problem facing the Indo-Gangetic plain, as well as contributing to global warming. This paper reports the results of a comprehensive study, examining the variations in aerosol optical, microphysical, and radiative properties that occur during [...] Read more.
Agriculture crop residue burning has become a major environmental problem facing the Indo-Gangetic plain, as well as contributing to global warming. This paper reports the results of a comprehensive study, examining the variations in aerosol optical, microphysical, and radiative properties that occur during biomass-burning events at Amity University Haryana (AUH), at a rural station in Gurugram (Latitude: 28.31° N, Longitude: 76.90° E, 285 m AMSL), employing ground-based observations of AERONET and Aethalometer, as well as satellite and model simulations during 7–16 November 2021. The smoke emissions during the burning events enhanced the aerosol optical depth (AOD) and increased the Angstrom exponent (AE), suggesting the dominance of fine-mode aerosols. A smoke event that affected the study region on 11 November 2021 is simulated using the regional NAAPS model to assess the role of smoke in regional aerosol loading that caused an atmospheric forcing of 230.4 W/m2. The higher values of BC (black carbon) and BB (biomass burning), and lower values of AAE (absorption Angstrom exponent) are also observed during the peak intensity of the smoke-event period. A notable layer of smoke has been observed, extending from the surface up to an altitude of approximately 3 km. In addition, the observations gathered from CALIPSO regarding the vertical profiles of aerosols show a qualitative agreement with the values obtained from AERONET observations. Further, the smoke plumes that arose due to transport of a wide-spread agricultural crop residue burning are observed nationwide, as shown by MODIS imagery, and HYSPLIT back trajectories. Thus, the present study highlights that the smoke aerosol emissions during crop residue burning occasions play a critical role in the local/regional aerosol microphysical and radiation properties, and hence in the climate variability. Full article
Show Figures

Figure 1

22 pages, 15112 KB  
Article
Evidence of 2024 Summer as the Warmest During the Last Four Decades in the Aegean, Ionian, and Cretan Seas
by Yannis Androulidakis, Vassilis Kolovoyiannis, Christos Makris and Yannis Krestenitis
J. Mar. Sci. Eng. 2024, 12(11), 2020; https://doi.org/10.3390/jmse12112020 - 9 Nov 2024
Cited by 4 | Viewed by 5798
Abstract
The summer of 2024 witnessed record-high sea surface temperatures (SST) across the Aegean, Ionian, and Cretan Seas (AICS), following unprecedented air heatwaves over the sea under a long-term warming trend of 0.46 °C/decade for the mean atmospheric temperature (1982–2024). The respective mean SST [...] Read more.
The summer of 2024 witnessed record-high sea surface temperatures (SST) across the Aegean, Ionian, and Cretan Seas (AICS), following unprecedented air heatwaves over the sea under a long-term warming trend of 0.46 °C/decade for the mean atmospheric temperature (1982–2024). The respective mean SST trend for the same period is even steeper, increasing by 0.59 °C/decade. With mean summer surface waters surpassing 28 °C, particularly in the Ionian Sea, the southern Cretan, and northern Aegean basins, this summer marked the warmest ocean conditions over the past four decades. Despite a relatively lower number of marine heatwaves (MHWs) compared to previous warm years, the duration and cumulative intensity of these events in 2024 were the highest on record, reaching nearly twice the levels seen in 2018, which was the warmest until now. Intense MHWs were recorded, especially in the northern Aegean, with extensive biological consequences to ecosystems like the Thermaikos Gulf, a recognized MHW hotspot. The strong downward atmospheric heat fluxes in the summer of 2024, following an interannual increasing four-decade trend, contributed to the extreme warming of the water masses together with other met-ocean conditions such as lateral exchanges and vertical processes. The high temperatures were not limited to the surface but extended to depths of 50 m in some regions, indicating a deep and widespread warming of the upper ocean. Mechanisms typically mitigating SST rises, such as the Black Sea water (BSW) inflow and coastal upwelling over the eastern Aegean Sea, were weaker in 2024. Cooler water influx from the BSW decreased, as indicated by satellite-derived chlorophyll-a concentrations, while upwelled waters from depths of 40 to 80 m at certain areas showed elevated temperatures, likely limiting their cooling effects on the surface. Prolonged warming of ocean waters in a semi-enclosed basin such as the Mediterranean and its marginal sea sub-basins can have substantial physical, biological, and socioeconomic impacts on the AICS. This research highlights the urgent need for targeted monitoring and mitigation strategies to address the growing impact of MHWs in the region. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

Back to TopTop