Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (72)

Search Parameters:
Keywords = explosion inhibition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3087 KB  
Article
Catalytic Combustion Characteristics for Removal of High-Concentration Volatile Organic Compounds (VOCs)
by Tae-Jin Kang, Hyun-Ji Kim, Jieun Lee, Jin-Hee Lee, Hyo-Sik Kim, Jin-Ho Kim, No-Kuk Park, Soo Chool Lee and Suk-Hwan Kang
Atmosphere 2026, 17(2), 137; https://doi.org/10.3390/atmos17020137 - 27 Jan 2026
Viewed by 171
Abstract
The conventional treatment of high-concentration volatile organic compounds (VOCs) relies on energy-intensive dilution to avoid explosion risks. This study proposes an efficient catalytic combustion process treating VOCs directly within the explosive range while recovering reaction heat using Pt/γ-Al2O3-based catalysts [...] Read more.
The conventional treatment of high-concentration volatile organic compounds (VOCs) relies on energy-intensive dilution to avoid explosion risks. This study proposes an efficient catalytic combustion process treating VOCs directly within the explosive range while recovering reaction heat using Pt/γ-Al2O3-based catalysts promoted with La and Ce. Catalysts (0.05–0.5 wt% Pt) were synthesized via impregnation and characterized using FE-SEM, BET, and XRD. Catalytic combustion experiments at VOC concentrations up to 13,000 ppm showed combustion initiation below 200 °C, achieving 83–99% conversions at 300 °C with complete oxidation to CO2. Although 5 vol.% moisture significantly inhibited low-temperature activity through competitive adsorption, La and Ce promoters (10 wt%) effectively overcame this limitation by increasing surface area (up to 194.93 m2/g) and oxygen mobility. The Ce-promoted catalyst demonstrated superior water tolerance, achieving complete conversion at 200–210 °C due to its high Oxygen Storage Capacity (OSC). Bench-scale validation using a 1 Nm3/h system confirmed industrial feasibility. Operating at 220 °C with 13,000 ppm toluene for 100 h, the catalyst maintained >99.98% conversion with negligible deactivation and THC emissions below 2 ppm. The double-jacket heat exchanger effectively managed reaction heat (limiting temperature rise to ~20 °C) and recovered it as steam. Compared to Regenerative Thermal Oxidation, this Regenerative Catalytic Oxidation approach reduced emissions and energy consumption. This work demonstrates a robust “combustion-with-recovery” strategy for high-concentration VOC treatment, offering a sustainable alternative with high efficiency, stability, and safe energy-integrated operation. Full article
Show Figures

Graphical abstract

21 pages, 1589 KB  
Article
Low-Alkali Assisted Instant Catapult Steam Explosion Enhances Enzymatic Hydrolysis of Corn Stover by Alleviating Anti-Enzymatic Hydrolysis Factors Through Lignin Structural Rearrangement
by Hongsen Zhang, Wenjing Li, Yufei Yang, Guotao Mao, Fengqin Wang, Hui Xie, Zengping Su, Jingliang Xu and Andong Song
Polymers 2025, 17(23), 3148; https://doi.org/10.3390/polym17233148 - 26 Nov 2025
Viewed by 461
Abstract
The effective deconstruction of lignocellulosic biomass is essential for sustainable biorefineries. In this study, corn stover was pretreated by low-alkali (1–5 wt% NaOH) pre-impregnation assisted instant catapult steam explosion (ICSE) to investigate its influence on enzymatic hydrolysis efficiency and the mechanism of lignin-derived [...] Read more.
The effective deconstruction of lignocellulosic biomass is essential for sustainable biorefineries. In this study, corn stover was pretreated by low-alkali (1–5 wt% NaOH) pre-impregnation assisted instant catapult steam explosion (ICSE) to investigate its influence on enzymatic hydrolysis efficiency and the mechanism of lignin-derived anti-enzymatic factors. The results showed that this pretreatment effectively enhanced glucose yield. Under 4–5% NaOH conditions, washed samples achieved glucose yields above 98%. At 4% NaOH, the glucose yields of washed and unwashed groups were 98.88% and 56.34%, respectively, indicating that washing removed soluble inhibitors. LC-MS analysis identified three major water-soluble inhibitory compounds-vanillin, syringaldehyde, and 2-carboxybenzaldehyde-confirming their negative effects on cellulase activity. The alkali-soluble lignin content of unwashed samples (43.28%) was 1.36 times higher than that of washed samples (31.93%), demonstrating its role as a water-insoluble inhibitory factor. Moreover, SEM, XRD, FTIR, and contact angle analyses revealed that 5% NaOH treatment enhanced lignin solubilization, induced structural rearrangement and interfacial hydrophilic reconstruction, and increased cellulose crystallinity and enzyme accessibility. These findings elucidate the mechanistic pathways of lignin transformation and inhibition mitigation, providing valuable insights for efficient and sustainable biomass conversion. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

