Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (912)

Search Parameters:
Keywords = experience reuse

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3944 KiB  
Article
Functionalized Magnetic Nanoparticles as Recyclable Draw Solutes for Forward Osmosis: A Sustainable Approach to Produced Water Reclamation
by Sunith B. Madduri and Raghava R. Kommalapati
Separations 2025, 12(8), 199; https://doi.org/10.3390/separations12080199 - 29 Jul 2025
Viewed by 181
Abstract
Magnetic nanoparticles (MNPs), especially iron oxide (Fe3O4), display distinctive superparamagnetic characteristics and elevated surface-area-to-volume ratios, facilitating improved physicochemical interactions with solutes and pollutants. These characteristics make MNPs strong contenders for use in water treatment applications. This research investigates the [...] Read more.
Magnetic nanoparticles (MNPs), especially iron oxide (Fe3O4), display distinctive superparamagnetic characteristics and elevated surface-area-to-volume ratios, facilitating improved physicochemical interactions with solutes and pollutants. These characteristics make MNPs strong contenders for use in water treatment applications. This research investigates the application of iron oxide MNPs synthesized via co-precipitation as innovative draw solutes in forward osmosis (FO) for treating synthetic produced water (SPW). The FO membrane underwent surface modification with sulfobetaine methacrylate (SBMA), a zwitterionic polymer, to increase hydrophilicity, minimize fouling, and elevate water flux. The SBMA functional groups aid in electrostatic repulsion of organic and inorganic contaminants, simultaneously encouraging robust hydration layers that improve water permeability. This adjustment is vital for sustaining consistent flux performance while functioning with MNP-based draw solutions. Material analysis through thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR) verified the MNPs’ thermal stability, consistent morphology, and modified surface chemistry. The FO experiments showed a distinct relationship between MNP concentration and osmotic efficiency. At an MNP dosage of 10 g/L, the peak real-time flux was observed at around 3.5–4.0 L/m2·h. After magnetic regeneration, 7.8 g of retrieved MNPs generated a steady flow of ~2.8 L/m2·h, whereas a subsequent regeneration (4.06 g) resulted in ~1.5 L/m2·h, demonstrating partial preservation of osmotic driving capability. Post-FO draw solutions, after filtration, exhibited total dissolved solids (TDS) measurements that varied from 2.5 mg/L (0 g/L MNP) to 227.1 mg/L (10 g/L MNP), further validating the effective dispersion and solute contribution of MNPs. The TDS of regenerated MNP solutions stayed similar to that of their fresh versions, indicating minimal loss of solute activity during the recycling process. The combined synergistic application of SBMA-modified FO membranes and regenerable MNP draw solutes showcases an effective and sustainable method for treating produced water, providing excellent water recovery, consistent operational stability, and opportunities for cyclic reuse. Full article
(This article belongs to the Section Purification Technology)
Show Figures

Graphical abstract

12 pages, 1803 KiB  
Article
Valorization of Eggshell Powder as a Catalytic Activation Agent for Producing Porous Carbon Materials from Lignocellulosic Waste
by Chi-Hung Tsai, Hervan Marion Morgan and Wen-Tien Tsai
Catalysts 2025, 15(8), 712; https://doi.org/10.3390/catal15080712 - 26 Jul 2025
Viewed by 303
Abstract
This study explored the potential of reusing eggshell powders as a renewable activating agent for producing porous carbon materials from coffee husk. Carbonization and activation experiments were conducted by heating the samples at a rate of 10 °C/min up to 850 °C under [...] Read more.
This study explored the potential of reusing eggshell powders as a renewable activating agent for producing porous carbon materials from coffee husk. Carbonization and activation experiments were conducted by heating the samples at a rate of 10 °C/min up to 850 °C under a nitrogen atmosphere. A custom-designed double steel-mesh sample holder was used to hold approximately 2.0 g coffee husk on the top, with varying masses of eggshell at the bottom to achieve eggshells to coffee husk mass ratios of 2:1, 4:1, 6:1 and 8:1. The results demonstrated that CO2 released from the thermal decomposition of the eggshell powder significantly enhanced pore development at 850 °C. Compared to the pore properties of carbon material produced without eggshell (e.g., BET surface area of 321 m2/g), the activated carbon samples exhibited substantially improved pore properties (e.g., BET surface area in the range of 592 to 715 m2/g). Furthermore, the pore characteristics improved consistently with increasing eggshell content. Observations by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and Fourier-transform infrared spectroscopy (FTIR) confirmed the structural and chemical transformations of the resulting carbon materials. Under optimal carbonization-activation conditions, the resulting carbon materials derived from coffee husk exhibited microporous structures and slit-shaped pores, as indicated by the Type I isotherms and H4 hysteresis loops. Full article
Show Figures

