Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (89)

Search Parameters:
Keywords = explosion suppressant

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 21337 KiB  
Article
Full-Scale Experimental Analysis of the Behavior of Electric Vehicle Fires and the Effectiveness of Extinguishing Methods
by Ana Olona and Luis Castejon
Fire 2025, 8(8), 301; https://doi.org/10.3390/fire8080301 - 29 Jul 2025
Viewed by 309
Abstract
The emergence of electric vehicles (EVs) has brought specific risks, including the possibility of fires or explosions resulting from mechanical, thermal, or electrical failures, which can lead to thermal runaway (TR). There is a great lack of knowledge about how to act safely [...] Read more.
The emergence of electric vehicles (EVs) has brought specific risks, including the possibility of fires or explosions resulting from mechanical, thermal, or electrical failures, which can lead to thermal runaway (TR). There is a great lack of knowledge about how to act safely in this type of fire. This study carried out two full-scale fire experiments on electric vehicles to investigate response strategies to electric vehicle fires caused by thermal runaway. Centro Zaragoza provided technical advice for these tests, so that they could be carried out safely, controlling the risks. This advice has allowed Centro Zaragoza to analyze different response strategies to the fires in electric vehicles caused by thermal runaway. On the other hand, the propagation patterns of thermal runaway fires in electric vehicles were investigated. The early-phase effectiveness of fire blankets and other extinguishing measures was tested, and the temperature distributions inside the vehicle and the type of fire generated were measured. The results showed that fire blankets successfully extinguished flames by cutting off the oxygen supply. These findings contribute to the development of effective strategies for responding to electric vehicle fires, enabling the establishment of good practice for fire suppression in electric vehicles and their batteries. Full article
Show Figures

Figure 1

12 pages, 9217 KiB  
Article
Nonlinearity in Turbulent Diffusion as a Possible Cause of Stellar Flares
by Elena Popova
Astronomy 2025, 4(3), 12; https://doi.org/10.3390/astronomy4030012 - 7 Jul 2025
Viewed by 229
Abstract
Extremely powerful flares releasing energy well above 1032 erg are rare compared to the typical manifestations of solar activity, which are already being routinely monitored by the existing Space Weather network—with some level of predictability. However, much less is known about the [...] Read more.
Extremely powerful flares releasing energy well above 1032 erg are rare compared to the typical manifestations of solar activity, which are already being routinely monitored by the existing Space Weather network—with some level of predictability. However, much less is known about the mechanisms behind such rare events (like the well-documented Carrington event of 1859) or about hypothetical superflares that could exceed current energy estimates by several orders of magnitude. We propose a model based on the nonlinear suppression of turbulent diffusion with increasing magnetic field, which ultimately leads to the random occurrence of regions with a magnetic field amplitude significantly exceeding the magnetic field amplitude in a regular cycle. This is similar to the mechanism of a local “explosion of an overheated boiler”. Such regions can be correlated with flares. In our model, flares have different powers. Full article
Show Figures

Figure 1

15 pages, 2620 KiB  
Article
Proposal and Validation of a Pyro Conductor Switch-Based FCL for DC Distribution System Protection
by Il Kwon, Yu-Jin Kwak, Jeong-Cheol Lee and Bang-Wook Lee
Energies 2025, 18(13), 3441; https://doi.org/10.3390/en18133441 - 30 Jun 2025
Viewed by 218
Abstract
With the increasing deployment of DC power systems, particularly in DC distribution systems, there is a growing demand for rapid and effective fault current limiting solutions. Conventional fault current limiters (FCLs) often suffer from limitations in terms of response time, size, and operational [...] Read more.
With the increasing deployment of DC power systems, particularly in DC distribution systems, there is a growing demand for rapid and effective fault current limiting solutions. Conventional fault current limiters (FCLs) often suffer from limitations in terms of response time, size, and operational complexity. As a solution to these challenges, this paper proposes a hybrid FCL based on a pyro conductor switch (PCS), which combines passive limiting elements with an active switching mechanism. The proposed PCS FCL consists of a pyro fuse, an IGBT switch, a limiting inductor, and a damping resistor. Upon fault detection, the IGBT switch is first turned off to initiate current transfer into the limiting branch. Subsequently, the pyro fuse operates by explosively severing the embedded conductor using a pyrotechnic charge, thereby providing galvanic isolation and reinforcing current commutation into a high-impedance path. This operational characteristic enables effective fault current suppression without requiring complex control or real-time sensing. A detailed analysis using PSCAD/EMTDC simulations was conducted to evaluate the current limiting characteristics under fault conditions, and a prototype was subsequently developed to validate its performance. The simulation results were verified through experimental testing, indicating the limiter’s ability to reduce peak fault current. Furthermore, the results demonstrated that the degree of current limitation can be effectively designed through the selection of appropriate current limiting parameters. This demonstrates that the proposed PCS-based FCL provides a practical and scalable solution for improving protection in DC power distribution systems. Full article
(This article belongs to the Section F2: Distributed Energy System)
Show Figures