28 pages, 7514 KB  
Review
Low-Cost Application Strategies of Marine Titanium Alloys: Titanium/Steel Dissimilar Materials
by Wei Gao, Shicheng Wang, Han Zhang, Qi Wang, Hao Liu, Hongying Yu and Dongbai Sun
Metals 2025, 15(11), 1205; https://doi.org/10.3390/met15111205 - 29 Oct 2025
Cited by 1 | Viewed by 1063
Abstract
Titanium and its alloys are well-suited for marine engineering owing to their high specific strength and superior corrosion resistance. However, their high cost remains a key barrier to widespread marine application. Titanium/steel (Ti/Fe) dissimilar materials provide a promising solution by integrating titanium’s corrosion [...] Read more.
Titanium and its alloys are well-suited for marine engineering owing to their high specific strength and superior corrosion resistance. However, their high cost remains a key barrier to widespread marine application. Titanium/steel (Ti/Fe) dissimilar materials provide a promising solution by integrating titanium’s corrosion resistance with the high strength of steel, thereby significantly reducing costs. This review systematically assesses the potential preparation strategies for Ti/Fe dissimilar materials, such as explosive welding, rolling, high-energy beam cladding, and cold spray, to meet the large-scale application requirements in marine engineering. Advanced welding techniques for joining Ti/Fe joints are also discussed. The advantages and issues of Ni, Cu, Fe, and Al interlayers suitable for marine engineering applications in inhibiting Fe-Ti IMCs are introduced, with a focus on their potential in promoting the development of economically efficient ocean engineering. A comprehensive evaluation is conducted on the performance of Ti/Fe dissimilar materials, particularly their corrosion resistance and fatigue resistance in marine environments. This review aims to provide a reference for the theoretical research, preparation strategies, and application expansion of low-cost Ti/Fe dissimilar materials in marine engineering. Full article
Show Figures

Figure 1

24 pages, 773 KB  
Article
Vocabulary at the Living–Machine Interface: A Narrative Review of Shared Lexicon for Hybrid AI
by Andrew Prahl and Yan Li
Biomimetics 2025, 10(11), 723; https://doi.org/10.3390/biomimetics10110723 - 29 Oct 2025
Viewed by 1075
Abstract
The rapid rise of bio-hybrid robots and hybrid human–AI systems has triggered an explosion of terminology that inhibits clarity and progress. To investigate how terms are defined, we conduct a narrative scoping review and concept analysis. We extract 60 verbatim definitions spanning engineering, [...] Read more.
The rapid rise of bio-hybrid robots and hybrid human–AI systems has triggered an explosion of terminology that inhibits clarity and progress. To investigate how terms are defined, we conduct a narrative scoping review and concept analysis. We extract 60 verbatim definitions spanning engineering, human–computer interaction, human factors, biomimetics, philosophy, and policy. Entries are coded on three axes: agency locus (human, shared, machine), integration depth (loose, moderate, high), and normative valence (negative, neutral, positive), and then clustered. Four categories emerged from the analysis: (i) machine-led, low-integration architectures such as neuro-symbolic or “Hybrid-AI” models; (ii) shared, moderately integrated systems like mixed-initiative cobots; (iii) human-led, medium-coupling decision aids; and (iv) human-centric, low-integration frameworks that focus on user agency. Most definitions adopt a generally positive valence, suggesting a gap with risk-heavy popular narratives. We show that, for researchers investigating where living meets machine, terminological precision is more than semantics and it can shape design, accountability, and public trust. This narrative review contributes a comparative taxonomy and a shared lexicon for reporting hybrid systems. Researchers are encouraged to clarify which sense of Hybrid-AI is intended (algorithmic fusion vs. human–AI ensemble), to specify agency locus and integration depth, and to adopt measures consistent with these conceptualizations. Such practices can reduce construct confusion, enhance cross-study comparability, and align design, safety, and regulatory expectations across domains. Full article
(This article belongs to the Section Bioinspired Sensorics, Information Processing and Control)
Show Figures