Graphical abstract

17 pages, 3327 KiB  
Article
Hydraulic Flow Patterns in an On-Site Wastewater Treatment Unit Under Various Operating Conditions
by Tamás Karches and Tamás Papp
Symmetry 2025, 17(8), 1190; https://doi.org/10.3390/sym17081190 - 25 Jul 2025
Viewed by 147
Abstract
The role of on-site wastewater treatment (OSWT) is increasingly important for water reuse and local sustainability, but treatment efficiency is highly dependent on hydraulic behavior and mixing. This study used validated CFD simulations and tracer experiments to analyze flow patterns and mixing performance [...] Read more.
The role of on-site wastewater treatment (OSWT) is increasingly important for water reuse and local sustainability, but treatment efficiency is highly dependent on hydraulic behavior and mixing. This study used validated CFD simulations and tracer experiments to analyze flow patterns and mixing performance in a six-zone OSWT unit under different operational scenarios, including inflow, aeration, recirculation, combined mechanisms, and closed-loop operation without inflow. The results show that influent flow is essential for maintaining convective transport and system-wide momentum, while aeration and recirculation enhance local mixing, but cannot fully overcome geometric dead zones. The combined use of inflow, aeration, and recirculation achieved the highest mixing efficiency and minimized the dead volume, whereas scenarios lacking inflow exhibited severe stagnation and expanded dead zones. These findings highlight the need to integrate hydraulic interventions with thoughtful reactor design to ensure effective and resilient small-scale wastewater treatment systems. Full article
(This article belongs to the Special Issue Symmetry and Numerical Methods in Fluid Dynamics)
Show Figures

Figure 1

17 pages, 6360 KiB  
Article
Integrating Lanthanide-Reclaimed Wastewater and Lanthanide Phosphate in Corn Cultivation: A Novel Approach for Sustainable Agriculture
by George William Kajjumba, Savanna Vacek and Erica J. Marti
Sustainability 2025, 17(15), 6734; https://doi.org/10.3390/su17156734 - 24 Jul 2025
Viewed by 292
Abstract
With increasing global challenges related to water scarcity and phosphorus depletion, the recovery and reuse of wastewater-derived nutrients offer a sustainable path forward. This study evaluates the dual role of lanthanides (Ce3+ and La3+) in recovering phosphorus from municipal wastewater [...] Read more.
With increasing global challenges related to water scarcity and phosphorus depletion, the recovery and reuse of wastewater-derived nutrients offer a sustainable path forward. This study evaluates the dual role of lanthanides (Ce3+ and La3+) in recovering phosphorus from municipal wastewater and supporting corn (Zea mays) cultivation through lanthanide phosphate (Ln-P) and lanthanide-reclaimed wastewater (LRWW, wastewater spiked with lanthanide). High-purity precipitates of CePO4 (98%) and LaPO4 (92%) were successfully obtained without pH adjustment, as confirmed by X-ray photoelectron spectroscopy (XPS) and energy-dispersive spectroscopy (EDS). Germination assays revealed that lanthanides, even at concentrations up to 2000 mg/L, did not significantly alter germination rates compared to traditional coagulants, though root and shoot development declined above this threshold—likely due to reduced hydrogen peroxide (H2O2) production and elevated total dissolved solids (TDSs), which induced physiological drought. Greenhouse experiments using desert-like soil amended with Ln-P and irrigated with LRWW showed no statistically significant differences in corn growth parameters—including plant height, stem diameter, leaf number, leaf area, and biomass—when compared to control treatments. Photosynthetic performance, including stomatal conductance, quantum efficiency, and chlorophyll content, remained unaffected by lanthanide application. Metal uptake analysis indicated that lanthanides did not inhibit phosphorus absorption and even enhanced the uptake of calcium and magnesium. Minimal lanthanide accumulation was detected in plant tissues, with most retained in the root zone, highlighting their limited mobility. These findings suggest that lanthanides can be safely and effectively used for phosphorus recovery and agricultural reuse, contributing to sustainable nutrient cycling and aligning with the United Nations’ Sustainable Development Goals of zero hunger and sustainable cities. Full article
Show Figures