Figure 1

36 pages, 2962 KiB  
Review
Safety Methods for Mitigating Thermal Runaway of Lithium-Ion Batteries—A Review
by Jun Deng, Zhen Hu, Jian Chen, Jingyu Zhao and Zujin Bai
Fire 2025, 8(6), 223; https://doi.org/10.3390/fire8060223 - 31 May 2025
Viewed by 2708
Abstract
Lithium-ion batteries (LIBs) are widely used as energy storage units in electric vehicles, mobile phones, and other electric devices due to their high voltage, large capacity, and long cycle life. Lithium-ion batteries are prone to thermal runway (TR), resulting in fires and explosions, [...] Read more.
Lithium-ion batteries (LIBs) are widely used as energy storage units in electric vehicles, mobile phones, and other electric devices due to their high voltage, large capacity, and long cycle life. Lithium-ion batteries are prone to thermal runway (TR), resulting in fires and explosions, which can seriously hinder the commercial development of LIBs. A series of safety methods has been studied to prevent TR of LIBs. The safety methods for suppressing TR in LIBs were reviewed, including safety equipment method, material modification method, thermal management method, and cooling method. The mechanism, advantages and disadvantages, and future applications of the TR suppression method are discussed. The effectiveness of the proposed safety method was evaluated through technical analysis and experimental testing, and the inhibitory effects of different safety methods on battery TR were summarized. The future trend of suppressing TR is discussed by summarizing and generalizing existing technologies for suppressing thermal runaway. This study provides a reference for exploring more effective methods to mitigate TR in the future. Full article
(This article belongs to the Special Issue Advances in Thermal Energy Storage in Fire Prevention and Control)
Show Figures

Figure 1

26 pages, 6091 KiB  
Article
Performance of Composite Precast Assembled Concrete Utility Tunnels Subjected to Internal Gas Explosions: A Numerical Parametric Study
by Yushu Lin and Baijian Tang
Processes 2025, 13(6), 1621; https://doi.org/10.3390/pr13061621 - 22 May 2025
Viewed by 365
Abstract
To address the research gap in gas blast resistance of composite precast assembled utility tunnels, this study investigates structural damage evolution and the mechanisms influencing parameters through validated numerical simulations. A three-dimensional numerical model, incorporating the Karagozian & Case (K&C) concrete damage model [...] Read more.
To address the research gap in gas blast resistance of composite precast assembled utility tunnels, this study investigates structural damage evolution and the mechanisms influencing parameters through validated numerical simulations. A three-dimensional numerical model, incorporating the Karagozian & Case (K&C) concrete damage model and tie-break contact algorithm, was developed using LS-DYNA. The first validation against composite precast concrete slab explosion tests confirmed the model’s reliability, with displacement peak errors below 10%. The second validation focuses on the blast resistance test conducted on an underground utility tunnel, revealing an error margin of less than 10%. Results indicate that the utility tunnel exhibits a progressive failure mode of “joint cracking-interface damage-midspan cracking” under explosive loads, with stiffness degradation observed in joint regions at a loading pressure of 700 kPa. Increasing the normal strength of the interface to 5 MPa suppresses 90% of interface delamination, whereas completely neglecting interface strength results in a 9.0% increase in midspan displacement. Concrete strength shows minimal impact (<2.5%) on displacement under high loading conditions (≥0.9 MPa), and increasing the reinforcement ratio from 0.44% to 0.56% reduces displacement of the roof slab by 10.5%. These findings of address the research gap in the gas explosion response of composite precast assembled utility tunnels and could have significant implications for enhancing the disaster resistance of urban underground spaces. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