Figure 1

12 pages, 583 KB  
Article
Effect of Steam Explosion (SE) Pretreatment on the Contamination of Woody Biomass with Metallic Inhibitors
by Jan Szadkowski, Anna Gałązka and Witold Jan Wardal
Materials 2025, 18(19), 4536; https://doi.org/10.3390/ma18194536 - 29 Sep 2025
Viewed by 797
Abstract
The aim of this study was to check the content of metal inhibitors before and after the pre-treatment of fast-growing poplar wood using steam explosion (SE) at selected temperatures (160, 175, 190 and 205 °C). An X-ray fluorescence spectrometer (XRF) was used for [...] Read more.
The aim of this study was to check the content of metal inhibitors before and after the pre-treatment of fast-growing poplar wood using steam explosion (SE) at selected temperatures (160, 175, 190 and 205 °C). An X-ray fluorescence spectrometer (XRF) was used for the analysis. The material was analysed after pre-treatment and in its native form in two variants: incinerated wood chips and incinerated wood chips dissolved in nitric acid. The analysis was intended to show the difference in the content of metals inhibiting biological processes, including enzymatic hydrolysis and fermentation (i.e., chromium, manganese, iron, nickel, copper and zinc). The study aimed to identify changes in the content of metallic inhibitors depending on the SE temperature and to demonstrate differences depending on the methodology used to measure metals in the tested material. The greatest change in metal content in the material after pre-treatment was observed for pre-treatment at 175 °C, regardless of the determination method used. Both methods allow the trend in changes in metal content in wood material to be determined. However, due to the heterogeneous structure of wood, the methods give different results, especially for iron. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

20 pages, 6754 KB  
Article
Study on the Wear Behavior Mechanism of SUS304 Stainless Steel During the Homogenization Process of LFP/NCM Slurry
by Xiangli Wen, Mingkun Bi, Lvzhou Li and Jianning Ding
Materials 2025, 18(19), 4457; https://doi.org/10.3390/ma18194457 - 24 Sep 2025
Viewed by 642
Abstract
During the homogenization process of lithium battery slurry, the slurry shearing process causes the surface of the homogenization equipment to wear and generate metal containing debris, which poses a risk of inducing battery self-discharge and even explosion. Therefore, inhibiting wear of homogenizing equipment [...] Read more.
During the homogenization process of lithium battery slurry, the slurry shearing process causes the surface of the homogenization equipment to wear and generate metal containing debris, which poses a risk of inducing battery self-discharge and even explosion. Therefore, inhibiting wear of homogenizing equipment is imperative, and systematic investigation into the wear behavior and underlying mechanisms of SUS304 stainless steel during homogenization is urgently required. In this study, lithium iron phosphate (LFP) and lithium nickel cobalt manganese oxide (NCM) cathode slurries were used as research objects. Changes in surface parameters, microstructure, and elemental composition of the wear region on SUS304 stainless steel under different working conditions were characterized. The results indicate that in the SUS304-lithium-ion battery slurry system, the potential wear mechanism of SUS304 gradually evolves with changes in load and rotational speed, following the order: adhesive wear (low speed, low load) → abrasive wear (medium speed, high load) → fatigue wear (high speed). Under high-load and high-rotational-speed conditions, oxidative corrosion wear on the ball–disc contact surface is particularly pronounced. Additionally, wear of SUS304 is more severe in the LFP slurry system compared to the NCM system. Macroscopic experiments also revealed that the speed effect is a core factor influencing the wear of SUS304, and the increase in its wear rate is more than twice that caused by the load effect. This study helps to clarify the wear behavior and wear mechanism evolution of homogenization equipment during the lithium battery homogenization process, providing data support and optimization direction for subsequent material screening and surface strengthening treatment of homogenization equipment components. Full article
Show Figures