Graphical abstract

32 pages, 15499 KiB  
Article
Enhancing Transparency in Buyer-Driven Commodity Chains for Complex Products: Extending a Blockchain-Based Traceability Framework Towards the Circular Economy
by Ritwik Takkar, Ken Birman and H. Oliver Gao
Appl. Sci. 2025, 15(15), 8226; https://doi.org/10.3390/app15158226 - 24 Jul 2025
Viewed by 290
Abstract
This study extends our prior blockchain-based traceability framework, WEave, for application to a furniture supply chain scenario, while using the original multi-tier apparel supply chain as an anchoring use case. We integrate circular economy principles such as product reuse, recycling traceability, and full [...] Read more.
This study extends our prior blockchain-based traceability framework, WEave, for application to a furniture supply chain scenario, while using the original multi-tier apparel supply chain as an anchoring use case. We integrate circular economy principles such as product reuse, recycling traceability, and full lifecycle transparency to bolster sustainability and resilience in supply chains by enabling data-driven accountability and tracking for closed-loop resource flows. The enhanced approach can track post-consumer returns, use of recycled materials, and second-life goods, all represented using a closed-loop supply chain topology. We describe the extended network architecture and smart contract logic needed to capture circular lifecycle events, while proposing new metrics for evaluating lifecycle traceability and reuse auditability. To validate the extended framework, we outline simulation experiments that incorporate circular flows and cross-industry scenarios. Results from these simulations indicate improved transparency on recycled content, audit trails for returned products, and acceptable performance overhead when scaling to different product domains. Finally, we offer conclusions and recommendations for implementing WEave functionality into real-world settings consistent with the goals of digital, resilient, and sustainable supply chains. Full article
Show Figures

Figure 1

33 pages, 9781 KiB  
Article
Spatial Narrative Optimization in Digitally Gamified Architectural Scenarios
by Deshao Wang, Jieqing Xu and Luwang Chen
Buildings 2025, 15(15), 2597; https://doi.org/10.3390/buildings15152597 - 23 Jul 2025
Viewed by 216
Abstract
Currently, exploring digital immersive experiences is a new trend in the innovation and development of cultural tourism. This study addresses the growing demand for digital immersion in cultural tourism by examining the integration of spatial narrative and digitally gamified architectural scenarios. This study [...] Read more.
Currently, exploring digital immersive experiences is a new trend in the innovation and development of cultural tourism. This study addresses the growing demand for digital immersion in cultural tourism by examining the integration of spatial narrative and digitally gamified architectural scenarios. This study synthesizes an optimized framework for narrative design in digitally gamified architectural scenarios, integrating spatial narrative theory and feedback-informed design. The proposed model comprises four key components: (1) developing spatial narrative design methods for such scenarios; (2) constructing a spatial language system for spatial narratives using linguistic principles to organize narrative expression; (3) building a preliminary digitally gamified scenario based on the “Wuhu Jiaoji Temple Renovation Project” after architectural and environmental enhancements; and (4) optimization through thermal feedback experiments—collecting visitor trajectory heatmaps, eye-tracking heatmaps, and oculometric data. The results show that the optimized design, validated in the original game Dreams of Jiaoji, effectively enhanced spatial narrative execution by refining both on-site and in-game architectural scenarios. Post-optimization visitor feedback confirmed the validity of the proposed optimization strategies and principles, providing theoretical and practical references for innovative digital cultural tourism models and architectural design advancements. In the context of site-specific architectural conservation, this approach achieves two key objectives: the generalized interpretation of architectural cultural resources and their visual representation through gamified interactions. This paradigm not only enhances public engagement through enabling a multidimensional understanding of historical building cultures but also accelerates the protective reuse of heritage sites, allowing heritage value to be maximized through contemporary reinterpretation. The interdisciplinary methodology promotes sustainable development in the digital transformation of cultural tourism, fostering user-centered experiences and contributing to rural revitalization. Ultimately, this study highlights the potential use of digitally gamified architectural scenarios as transformative tools for heritage preservation, cultural dissemination, and rural community revitalization. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

