Effect of Austenitizing on the Microstructure and Mechanical Properties of Gray Cast Iron
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Q.G.; Zhang, Y.N.; Zhang, Y.N.; Liu, H.B.; Ren, H.N.; Zhong, Y.M.; Huang, X.F.; Huang, W.G. Influence of Sn and Nb additions on the microstructure and wear characteristics of a gray cast iron. Appl. Phys. A Mater. Sci. Process. 2020, 126, 8. [Google Scholar] [CrossRef]
- Li, Y.T.; Zhu, H. A simple optimization method for the design of a lightweight, explosion-proof housing for a coal mine rescue robot. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 10. [Google Scholar] [CrossRef]
- Krause, T.; Bewersdorff, J.; Markus, D. Investigations of static and dynamic stresses of flameproof enclosures. J. Loss Prev. Process Ind. 2017, 49, 775–784. [Google Scholar] [CrossRef]
- Scott, L.W. An overview of explosion-proof enclosure research. IEEE Trans. Ind. Appl. 1985, IA-21, 1552–1558. [Google Scholar] [CrossRef]
- Alvarez, L.; Luis, C.J.; Puertas, I. Analysis of the influence of chemical composition on the mechanical and metallurgical properties of engine cylinder blocks in grey cast iron. J. Mater. Process. Technol. 2004, 153, 1039–1044. [Google Scholar] [CrossRef]
- Labrecque, C.; Gagne, M. Ductile iron: Fifty years of continuous development. Can. Metall. Q. 1998, 37, 343–378. [Google Scholar]
- An, Y.; Wang, C.; Cui, H. Design of thinner and lighter explosion proof housing for coal mine flameproof electrical equipment. Colliery Mech. Electr. Technol. 2016, 1, 38–40. [Google Scholar]
- Băbuţ, G.B.; Moraru, R.I. An improvement on the impact resistance tests for explosion-proof electrical equipment. In Proceedings of the 17th International Multidisciplinary Scientific GeoConference: SGEM, Albena, Bulgaria, 27 June–6 July 2017; Volume 17, pp. 31–38. [Google Scholar]
- Habireche, M.; Bacha, N.; Haireche, S.; Djeghdjough, M.; El-hadj, A.A.; Bouterfaya, S.; Saidi, D. Effect of copper and chromium addition on the mechanical and wear resistance of tempered hypoeutectic grey cast iron used in crusher applications. Int. J. Met. 2022, 16, 1869–1884. [Google Scholar] [CrossRef]
- Olawale, J.; Oluwaseguun, K.; Ezemenaka, D.; Adisa, S. Production of austempered gray iron (AGI) using forced air cooling. Mater. Perform. Charact. 2014, 3, 355–370. [Google Scholar] [CrossRef]
- Xu, W.; Ferry, M.; Wang, Y. Influence of alloying elements on as-cast microstructure and strength of gray iron. Mater. Sci. Eng. A 2005, 390, 326–333. [Google Scholar] [CrossRef]
- Abdou, S.; Elkaseer, A.; Kouta, H.; Abu Qudeiri, J. Wear behaviour of grey cast iron with the presence of copper addition. Adv. Mech. Eng. 2018, 10, 8. [Google Scholar] [CrossRef]
- Ankamma, K. Effect of trace elements (boron and lead) on the properties of gray cast iron. J. Inst. Eng. (India) Ser. D 2014, 95, 19–26. [Google Scholar] [CrossRef]
- Ding, X.F.; Li, X.Z.; Huang, H.; Matthias, W.; Huang, S.Y.; Feng, Q. Effect of Mo addition on as-cast microstructures and properties of grey cast irons. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2018, 718, 483–491. [Google Scholar] [CrossRef]
- He, Y.S.; Mao, F.; Gao, A.; Pan, K.M.; Guo, A.Z.; Liu, S.H.; Wei, S.Z.; Chen, C.; Zhang, C.; Jiang, T.; et al. The influence of trace vanadium on the solidification process, microstructure, and mechanical properties of gray cast iron. J. Mater. Res. Technol. 2024, 31, 998–1007. [Google Scholar] [CrossRef]
- Sun, W.T.; Wang, B.; Liu, X.L.; Wang, Y.Q.; Zhang, J. Controlling the tribology performance of gray cast iron by tailoring the microstructure. Tribol. Int. 2022, 167, 10. [Google Scholar] [CrossRef]
- Hassani, A.; Habibollahzadeh, A.; Sadeghinejad, S. Influence of vanadium and chromium additions on the wear resistance of a gray cast iron. Int. J. Miner. Metall. Mater. 2012, 19, 602–607. [Google Scholar] [CrossRef]