Figure 1

16 pages, 3484 KB  
Article
Anti-Obesity Effects of Pea Peptides Modified by Steam Explosion on Obese Mice: Regulation of Gut Microbiota and Glucose Metabolism
by Jianqiu Tu, Chenggang Liu, Jingjing Zhang, Tiange Li, Jing Zhu, Qing Wang, Rongrong Wu and Tianlin Wang
Foods 2025, 14(17), 3008; https://doi.org/10.3390/foods14173008 - 28 Aug 2025
Viewed by 1315
Abstract
Pea peptides (PPs), as organic compounds, exhibit a variety of biological functions that make them useful for both the prevention and treatment of metabolic disorders. This study focused on how PPs modified by steam explosion (SE-PP) may help to treat mice with high-fat [...] Read more.
Pea peptides (PPs), as organic compounds, exhibit a variety of biological functions that make them useful for both the prevention and treatment of metabolic disorders. This study focused on how PPs modified by steam explosion (SE-PP) may help to treat mice with high-fat diet (HFD)-mediated glucose metabolism disorders. The experimental results indicate that both the 100 mg/kg BW SE-PP (SE-PPL group) and 400 mg/kg BW SE-PP (SE-PPH group) experienced substantial decreases in body weight, epididymal and inguinal fat mass, and blood glucose levels of obese mice (notably, the body weight of the SE-PPH group was decreased by 33.13% when compared with that of the HFD group (p < 0.05)). By stimulating the IRS-1/PI3K/AKT signaling system, SE-PP controlled glucose metabolism disorder in adipose tissue, while also inhibiting the TLR4/MYD88/NF-κB pathway to reduce inflammation. Furthermore, SE-PP restored the diversity of the gut microbiota destroyed by HFD. SE-PPH increased the Bacteroidetes/Firmicutes ratio from 0.042 to 0.26 (p < 0.05), which is a key indicator of microbiota balance. In addition, SE-PP enhanced the synthesis of short-chain fatty acids (SCFAs) such as isovalerate, propionate, and acetate, which are essential for maintaining intestinal homeostasis and improving metabolic health (supplementation of SE-PPH increased the levels of total SCFAs by 49.87% in obese mice (p < 0.05)). Full article
Show Figures

Figure 1

19 pages, 2104 KB  
Article
Presence of Micro- and Nanoplastics Affects Degradation of Chlorinated Solvents
by Fadime Kara Murdoch, Yanchen Sun, Mark E. Fuller, Larry Mullins, Amy Hill, Jacob Lilly, John Wilson, Frank E. Löffler and Katarzyna H. Kucharzyk
Toxics 2025, 13(8), 656; https://doi.org/10.3390/toxics13080656 - 31 Jul 2025
Cited by 1 | Viewed by 900
Abstract
Microplastics (MPs) and nanoplastics (NPs) can affect microbial abundance and activity, likely by damaging cell membrane components. While their effects on anaerobic digestion are known, less is understood about their impact on microbes involved in contaminant bioremediation. Chlorinated volatile organic contaminants (CVOCs) such [...] Read more.
Microplastics (MPs) and nanoplastics (NPs) can affect microbial abundance and activity, likely by damaging cell membrane components. While their effects on anaerobic digestion are known, less is understood about their impact on microbes involved in contaminant bioremediation. Chlorinated volatile organic contaminants (CVOCs) such as tetrachloroethene (PCE) and explosives like hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) are common in the environment, and their bioremediation is a promising cleanup strategy. This study examined how polystyrene (PS) and polyamide 6 (PA6) MPs and NPs influence CVOC and RDX biodegradation. PS particles did not inhibit the CVOC-degrading community SDC-9, but PA6 MPs impaired the reductive dechlorination of trichloroethene (TCE) to cis-1,2-dichloroethene (cis-DCE), causing a “cis-DCE stall” with no further conversion to vinyl chloride (VC) or ethene. Only 45% of TCE was dechlorinated to cis-DCE, and Dehalococcoides mccartyi abundance dropped 1000-fold in 35 days with PA6 MPs. In contrast, neither PA6 nor PS MPs and NPs affected RDX biotransformation. These results highlight the significant impact of PA6 MPs on CVOC biodegradation and the need to consider plastic pollution in environmental management. Full article
(This article belongs to the Special Issue Novel Technologies for Degradation of Organic Pollutants)
Show Figures