28 pages, 1881 KiB  
Article
Part II—Volatile Profiles of Kiwi Kefir-like Beverages Influenced by the Amount of Inoculum, Shaking Rate, and Successive Kefir Grain Passages
by Delicia L. Bazán, Sandra Cortés Diéguez, José Manuel Domínguez and Nelson Pérez-Guerra
Foods 2025, 14(14), 2502; https://doi.org/10.3390/foods14142502 - 17 Jul 2025
Viewed by 302
Abstract
This study analyzes the aromatic profiles of kiwi-based fermented beverages, inoculated with varying proportions of milk kefir grains and incubated under different shaking rates. The experiments were designed using response surface methodology and three consecutive batch cultures were performed under each experimental condition. [...] Read more.
This study analyzes the aromatic profiles of kiwi-based fermented beverages, inoculated with varying proportions of milk kefir grains and incubated under different shaking rates. The experiments were designed using response surface methodology and three consecutive batch cultures were performed under each experimental condition. At the end of each fermentation, the grains were separated from the beverage and reused as the inoculum for fermenting fresh kiwi juice in the subsequent batch. Based on the results, together with the previously determined microbiological and chemical characteristics, two beverages were identified as having broader aromatic profiles, lower contents of sugars, ethanol, and acids, and high counts of lactic acid bacteria (LAB) and yeasts (>106 CFU/mL). These beverages were produced under relatively low agitation rates (38 and 86 rpm) and high inoculum proportions (4.33% and 4.68% w/v) during the second and third batch cultures, respectively. Over 28 days of refrigerated storage, the pH values of both beverages remained relatively stable, and the LAB counts consistently exceeded 106 CFU/mL. Yeast counts, along with the production of ethanol, glycerol, lactic acid, and acetic acid, increased slightly over time. In contrast, the concentrations of citric acid, quinic acid, total sugars, and acetic acid bacteria declined by day 28. Full article
Show Figures

Graphical abstract

15 pages, 1966 KiB  
Article
Lithium Adsorption Using Graphene Oxide: Modeling, Regeneration, and Mechanistic Insights
by Abdulrahman Abu-Nada, Ahmed Abdala, Gordon McKay and Shifa Zuhara
Materials 2025, 18(14), 3211; https://doi.org/10.3390/ma18143211 - 8 Jul 2025
Viewed by 298
Abstract
Graphene oxide (GO) was synthesized using the Hummers method and evaluated for lithium-ion removal from aqueous solutions. Characterization via X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, field-emission scanning electron microscopy (FE-SEM), and X-ray diffraction (XRD) confirmed the presence of oxygen-containing functional [...] Read more.
Graphene oxide (GO) was synthesized using the Hummers method and evaluated for lithium-ion removal from aqueous solutions. Characterization via X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, field-emission scanning electron microscopy (FE-SEM), and X-ray diffraction (XRD) confirmed the presence of oxygen-containing functional groups (C–O–C, C=O), which act as active adsorption sites. BET analysis revealed a surface area of 232 m2/g and a pore volume of 0.4 cm3/g, indicating its high porosity. Lithium adsorption was tested using synthetic Li-doped solutions under controlled conditions. Kinetics and equilibrium studies demonstrated that the process followed the pseudo-second-order model and the Redlich–Peterson isotherm, achieving an optimum lithium adsorption capacity of 179 mg/g. The adsorption efficiency was influenced by factors such as pH and salinity. Regeneration experiments showed that HNO3 was the most effective desorbing agent, enabling GO to be reused multiple times with a moderate loss of adsorption capacity. These findings highlight GO’s exceptional efficiency in lithium removal and its suitability for wastewater treatment applications. Its recyclability and reusability further support a circular economy, making GO a highly promising material for sustainable lithium recovery and broader environmental remediation efforts. Full article
(This article belongs to the Special Issue Development and Application of Novel Membranes (2nd Edition))
Show Figures

