El Niño Magnitude and Western Pacific Warm Pool Displacement. Part II: Future Changes Under Global Warming
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Future Changes in the Magnitude of El Niño
3.2. Future Changes in the WPWP
3.3. Relationship Between the El Niño Magnitude and the Displacement of the WPWP
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ropelewski, C.F.; Halpert, M.S. Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Weather Rev. 1987, 115, 1606–1626. [Google Scholar] [CrossRef]
- Ronghui, H.; Yifang, W. The influence of ENSO on the summer climate change in China and its mechanism. Adv. Atmos. Sci. 1989, 6, 21–32. [Google Scholar] [CrossRef]
- Zhang, R.; Sumi, A.; Kimoto, M. Impact of El Niño on the East Asian monsoon a diagnostic study of the ‘86/87 and ‘91/92 events. J. Meteorol. Soc. Jpn. Ser. II 1996, 74, 49–62. [Google Scholar] [CrossRef]
- Wang, B.; Wu, R.; Fu, X. Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Clim. 2000, 13, 1517–1536. [Google Scholar] [CrossRef]
- Neelin, J.; Chou, C.; Su, H. Tropical drought regions in global warming and El Niño teleconnections. Geophys. Res. Lett. 2003, 30, 2273. [Google Scholar] [CrossRef]
- Chiodi, A.M.; Harrison, D.E. El Niño impacts on seasonal US atmospheric circulation, temperature, and precipitation anomalies: The OLR-event perspective. J. Clim. 2013, 26, 822–837. [Google Scholar] [CrossRef]
- Lu, B.; Li, H.; Wu, J.; Zhang, T.; Liu, J.; Liu, B.; Chen, Y.; Baishan, J. Impact of El Niño and Southern Oscillation on the summer precipitation over Northwest China. Atmos. Sci. Lett. 2019, 20, e928. [Google Scholar] [CrossRef]
- McPhaden, M.J.; Zebiak, S.E.; Glantz, M.H. ENSO as an integrating concept in earth science. Science 2006, 314, 1740–1745. [Google Scholar] [CrossRef]
- Cai, W.; McPhaden, M.J.; Grimm, A.M.; Rodrigues, R.R.; Taschetto, A.S.; Garreaud, R.D.; Dewitte, B.; Poveda, G.; Ham, Y.-G.; Santoso, A. Climate impacts of the El Niño–southern oscillation on South America. Nat. Rev. Earth Environ. Health 2020, 1, 215–231. [Google Scholar] [CrossRef]
- Goddard, L.; Gershunov, A. Impact of El Niño on weather and climate extremes. In El Niño Southern Oscillation in a Changing Climate; Wiely: Hoboken, NJ, USA, 2020; pp. 361–375. [Google Scholar]
- Liu, Y.; Cai, W.; Lin, X.; Li, Z.; Zhang, Y. Nonlinear El Niño impacts on the global economy under climate change. Nat. Commun. 2023, 14, 5887. [Google Scholar] [CrossRef]
- Wyrtki, K. Water displacements in the Pacific and the genesis of El Niño cycles. J. Geophys. Res. Ocean. 1985, 90, 7129–7132. [Google Scholar] [CrossRef]
- Picaut, J.; Ioualalen, M.; Menkès, C.; Delcroix, T.; Mcphaden, M.J. Mechanism of the zonal displacements of the Pacific warm pool: Implications for ENSO. Science 1996, 274, 1486–1489. [Google Scholar] [CrossRef]
- Picaut, J.; Masia, F.; Du Penhoat, Y. An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science 1997, 277, 663–666. [Google Scholar] [CrossRef]
- Timmermann, A.; Oberhuber, J.; Bacher, A.; Esch, M.; Latif, M.; Roeckner, E. Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature 1999, 398, 694–697. [Google Scholar] [CrossRef]
- Lee, T.; McPhaden, M.J. Increasing intensity of El Niño in the central-equatorial Pacific. Geophys. Res. Lett. 2010, 37, L14603. [Google Scholar] [CrossRef]
- Cai, W.; Borlace, S.; Lengaigne, M.; Van Rensch, P.; Collins, M.; Vecchi, G.; Timmermann, A.; Santoso, A.; McPhaden, M.J.; Wu, L. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 2014, 4, 111–116. [Google Scholar] [CrossRef]