Graphical abstract

22 pages, 15362 KB  
Article
The Influence of Different Concentrations of Methane in Ditches on the Propagation Characteristics of Explosions
by Xingxing Liang, Junjie Cheng, Yibo Zhang and Zhongqi Wang
Fire 2025, 8(7), 275; https://doi.org/10.3390/fire8070275 - 11 Jul 2025
Viewed by 1087
Abstract
As the urban underground natural gas pipeline network expands, the explosion risk arising from methane accumulation in drainage ditches due to pipeline leakage has increased severely. A two-dimensional numerical model—9.7 m in length (including a 1-m obstacle section), 0.1 m in diameter, and [...] Read more.
As the urban underground natural gas pipeline network expands, the explosion risk arising from methane accumulation in drainage ditches due to pipeline leakage has increased severely. A two-dimensional numerical model—9.7 m in length (including a 1-m obstacle section), 0.1 m in diameter, and with a water volume fraction of 0.2—was developed to address the flexible boundary characteristics of urban underground ditches. The investigation examined the influence of methane concentration on explosion propagation characteristics. Results indicated that, at a methane concentration of 11%, the peak pressure attained 157.9 kPa, and the peak temperature exceeded 3100 K—all of which were significantly higher than the corresponding values at 10%, 13%, and 16% concentrations. Explosion-induced water motion exerted a cooling effect that inhibited heat and pressure transfer, while obstacles imposed partial restrictions on flame propagation. Temporal profiles of temperature and pressure exhibited three distinct stages: “initial stability–rapid rise–attenuation”. Notably, at a methane concentration of 16%, the water column formed by fluid vibration demonstrated a pronounced cooling effect, causing faster decreases in measured temperatures and pressures compared to other concentrations. Full article
Show Figures

Figure 1

21 pages, 1668 KB  
Article
Exploring the Causes of the Cambrian Explosion Based on the Evolution Mechanism of Genome Sequences
by Xiaolong Li, Hong Li, Zhenhua Yang, Qiang Zhang and Liaofu Luo
Biology 2025, 14(7), 783; https://doi.org/10.3390/biology14070783 - 27 Jun 2025
Viewed by 2113
Abstract
The cause of the Cambrian explosion is one of the centuries-old puzzles. For centuries, scholars from numerous disciplines have proposed various theories based on evidence such as paleontological fossils and changes in geology and climate to try to reveal the cause of the [...] Read more.
The cause of the Cambrian explosion is one of the centuries-old puzzles. For centuries, scholars from numerous disciplines have proposed various theories based on evidence such as paleontological fossils and changes in geology and climate to try to reveal the cause of the Cambrian explosion, but no satisfactory conclusion has been reached. We explored a possible cause of the Cambrian explosion based on the evolution mechanism of genome sequences of existing species. Previous studies have found that the CG- and TA-independent selection intensities and the mutual inhibition relationship between them determine the evolution state of genome sequences. Based on the evolution mechanism of genome sequences, we analyzed the distribution of CG- and TA-independent selection intensities in animals and plants. We believed that the phase transition process from the evolution mode dominated by TA-independent selection to that dominated by CG-independent selection is an important cause of the Cambrian explosion. Consequently, we deduced the evolution time corresponding to the evolution state of genome sequences and gave the origin time of species branches. The results are largely consistent with existing paleontological evidence for animal branches and some plant branches, which verifies the rationality of our conjecture, though differences for certain plant groups require further investigation. Our study provides a novel way to reveal the cause of the Cambrian explosion and the origin time of species branches through existing genome sequences. Full article
(This article belongs to the Section Bioinformatics)
Show Figures