Graphical abstract

19 pages, 914 KiB  
Review
The Incorporation of Adsorbents with Contrasting Properties into the Soil Substrate for the Removal of Multiple Pollutants in Stormwater Treatment for the Reuse of Water—A Review
by Paripurnanda Loganathan, Jaya Kandasamy, Harsha Ratnaweera and Saravanamuthu Vigneswaran
Water 2025, 17(13), 2007; https://doi.org/10.3390/w17132007 - 3 Jul 2025
Viewed by 388
Abstract
Stormwater carries significant amounts of pollutants—including metals, microorganisms, organic micropollutants, and nutrients—from land surfaces into nearby water bodies, leading to water quality deterioration and threats to both human health and ecosystems. The removal of these contaminants is essential not only for environmental protection, [...] Read more.
Stormwater carries significant amounts of pollutants—including metals, microorganisms, organic micropollutants, and nutrients—from land surfaces into nearby water bodies, leading to water quality deterioration and threats to both human health and ecosystems. The removal of these contaminants is essential not only for environmental protection, but also to enable the reuse of treated water for various beneficial applications. Common treatment methods include bioretention systems, biofiltration, constructed wetlands, rain gardens, swales, and permeable pavements. To improve pollutant removal efficiency, adsorbent materials are often incorporated into the soil substrate of these treatment devices. However, most research on adsorbents has focused on their effectiveness against one or two specific pollutants and has been conducted under static, short-term laboratory conditions rather than dynamic, field-relevant scenarios. Column-based dynamic filtration type studies, which are more informative for field applications, are limited. In one study, a combination of two or more adsorbents with contrasting properties that matched the affinity preferences of the different pollutants to the substrate media removed 77–100% of several heavy metals that occur in real stormwater compared to 38–73% removal with only one adsorbent. In another study, polycyclic aromatic hydrocarbon removal with zeolite was only 30–50%, but increased to >99% with 0.3% granular activated carbon addition. Long-term dynamic column-based filtration experiments and field studies using real stormwater, which contains a wide range of pollutants, are recommended to better evaluate the performances of the combined adsorbent systems. Full article
Show Figures

Figure 1

17 pages, 9104 KiB  
Article
Analysis and Chromium Recovery from Ferrochrome Waste (Stockpiled Refined Ferrochrome Slags)
by Otegen Sariyev, Lyazat Tolymbekova, Murat Dossekenov, Bauyrzhan Kelamanov, Dauren Yessengaliyev, Assel Davletova and Assylbek Abdirashit
Metals 2025, 15(7), 740; https://doi.org/10.3390/met15070740 - 30 Jun 2025
Viewed by 221
Abstract
This study investigates the effectiveness of various beneficiation methods for recovering chromium from refined ferrochrome slag. Dry magnetic separation at different field intensities (0.45 T and 0.8 T) showed that selective extraction of metallic chromium (Crmet) is more efficient at 0.45 [...] Read more.
This study investigates the effectiveness of various beneficiation methods for recovering chromium from refined ferrochrome slag. Dry magnetic separation at different field intensities (0.45 T and 0.8 T) showed that selective extraction of metallic chromium (Crmet) is more efficient at 0.45 T, achieving a recovery rate of up to 90.05%. Pneumatic separation using SEPAIR technology demonstrated promising results, especially for wide particle size fractions (0–20 mm), where chromium recovery reached 40.32% due to density differences between slag particles and metallic inclusions. Enrichment on a shaking table proved to be the most selective method, producing a concentrate with 29.9% Cr and 90.7% recovery, although the yield was low (3.8%). SEM-EDX and SEM-BSE analyses confirmed the heterogeneous phase composition of slag grains, revealing chromium–iron alloys embedded in oxide matrices. Based on laboratory experiments and material characterization, it is concluded that magnetic separation can be used for preliminary concentration, pneumatic classification is effective for processing bulk slag with economic potential, and gravity concentration on shaking tables is suitable for producing high-grade concentrates. The resulting tailings, low in chromium, are suitable for reuse in the production of building materials after carbonation treatment. Full article
Show Figures