13 pages, 5662 KiB  
Article
Characterization of the Lower Limit of CH4 Explosion in Different Atmospheres over a Wide Temperature Range
by Jida Zhang, Qinghe Bao, Junhui Yang, Haibin Guan, Zhongcheng Ma, Bari Wulan and Sheng Li
Processes 2025, 13(5), 1608; https://doi.org/10.3390/pr13051608 - 21 May 2025
Viewed by 520
Abstract
This study conducted systematic experimental research on methane safety issues in industrial production environments, with a particular focus on the impacts of high-temperature conditions and complex atmospheres on methane explosion characteristics. The research team designed and constructed a dedicated combustible gas explosion experimental [...] Read more.
This study conducted systematic experimental research on methane safety issues in industrial production environments, with a particular focus on the impacts of high-temperature conditions and complex atmospheres on methane explosion characteristics. The research team designed and constructed a dedicated combustible gas explosion experimental setup, performing in-depth experimental analyses across a broad temperature range from 25 °C to 600 °C. The results demonstrate that elevated temperatures significantly reduced the methane’s lower explosion limit (LEL), with the LEL decreasing to approximately 40% of its room-temperature value at 600 °C. The investigation systematically examined the influence mechanisms of common industrial atmospheric components, including carbon dioxide (CO2), ammonia (NH3), oxygen (O2), and water vapor (H2O) on methane explosion behavior. Key findings reveal that CO2 exhibited notable suppression effects, increasing methane’s LEL by approximately 15% per 10% increment in CO2 concentration. NH3 demonstrated dual mechanisms, promoting methane explosions at low concentrations (<5%) while inhibiting them at higher concentrations. Increased O2 concentration significantly expanded the methane’s explosive range, with the LEL decreasing by about 22% when O2 concentration increased from 21% to 30%. Water vapor manifested differentiated impacts depending on temperature regimes, primarily elevating LEL through dilution effects below 200 °C while reducing LEL via radical reaction promotion above 400 °C. Furthermore, this study reveals synergistic coupling effects between temperature and gas components—for instance, CO2’s suppression efficacy weakened under high temperatures, whereas NH3’s promotion effect intensified. These discoveries provide scientific foundations for formulating industrial safety standards, designing explosion-proof equipment, and conducting risk assessments in production processes. Full article
Show Figures

Figure 1

15 pages, 2057 KiB  
Article
A Study on the Flame and Pressure Characteristics of Ultrafine Calcium Carbonate (CaCO3) Powder in Suppressing Gas Explosions
by Guiyuan Li, Zuohui Xu, Sihan Ji, Jingde Xu, Yang Hu, Junhai Liu and Zhie Wang
Fire 2025, 8(5), 203; https://doi.org/10.3390/fire8050203 - 20 May 2025
Viewed by 547
Abstract
This study investigates the suppression effect of ultrafine CaCO3 powder on gas explosions through a series of experiments conducted in a medium-scale explosion tube (9.6 m in length) with varying concentrations of ultrafine CaCO3. The gas explosion suppression concentration was [...] Read more.
This study investigates the suppression effect of ultrafine CaCO3 powder on gas explosions through a series of experiments conducted in a medium-scale explosion tube (9.6 m in length) with varying concentrations of ultrafine CaCO3. The gas explosion suppression concentration was established at 9.5%. The results indicate that, at concentrations of 125 g/m3 and 300 g/m3, ultrafine CaCO3 powder significantly reduced the flame propagation speed of the gas explosion. Among the concentrations that did not fully suppress the gas explosion, 20 g/m3 effectively mitigated the flame propagation speed and overpressure throughout the entire process. The concentration of 75 g/m3 demonstrated a suppression–promotion–suppression–promotion pattern regarding the flame propagation rate, with significant fluctuations observed throughout the process. While the maximum suppression rate reached 60.9%, the maximum promotion rate was 131.12%. At 10 g/m3, the flame propagation rate initially increased before decreasing, with the most effective suppression observed within the first 6.6 m, where flame propagation suppression increased rapidly from 58.13% to 74.82%, and the peak explosion overpressure was reduced by up to 62.94%. These findings contribute valuable insights for the development of effective gas explosion suppression strategies in mining environments. Full article
Show Figures