Figure 1

13 pages, 5662 KB  
Article
Characterization of the Lower Limit of CH4 Explosion in Different Atmospheres over a Wide Temperature Range
by Jida Zhang, Qinghe Bao, Junhui Yang, Haibin Guan, Zhongcheng Ma, Bari Wulan and Sheng Li
Processes 2025, 13(5), 1608; https://doi.org/10.3390/pr13051608 - 21 May 2025
Cited by 1 | Viewed by 2181
Abstract
This study conducted systematic experimental research on methane safety issues in industrial production environments, with a particular focus on the impacts of high-temperature conditions and complex atmospheres on methane explosion characteristics. The research team designed and constructed a dedicated combustible gas explosion experimental [...] Read more.
This study conducted systematic experimental research on methane safety issues in industrial production environments, with a particular focus on the impacts of high-temperature conditions and complex atmospheres on methane explosion characteristics. The research team designed and constructed a dedicated combustible gas explosion experimental setup, performing in-depth experimental analyses across a broad temperature range from 25 °C to 600 °C. The results demonstrate that elevated temperatures significantly reduced the methane’s lower explosion limit (LEL), with the LEL decreasing to approximately 40% of its room-temperature value at 600 °C. The investigation systematically examined the influence mechanisms of common industrial atmospheric components, including carbon dioxide (CO2), ammonia (NH3), oxygen (O2), and water vapor (H2O) on methane explosion behavior. Key findings reveal that CO2 exhibited notable suppression effects, increasing methane’s LEL by approximately 15% per 10% increment in CO2 concentration. NH3 demonstrated dual mechanisms, promoting methane explosions at low concentrations (<5%) while inhibiting them at higher concentrations. Increased O2 concentration significantly expanded the methane’s explosive range, with the LEL decreasing by about 22% when O2 concentration increased from 21% to 30%. Water vapor manifested differentiated impacts depending on temperature regimes, primarily elevating LEL through dilution effects below 200 °C while reducing LEL via radical reaction promotion above 400 °C. Furthermore, this study reveals synergistic coupling effects between temperature and gas components—for instance, CO2’s suppression efficacy weakened under high temperatures, whereas NH3’s promotion effect intensified. These discoveries provide scientific foundations for formulating industrial safety standards, designing explosion-proof equipment, and conducting risk assessments in production processes. Full article
Show Figures