Figure 1

20 pages, 2149 KiB  
Article
Accelerating Facial Image Super-Resolution via Sparse Momentum and Encoder State Reuse
by Kerang Cao, Na Bao, Shuai Zheng, Ye Liu and Xing Wang
Electronics 2025, 14(13), 2616; https://doi.org/10.3390/electronics14132616 - 28 Jun 2025
Viewed by 410
Abstract
Single image super-resolution (SISR) aims to reconstruct high-quality images from low-resolution inputs, a persistent challenge in computer vision with critical applications in medical imaging, satellite imagery, and video enhancement. Traditional diffusion model-based (DM-based) methods, while effective in restoring fine details, suffer from computational [...] Read more.
Single image super-resolution (SISR) aims to reconstruct high-quality images from low-resolution inputs, a persistent challenge in computer vision with critical applications in medical imaging, satellite imagery, and video enhancement. Traditional diffusion model-based (DM-based) methods, while effective in restoring fine details, suffer from computational inefficiency due to their iterative denoising process. To address this, we introduce the Sparse Momentum-based Faster Diffusion Model (SMFDM), designed for rapid and high-fidelity super-resolution. SMFDM integrates a novel encoder state reuse mechanism that selectively omits non-critical time steps during the denoising phase, significantly reducing computational redundancy. Additionally, the model employs a sparse momentum mechanism, enabling robust representation capabilities while utilizing only a fraction of the original model weights. Experiments demonstrate that SMFDM achieves an impressive 71.04% acceleration in the diffusion process, requiring only 15% of the original weights, while maintaining high-quality outputs with effective preservation of image details and textures. Our work highlights the potential of combining sparse learning and efficient sampling strategies to enhance the practical applicability of diffusion models for super-resolution tasks. Full article
Show Figures

Figure 1

21 pages, 5289 KiB  
Article
Experimental Research on Quarry Wastewater Purification Using Flocculation Process
by Yongjie Bu, Kangjian Zeng, Heng Yang, Aihui Sun, Qingjun Guan, Shuang Zhou, Wenqing Peng, Weijun Wang, Peng Ge and Yue Yang
Molecules 2025, 30(13), 2761; https://doi.org/10.3390/molecules30132761 - 26 Jun 2025
Viewed by 326
Abstract
The flocculation-based purification of quarry wastewater continues to pose a significant challenge in mineral processing and environmental engineering, primarily due to persistent turbidity issues and inefficient floc settling behaviour. In this study, we systematically investigate the synergistic effects of organic and inorganic flocculants [...] Read more.
The flocculation-based purification of quarry wastewater continues to pose a significant challenge in mineral processing and environmental engineering, primarily due to persistent turbidity issues and inefficient floc settling behaviour. In this study, we systematically investigate the synergistic effects of organic and inorganic flocculants to reduce turbidity and improve floc settling performance. Through a series of optimised experiments using polyaluminium chloride as an inorganic flocculant, polyacrylamide as an organic flocculant, and calcium oxide as a pH regulator agent, the treatment efficiency was evaluated. Under the optimal conditions with 200 g/m3 CaO as the regulator agent and 2.5 g/m3 PAC and 12 g/m3 PAM as flocculants, the residual turbidity was reduced to 97.30 NTU, meeting stringent industrial discharge standards and enabling zero-discharge water reuse. Zeta potential measurements, optical microscopy, and DLVO theory collectively elucidated the interfacial interactions between flocculants and mineral particles, with zeta potential revealing electrostatic effects, microscopy visualising aggregation patterns, and DLVO theory modelling revealing colloidal stability, thereby mechanistically explaining the enhanced aggregation behaviour. Full article
Show Figures