Figure 1

14 pages, 9504 KiB  
Article
Experimental and Numerical Simulation Study of the Influence of Fe(C5H5)2-SiO2 Composite Dry Powders on Characteristics of Hydrogen/Methane/Air Explosion
by Zhiqian Zheng, Huiqian Liao, Hongfu Mi, Kaixuan Liao, Haoliang Zhang, Yi Li, Yanhui Ren, Zhijun Li, Nanfang Li and Wei Xia
Fire 2025, 8(5), 198; https://doi.org/10.3390/fire8050198 - 15 May 2025
Viewed by 438
Abstract
In order to ensure the safety of methane/hydrogen, regular SiO2 powder was modified. Fe(C5H5)2/SiO2 composite dry powder (CDP) was selected as the explosion-suppression material. Explosion-suppression experiments and numerical simulations were adopted to investigate the inhibition [...] Read more.
In order to ensure the safety of methane/hydrogen, regular SiO2 powder was modified. Fe(C5H5)2/SiO2 composite dry powder (CDP) was selected as the explosion-suppression material. Explosion-suppression experiments and numerical simulations were adopted to investigate the inhibition effect of 0% (XH2 = 0%) and 20% (XH2 = 20%) hydrogen doping ratios. The flame structure, flame propagation speed, and maximum explosion pressure are depicted to compare the inhibition effect of different mass fractions (XFe(C5H5)2 = 0–6%). The results showed that CDP significantly reduced the flame propagation velocity and maximum explosion pressure of XH2 = 0%. The best effect was observed when 6% Fe(C5H5)2 was added, with the velocity reduced to 9.241 m/s. The maximum explosion pressure was reduced to 0.518 MPa, and the effect was relatively weak for XH2 = 20%, with the maximum pressure reduced to 0.525 MPa. In addition, the key radical production and temperature sensitivity showed that Fe(C5H5)2 altered the molar fractions of the major species and increased the consumption of •H, •O, and •OH. As the mass fraction of Fe(C5H5)2 increased, the steady-state concentrations of •H, •O, and •OH in the system showed a significant decreasing trend. This phenomenon originated from the two-step synergistic mechanism of Fe(C5H5)2 inhibiting radical generation and accelerating radical consumption. This study provides insight into the process of Fe(C5H5)2/SiO2 composite dry powder inhibition and renders theoretical guidance for the explosion protection of methane/hydrogen. Full article
(This article belongs to the Special Issue Clean Combustion and New Energy)
Show Figures

Figure 1

24 pages, 11408 KiB  
Review
Emerging Copper-to-Copper Bonding Techniques: Enabling High-Density Interconnects for Heterogeneous Integration
by Wenhan Bao, Jieqiong Zhang, Hei Wong, Jun Liu and Weidong Li
Nanomaterials 2025, 15(10), 729; https://doi.org/10.3390/nano15100729 - 12 May 2025
Viewed by 1452
Abstract
As CMOS technology continues to downsize to the nanometer range, the exponential growth predicted by Moore’s Law has been significantly decelerated. Doubling chip density in the two-dimensional domain will no longer be feasible without further device downsizing. Meanwhile, emerging new device technologies, which [...] Read more.
As CMOS technology continues to downsize to the nanometer range, the exponential growth predicted by Moore’s Law has been significantly decelerated. Doubling chip density in the two-dimensional domain will no longer be feasible without further device downsizing. Meanwhile, emerging new device technologies, which may be incompatible with the mainstream CMOS technology, offer potential performance enhancements for system integration and could be options for a More-than-Moore system. Additionally, the explosive growth of artificial intelligence (AI) demands ever-high computing power and energy-efficient computing platforms. Heterogeneous multi-chip integration, which combines diverse components or a larger number of functional blocks with different process technologies and materials into compact 3D systems, has emerged as a critical pathway to overcome the performance limitations of monolithic integrated circuits (ICs), such as limited process/material options, low yield, and multifunctional design complexity. Furthermore, it sustains Moore’s Law progression for a further smaller footprint and higher integration density, and it has become pivotal for “More-than-Moore” strategies in the next CMOS technology revolution. This approach is also crucial for sustaining computational advancements with low-power dissipation and low-latency interconnects in the coming decades. The key techniques for heterogeneous wafer-to-wafer bonding involve both copper-to-copper (Cu-Cu) and dielectric-to-dielectric bonding. This review provides a comprehensive comparison of recent advancements in Cu-Cu bonding techniques. Major issues, such as plasma treatment to activate bonding surfaces, passivation to suppress oxidation, Cu geometry, and microstructure optimization to enhance interface diffusion and regrowth, and the use of polymers as dielectrics to mitigate contamination and wafer warpage, as well as pitch size scaling, are discussed in detail. Full article
(This article belongs to the Special Issue Heterogeneous Integration Technology for More Moore)
Show Figures