Figure 1

14 pages, 9504 KB  
Article
Experimental and Numerical Simulation Study of the Influence of Fe(C5H5)2-SiO2 Composite Dry Powders on Characteristics of Hydrogen/Methane/Air Explosion
by Zhiqian Zheng, Huiqian Liao, Hongfu Mi, Kaixuan Liao, Haoliang Zhang, Yi Li, Yanhui Ren, Zhijun Li, Nanfang Li and Wei Xia
Fire 2025, 8(5), 198; https://doi.org/10.3390/fire8050198 - 15 May 2025
Cited by 1 | Viewed by 907
Abstract
In order to ensure the safety of methane/hydrogen, regular SiO2 powder was modified. Fe(C5H5)2/SiO2 composite dry powder (CDP) was selected as the explosion-suppression material. Explosion-suppression experiments and numerical simulations were adopted to investigate the inhibition [...] Read more.
In order to ensure the safety of methane/hydrogen, regular SiO2 powder was modified. Fe(C5H5)2/SiO2 composite dry powder (CDP) was selected as the explosion-suppression material. Explosion-suppression experiments and numerical simulations were adopted to investigate the inhibition effect of 0% (XH2 = 0%) and 20% (XH2 = 20%) hydrogen doping ratios. The flame structure, flame propagation speed, and maximum explosion pressure are depicted to compare the inhibition effect of different mass fractions (XFe(C5H5)2 = 0–6%). The results showed that CDP significantly reduced the flame propagation velocity and maximum explosion pressure of XH2 = 0%. The best effect was observed when 6% Fe(C5H5)2 was added, with the velocity reduced to 9.241 m/s. The maximum explosion pressure was reduced to 0.518 MPa, and the effect was relatively weak for XH2 = 20%, with the maximum pressure reduced to 0.525 MPa. In addition, the key radical production and temperature sensitivity showed that Fe(C5H5)2 altered the molar fractions of the major species and increased the consumption of •H, •O, and •OH. As the mass fraction of Fe(C5H5)2 increased, the steady-state concentrations of •H, •O, and •OH in the system showed a significant decreasing trend. This phenomenon originated from the two-step synergistic mechanism of Fe(C5H5)2 inhibiting radical generation and accelerating radical consumption. This study provides insight into the process of Fe(C5H5)2/SiO2 composite dry powder inhibition and renders theoretical guidance for the explosion protection of methane/hydrogen. Full article
(This article belongs to the Special Issue Clean Combustion and New Energy)
Show Figures

Figure 1

22 pages, 3211 KB  
Article
The Composition of the Dispersion Medium Determines the Antibacterial Properties of Copper (II) Oxide Nanoparticles Against Escherichia coli Bacteria
by Olga V. Zakharova, Alexander A. Gusev, Peter A. Baranchikov, Svetlana P. Chebotaryova, Svetlana S. Razlivalova, Elina Y. Koiava, Anna A. Kataranova, Gregory V. Grigoriev, Nataliya S. Strekalova and Konstantin V. Krutovsky
Nanomaterials 2025, 15(6), 469; https://doi.org/10.3390/nano15060469 - 20 Mar 2025
Cited by 1 | Viewed by 1400
Abstract
Copper (II) oxide nanoparticles (CuO NPs) attract much attention as a promising antimicrobial agent. We studied the antibacterial properties of three types of CuO NPs against Escherichia coli bacteria: flake-shaped particles with a diameter of 50–200 nm and a thickness of 10–20 nm [...] Read more.
Copper (II) oxide nanoparticles (CuO NPs) attract much attention as a promising antimicrobial agent. We studied the antibacterial properties of three types of CuO NPs against Escherichia coli bacteria: flake-shaped particles with a diameter of 50–200 nm and a thickness of 10–20 nm (CuO-CD synthesized by chemical deposition), spherical particles with a size of 20–90 nm (CuO-EE obtained by electrical explosion), and rod-shaped particles with a length of 100–200 nm and a diameter of 30 × 70 nm (CuO-CS commercial sample). We tested how the shape, size, and concentration of the NPs, and composition of the dispersion medium affected the properties of the CuO NPs. We prepared dispersions based on distilled water, a 0.9% NaCl solution, and the LB broth by Lennox and used Triton X-100 and sodium dodecyl sulfate (SDS) as stabilizers. The concentration of NPs was 1–100 mg L−1. We showed that the dispersion medium composition and stabilizer type had the greatest influence on the antibacterial effects of CuO NPs. We observed the maximum antibacterial effect for all CuO NP types dispersed in water without a stabilizer, as well as in LB broth with the SDS stabilizer. The maximum inhibition of culture growth was observed under the influence of CuO-EE (by 30%) and in the LB broth with the SDS stabilizer (by 1.3–1.8 times depending on the type of particles). In the saline solution, the antibacterial effects were minimal; in some cases, the CuO NPs even promoted bacterial culture growth. SDS increased the antibacterial effects of NPs in broth and saline but decreased them in water. Finally, among the particle types, CuO-CS turned out to be the most bactericidal, which is probably due to their rod-shaped morphology and small diameter. At the same time, the concentration and aggregation effects of CuO NPs in the colloidal systems we studied did not have a linear action on their antibacterial properties. These results can be used in the development of antibacterial coatings and preparations based on CuO NPs to achieve their maximum efficiency, taking into account the expected conditions of their use. Full article
(This article belongs to the Special Issue New Challenges in Antimicrobial Nanomaterials)
Show Figures