Figure 1

19 pages, 11127 KiB  
Article
Drone State Estimation Based on Frame-to-Frame Template Matching with Optimal Windows
by Seokwon Yeom
Drones 2025, 9(7), 457; https://doi.org/10.3390/drones9070457 - 24 Jun 2025
Viewed by 391
Abstract
The flight capability of drones expands the surveillance area and allows drones to be mobile platforms. Therefore, it is important to estimate the kinematic state of drones. In this paper, the kinematic state of a mini drone in flight is estimated based on [...] Read more.
The flight capability of drones expands the surveillance area and allows drones to be mobile platforms. Therefore, it is important to estimate the kinematic state of drones. In this paper, the kinematic state of a mini drone in flight is estimated based on the video captured by its camera. A novel frame-to-frame template-matching technique is proposed. The instantaneous velocity of the drone is measured through image-to-position conversion and frame-to-frame template matching using optimal windows. Multiple templates are defined by their corresponding windows in a frame. The size and location of the windows are obtained by minimizing the sum of the least square errors between the piecewise linear regression model and the nonlinear image-to-position conversion function. The displacement between two consecutive frames is obtained via frame-to-frame template matching that minimizes the sum of normalized squared differences. The kinematic state of the drone is estimated by a Kalman filter based on the velocity computed from the displacement. The Kalman filter is augmented to simultaneously estimate the state and velocity bias of the drone. For faster processing, a zero-order hold scheme is adopted to reuse the measurement. In the experiments, two 150 m long roadways were tested; one road is in an urban environment and the other in a suburban environment. A mini drone starts from a hovering state, reaches top speed, and then continues to fly at a nearly constant speed. The drone captures video 10 times on each road from a height of 40 m at a 60-degree camera tilt angle. It will be shown that the proposed method achieves average distance errors at low meter levels after the flight. Full article
(This article belongs to the Special Issue Intelligent Image Processing and Sensing for Drones, 2nd Edition)
Show Figures

Figure 1

23 pages, 9327 KiB  
Article
Domestic Reclaimed Water for Circular Agriculture: Improving Agronomic Performance of Sweet Sorghum in a Semiarid Tropical Climate
by Breno Leonan de Carvalho Lima, Jucilene Silva Araújo, José Thyago Aires Souza, Elder Cunha de Lira, Jose Nildo Tabosa, Eurico Lustosa do Nascimento Alencar, Jose Edson Florentino de Moraes, Ceres Duarte Guedes Cabral de Almeida, Alexsandro Oliveira da Silva, Mario Monteiro Rolim, Abelardo Antônio de Assunção Montenegro, Thieres George Freire da Silva and Ênio Farias de França e Silva
Sustainability 2025, 17(13), 5765; https://doi.org/10.3390/su17135765 - 23 Jun 2025
Viewed by 398
Abstract
Water scarcity in semiarid regions represents a critical challenge for sustainable agriculture, reducing the availability of forage and affecting livestock systems. The reuse of treated wastewater offers an environmentally friendly alternative to meet water and nutrient needs, supporting the principles of the circular [...] Read more.
Water scarcity in semiarid regions represents a critical challenge for sustainable agriculture, reducing the availability of forage and affecting livestock systems. The reuse of treated wastewater offers an environmentally friendly alternative to meet water and nutrient needs, supporting the principles of the circular economy. Sweet sorghum, with its remarkable tolerance to abiotic stress, represents a resilient crop option. Evaluating its agronomic and industrial responses to different depths of irrigation using reclaimed water is essential for improving resource-efficient agricultural practices in water-limited environments. This study evaluated the effects of different irrigation regimes with treated wastewater on the growth, productivity, and water use efficiency of sweet sorghum grown in a semiarid region of Brazil. The experiment was conducted in a randomized complete block design, with five irrigation regimes ranging from 50% to 150% of crop evapotranspiration (ETc) and four replications. Irrigation was carried out with treated wastewater using a drip irrigation system. Growth parameters, fresh biomass, water use efficiency, and soluble solids content (°Brix) were analyzed in two consecutive harvests (main and ratoon crop). Deficit irrigation regimes (50% and 75% of ETc) resulted in higher water use efficiency and higher °Brix, whereas regimes above 100% of ETc reduced water use efficiency and biomass productivity. The ratoon crop showed greater sensitivity to water management, with significant productivity responses under irrigation around 100% of ETc. The first harvest was more productive in terms of fresh biomass and plant growth. Reclaimed water is a sustainable and efficient strategy for cultivating sweet sorghum in semiarid regions. Deficit irrigation regimes can be technically viable for maximizing water use efficiency and production quality, while proper irrigation management is crucial to avoiding losses associated with excessive water application. Full article
Show Figures