- Wang, G.; Cai, W.; Gan, B.; Wu, L.; Santoso, A.; Lin, X.; Chen, Z.; McPhaden, M.J. Continued increase of extreme El Niño frequency long after 1.5℃ warming stabilization. Nat. Clim. Change 2017, 7, 568–572. [Google Scholar] [CrossRef]
- Cai, W.; Wang, G.; Dewitte, B.; Wu, L.; Santoso, A.; Takahashi, K.; Yang, Y.; Carréric, A.; McPhaden, M.J. Increased variability of eastern Pacific El Niño under greenhouse warming. Nature 2018, 564, 201–206. [Google Scholar] [CrossRef]
- Heede, U.K.; Fedorov, A.V. Towards understanding the robust strengthening of ENSO and more frequent extreme El Niño events in CMIP6 global warming simulations. Clim. Dyn. 2023, 61, 3047–3060. [Google Scholar]
- Pathirana, G.; Oh, J.-H.; Cai, W.; An, S.-I.; Min, S.-K.; Jo, S.-Y.; Shin, J.; Kug, J.-S. Increase in convective extreme El Niño events in a CO2 removal scenario. Sci. Adv. 2023, 9, eadh2412. [Google Scholar] [CrossRef]
- Rayner, N.; Parker, D.E.; Horton, E.; Folland, C.K.; Alexander, L.V.; Rowell, D.; Kent, E.C.; Kaplan, A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 2003, 108, 4407. [Google Scholar] [CrossRef]
- Zhang, T.; Sun, D.-Z. ENSO asymmetry in CMIP5 models. J. Clim. 2014, 27, 4070–4093. [Google Scholar] [CrossRef]
- Hayashi, M.; Jin, F.-F.; Stuecker, M.F. Dynamics for El Niño-La Niña asymmetry constrain equatorial-Pacific warming pattern. Nat. Commun. 2020, 11, 4330. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, D.-Z. ENSO asymmetry in CMIP6 models. J. Clim. 2022, 35, 5555–5572. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Geng, T.; Jia, F.; Cai, W.; Wu, L.; Gan, B.; Jing, Z.; Li, S.; McPhaden, M.J. Increased occurrences of consecutive La Niña events under global warming. Nature 2023, 619, 774–781. [Google Scholar] [CrossRef]
- Kim, B.-M.; An, S.-I. Understanding ENSO regime behavior upon an increase in the warm-pool temperature using a simple ENSO model. J. Clim. 2011, 24, 1438–1450. [Google Scholar] [CrossRef]
- Liang, J.; Yang, X.-Q.; Sun, D.-Z. Factors determining the asymmetry of ENSO. J. Clim. 2017, 30, 6097–6106. [Google Scholar] [CrossRef]
- Cai, W.; Santoso, A.; Wang, G.; Yeh, S.-W.; An, S.-I.; Cobb, K.M.; Collins, M.; Guilyardi, E.; Jin, F.-F.; Kug, J.-S. ENSO and greenhouse warming. Nat. Clim. Change 2015, 5, 849–859. [Google Scholar] [CrossRef]
- Wang, B.; Luo, X.; Yang, Y.-M.; Sun, W.; Cane, M.A.; Cai, W.; Yeh, S.-W.; Liu, J. Historical change of El Niño properties sheds light on future changes of extreme El Niño. Proc. Natl. Acad. Sci. USA 2019, 116, 22512–22517. [Google Scholar] [CrossRef]
- Knutson, T.R.; Manabe, S.; Gu, D. Simulated ENSO in a global coupled ocean–atmosphere model: Multidecadal amplitude modulation and CO2 sensitivity. J. Clim. 1997, 10, 138–161. [Google Scholar] [CrossRef]
- Collins, M.; An, S.-I.; Cai, W.; Ganachaud, A.; Guilyardi, E.; Jin, F.-F.; Jochum, M.; Lengaigne, M.; Power, S.; Timmermann, A. The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci. 2010, 3, 391–397. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, Y.; Lu, J.; Liu, F. Changes in ENSO amplitude under climate warming and cooling. Clim. Dyn. 2019, 52, 1871–1882. [Google Scholar] [CrossRef]
- Cai, W.; Ng, B.; Geng, T.; Wu, L.; Santoso, A.; McPhaden, M.J. Butterfly effect and a self-modulating El Niño response to global warming. Nature 2020, 585, 68–73. [Google Scholar] [CrossRef]