- Elsawy, E.E.T.; El-Hebeary, M.R.; El Mahallawi, I.S.E. Effect of manganese, silicon and chromium additions on microstructure and wear characteristics of grey cast iron for sugar industries applications. Wear 2017, 390–391, 113–124. [Google Scholar] [CrossRef]
- Lian, X.T.; Zhu, J.N.; Dong, H.; Wang, Y.M.; Liu, J.D. Effects of micro-alloying elements on microstructure, element distribution and mechanical properties in gray irons. Int. J. Met. 2020, 14, 1025–1032. [Google Scholar] [CrossRef]
- Vadiraj, A.; Balachandran, G.; Kamaraj, M.; Gopalakrishna, B.; Rao, K.P. Studies on mechanical and wear properties of alloyed hypereutectic gray cast irons in the as-cast pearlitic and austempered conditions. Mater. Des. 2010, 31, 951–955. [Google Scholar] [CrossRef]
- Sarkar, T.; Sutradhar, G. Investigation on mechanical properties and wear behavior of Cu-alloyed austempered gray cast iron (AGI). Sadhana 2018, 43, 11. [Google Scholar] [CrossRef]
- Hsu, C.H.; Shy, Y.H.; Yu, Y.H.; Lee, S.C. Effect of austempering heat treatment on fracture toughness of copper alloyed gray iron. Mater. Chem. Phys. 2000, 63, 75–81. [Google Scholar] [CrossRef]
- Vadiraj, A.; Balachandran, G.; Kamaraj, M.; Kazuya, E. Mechanical and wear behavior of quenched and tempered alloyed hypereutectic gray cast iron. Mater. Des. 2011, 32, 2438–2443. [Google Scholar] [CrossRef]
- Sarkar, T.; Bose, P.K.; Sutradhar, G. Effect of the time and temperature of isothermal quenching on microstructure and mechanical properties of bainitic gray cast iron. Met. Sci. Heat Treat. 2020, 61, 552–558. [Google Scholar] [CrossRef]
- Vadiraj, A.; Balachandran, G.; Kamaraj, M.; Gopalakrishna, B.; Rao, K.P. Structure-property correlation in austempered alloyed hypereutectic gray cast irons. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2010, 527, 782–788. [Google Scholar] [CrossRef]
- Rundman, K.; Parolini, J.; Moore, D. Relationship between tensile properties and matrix microstructure in austempered gray iron. AFS Trans. 2005, 145, 51–55. [Google Scholar]
- Ribeiro, L.; Barbosa, A.; Viana, F.; Baptista, A.M.; Dias, C.; Ribeiro, C.A. Abrasion wear behaviour of alloyed and chilled cast irons. Wear 2011, 270, 535–540. [Google Scholar] [CrossRef]
- Gerval, V.; Lacaze, J. Critical temperature range in spheroidal graphite cast irons. ISIJ Int. 2000, 40, 386–392. [Google Scholar] [CrossRef]
- Nakae, H.; Shin, H. Effect of Graphite Morphology on Tensile Properties of Flake Graphite Cast Iron. Mater. Trans. 2005, 42, 1428–1434. [Google Scholar] [CrossRef]
- Takeda, K.; Nakada, N.; Tsuchiyama, T.; Takaki, S. Effect of interstitial elements on Hall-Petch coefficient of ferritic iron. ISIJ Int. 2008, 48, 1122–1125. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Lan, Y.; Ju, Z.; Zhu, S.; Liu, X.; Hao, Y.; Li, G. Effect of Austenitizing on the Microstructure and Mechanical Properties of Gray Cast Iron. Appl. Sci. 2025, 15, 4548. https://doi.org/10.3390/app15084548
Zhang H, Lan Y, Ju Z, Zhu S, Liu X, Hao Y, Li G. Effect of Austenitizing on the Microstructure and Mechanical Properties of Gray Cast Iron. Applied Sciences. 2025; 15(8):4548. https://doi.org/10.3390/app15084548
Chicago/Turabian StyleZhang, Hongkui, Yipeng Lan, Zhe Ju, Shian Zhu, Xinming Liu, Yihan Hao, and Guanglong Li. 2025. "Effect of Austenitizing on the Microstructure and Mechanical Properties of Gray Cast Iron" Applied Sciences 15, no. 8: 4548. https://doi.org/10.3390/app15084548
APA StyleZhang, H., Lan, Y., Ju, Z., Zhu, S., Liu, X., Hao, Y., & Li, G. (2025). Effect of Austenitizing on the Microstructure and Mechanical Properties of Gray Cast Iron. Applied Sciences, 15(8), 4548. https://doi.org/10.3390/app15084548