Figure 1

22 pages, 3738 KiB  
Article
Field Experiments of Mineral Deposition by Cathodic Polarization as a Sustainable Management Strategy for the Reuse of Marine Steel Structures
by Tiziano Bellezze, Giuseppina Colaleo, Pasquale Contestabile, Pietro Forcellese, Simone Ranieri, Nicola Simoncini, Gianni Barucca, Cinzia Corinaldesi, Fabio Conversano, Oriano Francescangeli, Luigi Montalto, Michela Pisani, Simona Sabbatini, Francesco Vita, Diego Vicinanza and Antonio Dell’Anno
Sustainability 2025, 17(13), 5720; https://doi.org/10.3390/su17135720 - 21 Jun 2025
Viewed by 1245
Abstract
This paper presents field experiments of mineral deposition on steel, induced by cathodic polarization in natural seawater, as a sustainable strategy for the life extension of marine steel structures. Although this approach is quite well known, the ability of the mineral deposit to [...] Read more.
This paper presents field experiments of mineral deposition on steel, induced by cathodic polarization in natural seawater, as a sustainable strategy for the life extension of marine steel structures. Although this approach is quite well known, the ability of the mineral deposit to both protect steel from corrosion in the absence of a cathodic current, thus operating as an inorganic coating, and provide an effective substrate for colonization by microorganisms still needs to be fully explained. To this end, two identical steel structure prototypes were installed at a depth of 20 m: one was submitted to cathodic polarization, while the other was left under free corrosion for comparison. After 6 months, the current supplied to the electrified structure was interrupted. A multidisciplinary approach was used to analyze the deposits on steel round bars installed in the prototypes over time, in the presence and in the absence of a cathodic current. Different investigation techniques were employed to provide the following information on the deposit: the composition in terms of elements, compounds and macro-biofouling; the morphology; the thickness and the degree of protection estimated by electrochemical impedance spectroscopy (EIS). The results showed that under cathodic polarization, the thickness of the deposit increased to 2.5 mm and then remained almost constant after the current was interrupted. Conversely, the surface impedance decreased from 3 kΩ cm2 to about 1.5 kΩ cm2 at the same time, and the aragonite–brucite ratio also decreased. This indicates a deterioration in the protection performance and soundness of the deposit, respectively. Considering the trends in thickness and impedance together, it can be concluded that the preformed mineral deposit does not undergo generalized deterioration after current interruption, which would result in a reduction in thickness, but rather localized degradation. This phenomenon was attributed to the burrowing action of marine organisms, which created porosities and/or capillary pathways through the deposit. Therefore, the corrosion protection offered by the mineral deposit without a cathodic current is insufficient because it loses its protective properties. However, the necessary current can be quite limited in the presence of the deposit, which in any case provides a suitable substrate for sustaining the colonization and growth of sessile marine organisms, thus promoting biodiversity. Full article
Show Figures

Figure 1

Back to TopTop