Figure 1

16 pages, 951 KiB  
Article
A Water-Based Fire-Extinguishing Agent of Lithium Iron Phosphate Battery Fire via an Analytic Hierarchy Process-Fuzzy TOPSIS Decision-Marking Method
by Shuai Yuan, Kuo Wang, Feng Tai, Donghao Cheng, Qi Zhang, Yujie Cui, Xinming Qian, Chunwen Sun, Song Liu and Xin Chen
Batteries 2025, 11(5), 182; https://doi.org/10.3390/batteries11050182 - 2 May 2025
Cited by 1 | Viewed by 544
Abstract
It is well known that the safety concerns surrounding lithium-ion batteries (LIBs), such as fire and explosion, are currently a bottleneck problem for the large-scale usage of energy storage power stations. The study of water-based fire-extinguishing agents used for LIBs is a promising [...] Read more.
It is well known that the safety concerns surrounding lithium-ion batteries (LIBs), such as fire and explosion, are currently a bottleneck problem for the large-scale usage of energy storage power stations. The study of water-based fire-extinguishing agents used for LIBs is a promising direction. How to choose a suitable water-based fire-extinguishing agent is a significant scientific problem. In this study, a comprehensive evaluation model, including four primary indexes and eleven secondary indexes was established, which was used in the scenario of an electrochemical energy storage power station. The model is only suitable for assessing water-based fire extinguishing for suppressing lithium iron phosphate battery fire. Based on the comprehensive evaluation index system and extinguishing experiment data, the analytic hierarchy process (AHP) combined with fuzzy TOPSIS was used to evaluate the performances of the three kinds of water-based fire-extinguishing agents. According to the results of the fuzzy binary contrast method, the three kinds of fire-extinguishing agents could be ranked as follows: YS1000 > F-500 additive > pure water. The study provided a method for choosing and preparing a suitable fire-extinguishing agent for lithium iron phosphate batteries. Full article
Show Figures

Figure 1

12 pages, 5077 KiB  
Article
Optimization of Low-Voltage p-GaN Gate HEMTs for High-Efficiency Secondary Power Conversion
by Lili Zhai, Xiangdong Li, Jian Ji, Lu Yu, Liang Chen, Yaoming Chen, Haonan Xia, Zhanfei Han, Junbo Wang, Xi Jiang, Song Yuan, Tao Zhang, Yue Hao and Jincheng Zhang
Micromachines 2025, 16(5), 556; https://doi.org/10.3390/mi16050556 - 2 May 2025
Viewed by 593
Abstract
The explosive demand for high-performance secondary power sources in artificial intelligence (AI) has brought significant opportunities for low-voltage GaN devices. This paper focuses on research on high-efficiency and high-reliability low-voltage p-GaN gate HEMTs with a gate–drain distance, LGD, of 1 to [...] Read more.
The explosive demand for high-performance secondary power sources in artificial intelligence (AI) has brought significant opportunities for low-voltage GaN devices. This paper focuses on research on high-efficiency and high-reliability low-voltage p-GaN gate HEMTs with a gate–drain distance, LGD, of 1 to 3 μm in our pilot line, manufactured on 6-inch Si using a CMOS-compatible process, with extraordinary wafer-level uniformity. Specifically, these fabricated p-GaN gate HEMTs with an LGD of 1.5 μm demonstrate a blocking voltage of over 180 V and a high VTH of 1.6 V and exhibit a low RON of 2.8 Ω·mm. It is found that device structure optimization can significantly enhance device reliability. That is, through the dedicated optimization of source field plate structure and interlayer dielectric (ILD) thickness, the dynamic ON-resistance, RON, degradation of devices with an LGD of 1.5 µm was successfully suppressed from 60% to 20%, and the VTH shift was significantly reduced from 1.1 to 0.5 V. Further, the devices also passed preliminary gate bias stress and high-voltage OFF-state stress tests, providing guidance for preparing high-performance, low-voltage p-GaN gate HEMTs in the future. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