- Callahan, C.W.; Chen, C.; Rugenstein, M.; Bloch-Johnson, J.; Yang, S.; Moyer, E.J. Robust decrease in El Niño/Southern Oscillation amplitude under long-term warming. Nat. Clim. Change 2021, 11, 752–757. [Google Scholar] [CrossRef]
Model Name | Institution and Country |
---|---|
CanESM5 | Canadian Centre for Climate Modelling and Analysis (CCCMA), Canada |
CanESM5-CanOE | Canadian Centre for Climate Modelling and Analysis (CCCMA), Canada |
CAS-ESM2-0 | Chinese Academy of Sciences (CAS), China |
CESM2 | National Center for Atmospheric Research (NCAR), United States |
CESM2-WACCM | National Center for Atmospheric Research (NCAR), United States |
CIESM | Tsinghua University, China |
CMCC-CM2-SR5 | Centro Euro-Mediterraneo per I Cambiamenti Climatici (CMCC), Italy |
CMCC-ESM2 | Centro Euro-Mediterraneo per I Cambiamenti Climatici (CMCC), Italy |
EC-Earth3 | European Consortium for Earth System Modelling, Europe |
EC-Earth3-CC | European Consortium for Earth System Modelling, Europe |
EC-Earth3-Veg | European Consortium for Earth System Modelling, Europe |
EC-Earth3-Veg-LR | European Consortium for Earth System Modelling, Europe |
FGOALS-f3-L | Chinese Academy of Sciences (CAS), Institute of Atmospheric Physics (IAP), China |
FIO-ESM-2-0 | First Institute of Oceanography (FIO), State Oceanic Administration (SOA), China |
GFDL-CM4 | National Oceanic and Atmospheric Administration (NOAA), United States |
GFDL-ESM4 | National Oceanic and Atmospheric Administration (NOAA), United States |
GISS-E2-1-G | National Aeronautics and Space Administration (NASA), United States |
GISS-E2-1-H | National Aeronautics and Space Administration (NASA), United States |
GISS-E2-2-G | National Aeronautics and Space Administration (NASA), United States |
INM-CM4-8 | Institute for Numerical Mathematics (INM), Russia |
IPSL-CM6A-LR | Institute Pierre-Simon Laplace (IPSL), France |
KACE-1-0-G | National Institute of Meteorological Research (NIMR), Korea Meteorological Administration (KMA), South Korea |
KIOST-ESM | Korea Institute of Ocean Science & Technology (KIOST), South Korea |
MCM-UA-1-0 | University of Arizona, United States |
MIROC6 | Model for Interdisciplinary Research on Climate, Japan |
MIROC-ES2L | Model for Interdisciplinary Research on Climate, Japan |
MPI-ESM1-2-HR | Max Planck Institute for Meteorology (MPI-M), Germany |
MPI-ESM1-2-LR | Max Planck Institute for Meteorology (MPI-M), Germany |
MRI-ESM2-0 | Meteorological Research Institute (MRI), Japan |
NESM3 | Nanjing University of Information Science & Technology, China |
NorESM2-LM | Norwegian Climate Center (NCC), Norway |
NorESM2-MM | Norwegian Climate Center (NCC), Norway |
UKESM1-0-LL | Met Office (UKMO) Hadley Centre, United Kingdom |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, Z.; Sun, D.-Z. El Niño Magnitude and Western Pacific Warm Pool Displacement. Part II: Future Changes Under Global Warming. Climate 2025, 13, 97. https://doi.org/10.3390/cli13050097
Gu Z, Sun D-Z. El Niño Magnitude and Western Pacific Warm Pool Displacement. Part II: Future Changes Under Global Warming. Climate. 2025; 13(5):97. https://doi.org/10.3390/cli13050097
Chicago/Turabian StyleGu, Zhuoxin, and De-Zheng Sun. 2025. "El Niño Magnitude and Western Pacific Warm Pool Displacement. Part II: Future Changes Under Global Warming" Climate 13, no. 5: 97. https://doi.org/10.3390/cli13050097
APA StyleGu, Z., & Sun, D.-Z. (2025). El Niño Magnitude and Western Pacific Warm Pool Displacement. Part II: Future Changes Under Global Warming. Climate, 13(5), 97. https://doi.org/10.3390/cli13050097