Graphical abstract

15 pages, 2917 KB  
Article
Plasticized Ionic Liquid Crystal Elastomer Emulsion-Based Polymer Electrolyte for Lithium-Ion Batteries
by Zakaria Siddiquee, Hyunsang Lee, Weinan Xu, Thein Kyu and Antal Jákli
Batteries 2025, 11(3), 106; https://doi.org/10.3390/batteries11030106 - 12 Mar 2025
Cited by 4 | Viewed by 2465
Abstract
The development and electrochemical characteristics of ionic liquid crystal elastomers (iLCEs) are described for use as electrolyte components in lithium-ion batteries. The unique combination of elastic and liquid crystal properties in iLCEs grants them robust mechanical attributes and structural ordering. Specifically, the macroscopic [...] Read more.
The development and electrochemical characteristics of ionic liquid crystal elastomers (iLCEs) are described for use as electrolyte components in lithium-ion batteries. The unique combination of elastic and liquid crystal properties in iLCEs grants them robust mechanical attributes and structural ordering. Specifically, the macroscopic alignment of phase-segregated, ordered nanostructures in iLCEs serves as an ion pathway, which can be solidified through photopolymerization to create ion-conductive solid-state polymer lithium batteries (SSPLBs) with high ionic conductivity (1.76 × 10−3 S cm−1 at 30 °C), and a high (0.61) transference number. Additionally, the rubbery state ensures good interfacial contact with electrodes that inhibits lithium dendrite formation. Furthermore, in contrast to liquid electrolytes, the iLCE shrinks upon heating, thus preventing any overheating-related explosions. The Li/LiFePO4 (LFP) cells fabricated using iLCE-based solid electrolytes show excellent cycling stability with a discharge capacity of ~124 mAh g−1 and a coulombic efficiency close to 100%. These results are promising for the practical application of iLCE-based SSPLBs. Full article
(This article belongs to the Special Issue Recent Advances of All-Solid-State Battery)
Show Figures

Graphical abstract

18 pages, 12203 KB  
Article
Study on the Structure of a Novel CMS@C12H22O14Fe Suppressant and Its Mechanism of Inhibiting Coal Dust Deflagration
by Yansong Zhang, Yang Yang, Jin Han, Shengjing Dongye, Fei Wang, Wenjie Liu, Lei Wang and Yang Zhang
Processes 2025, 13(3), 650; https://doi.org/10.3390/pr13030650 - 25 Feb 2025
Viewed by 884
Abstract
Coal resources still occupy a dominant position in the energy consumption structure, and the prevention and control of coal dust explosion has become an important measure to ensure the safe production of coal. To this end, a new type of environmentally friendly, economical, [...] Read more.
Coal resources still occupy a dominant position in the energy consumption structure, and the prevention and control of coal dust explosion has become an important measure to ensure the safe production of coal. To this end, a new type of environmentally friendly, economical, and efficient composite powder explosion suppressant has been developed. CMS@C12H22O14Fe was prepared by an anti-solvent crystallization method using Chinese Maifan stone (CMS) as the carrier and ferrous gluconate (C12H22O14Fe) as the active component. The physicochemical properties of the explosion suppressant were analyzed using characterization techniques such as SEM and FT-IR. At the same time, the Hartmann tube experimental device was utilized to study the inhibition effect of the detonation suppressor on the coal powder flame, and to determine the optimal loading amount of the active component and the addition amount of the detonation suppressor. The results show that the composite powder synthesized by the anti-solvent crystallization method has a uniform particle size and good structure. The flame was almost completely suppressed when the active component loading was 50 wt.% and the additive amount of the detonation suppressant was 30 wt.%. Finally, a physicochemical synergistic inhibition mechanism of CMS@C12H22O14Fe for coal dust explosion is proposed. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

Back to TopTop