23 pages, 6633 KiB  
Article
Investigating Catching Hotspots of Fishing Boats: A Framework Using BeiDou Big Data and Deep Learning Algorithms
by Fen Wang, Xingyu Liu, Tanxue Chen, Hongxiang Feng and Qin Lin
J. Mar. Sci. Eng. 2025, 13(5), 905; https://doi.org/10.3390/jmse13050905 - 1 May 2025
Viewed by 421
Abstract
Illegal, unreported, and unregulated (IUU) fishing significantly threatens marine ecosystems, disrupts the ecological balance of the oceans, and poses serious challenges to global fisheries management. This contribution presents the efficacy of China’s summer fishing moratorium using BeiDou vessel monitoring system (VMS) data from [...] Read more.
Illegal, unreported, and unregulated (IUU) fishing significantly threatens marine ecosystems, disrupts the ecological balance of the oceans, and poses serious challenges to global fisheries management. This contribution presents the efficacy of China’s summer fishing moratorium using BeiDou vessel monitoring system (VMS) data from 2805 fishing vessels in the East China Sea and Yellow Sea, integrated with a deep learning framework for spatiotemporal analysis. A preprocessing protocol addressing multidimensional noise in raw VMS datasets was developed, incorporating velocity normalization and gap filling to ensure data reliability. The CNN-BiLSTM hybrid model emerged as optimal for fishing behavior classification, achieving 89.98% accuracy and an 87.72% F1 score through synergistic spatiotemporal feature extraction. Spatial analysis revealed significant policy-driven reductions in fishing intensity during the moratorium (May–August), with hotspot areas suppressed to sporadic coastal distributions. However, concentrated vessel activity in Zhejiang’s nearshore waters suggested potential illegal fishing. Post-moratorium, fishing hotspots expanded explosively, peaking in October and clustering in Yushan, Zhoushan, and Yangtze River estuary fishing grounds. Quarterly patterns identified autumn–winter 2021 as peak fishing seasons, with hotspots covering >80% of East China Sea grounds. The framework enables real-time fishing state detection and adaptive spatial management via dynamic closure policies. The findings underscore the need for strengthened surveillance during moratoriums and post-ban catch regulation to mitigate overfishing risks. Full article
(This article belongs to the Special Issue Resilience and Capacity of Waterway Transportation)
Show Figures

Figure 1

13 pages, 11910 KiB  
Article
Effect of Austenitizing on the Microstructure and Mechanical Properties of Gray Cast Iron
by Hongkui Zhang, Yipeng Lan, Zhe Ju, Shian Zhu, Xinming Liu, Yihan Hao and Guanglong Li
Appl. Sci. 2025, 15(8), 4548; https://doi.org/10.3390/app15084548 - 20 Apr 2025
Viewed by 393
Abstract
This study enhanced the performance of gray cast iron through the precise control of the partial austenitizing temperature combined with an isothermal quenching process. The study investigated the effects of three austenitizing temperatures, namely 810 °C, 850 °C, and 900 °C, on the [...] Read more.
This study enhanced the performance of gray cast iron through the precise control of the partial austenitizing temperature combined with an isothermal quenching process. The study investigated the effects of three austenitizing temperatures, namely 810 °C, 850 °C, and 900 °C, on the microstructure and mechanical properties of gray cast iron. With the increase in austenitizing temperature, the transformation of pearlite to ausferrite was promoted, and the ausferrite content increased from 8.0% at 810 °C to 91.2% at 900 °C. Mechanical property tests showed that the specimen treated at 850 °C had the best comprehensive performance. Its tensile strength reached 332 MPa, an increase of 78.6% compared with the as-cast state. The elongation increased by 51.8%, and the wear depth under a 20 N load decreased from 250 μm to 2 μm. Specimens with a high ausferrite content exhibited stable low-friction characteristics due to the uniform hardness and the suppression of adhesive wear. However, an excessively high austenitizing temperature of 900 °C would lead to an increase in residual stress in the casting and deformation of the graphite structure, reducing the wear resistance. Under the established austenitizing temperature conditions, this study explored the relevant mechanisms for the performance improvement of gray cast iron by means of various testing methods, providing a theoretical basis and process reference for optimizing the material performance of explosion-proof equipment under harsh mining conditions. Full article
Show Figures

Figure 1

15 pages, 7958 KiB  
Article
Laboratory Study on Rockburst Control by Step Method in Deep Tunnel
by Chao Ren, Xiaoming Sun, Dongqiao Liu and Jinkun Yang
Appl. Sci. 2025, 15(7), 3853; https://doi.org/10.3390/app15073853 - 1 Apr 2025
Viewed by 316
Abstract
In terms of rockburst control technology, it is generally believed that optimizing the section design and adopting the step method can effectively suppress the occurrence of rockburst, but there is no literature to explain the reasons for adopting this method from the experimental [...] Read more.
In terms of rockburst control technology, it is generally believed that optimizing the section design and adopting the step method can effectively suppress the occurrence of rockburst, but there is no literature to explain the reasons for adopting this method from the experimental point of view. In addition, compared with the application of support, this method can achieve the effect of not increasing the construction process, not affecting the progress of the project and reducing the project cost. In view of this, the Gaoloushan deep-buried tunnel with rockburst was taken as the research object in this paper. Firstly, the excavation scheme based on the step method was proposed, and its explosion-proof effect was verified again. The experimental results showed that the step method could be essentially regarded as the transformation of surrounding rock by reasonably distributing explosives and reducing the working section. The beneficial effects of this method were as follows: the release intensity of absolute energy was slowed down, the way of energy release was changed; the stress condition of surrounding rock was improved; the path of the continuous supplement of strain energy in the original rockburst area was cut off; and the energy accumulation degree of surrounding rock was reduced, so that the accumulated energy in the rock mass did not exceed its energy storage limit at the location where the rockburst should have occurred. The reduced high energy was released in an orderly manner and induced the rock failure process, forming a fracture zone and a plastic zone. In the process of expansion, the fracture zone and plastic zone further reduced the stress concentration of the surrounding rock and deteriorated the mechanical properties of the surrounding rock. The stress concentration zone was transferred to the deeper surrounding rock outside the unloading relaxation zone, and part of the elastic energy accumulated in the surrounding rock was released. The strain energy could be distributed and dissipated, and the effect of energy safety and slow release was achieved. Full article
Show Figures

Figure 1

18 pages, 5119 KiB  
Article
Study on the Inhibitory Effect and Mechanism of Modified Ultrafine ABC Powder on CH4/Coal Dust Coexistence Explosions
by Youwei Guo, Pengjiang Deng, Bingbing Zhang, Xiancong Liu, Yansong Zhang and Xiangrui Wei
Processes 2025, 13(3), 858; https://doi.org/10.3390/pr13030858 - 14 Mar 2025
Viewed by 650
Abstract
This study investigated the inhibitory effect and mechanism of modified ultrafine ABC powder on the explosion of a methane (CH4)/coal dust mixed system. Through experiments, it was found that the addition of ABC powder significantly weakened the deflagration characteristics of the [...] Read more.
This study investigated the inhibitory effect and mechanism of modified ultrafine ABC powder on the explosion of a methane (CH4)/coal dust mixed system. Through experiments, it was found that the addition of ABC powder significantly weakened the deflagration characteristics of the CH4/coal dust mixture system. During decomposition, heat was absorbed to generate ammonia and phosphoric acid. Inert gases such as CO2 and water vapor produced during decomposition could dilute the oxygen concentration. Phosphate ions produced during the decomposition of ammonium phosphate would bind with free radicals during combustion, reducing their reactivity. The explosion reaction was suppressed through a dual mechanism of physical cooling and chemical consumption of free radicals. The experimental results showed that the weight loss rate of modified ABC powder was 49% at 800 °C, while the weight loss rate of unmodified ABC powder was 78%. The modified ABC powder had better thermal stability and could absorb more heat at high temperatures, further suppressing explosive reactions. This study provides a new modification scheme for explosion suppressants for coal mine safety, which has important theoretical and practical application value. Full article
(This article belongs to the Section Particle Processes)
Show Figures

Figure 1

Back to TopTop