Valorization of Eggshell Powder as a Catalytic Activation Agent for Producing Porous Carbon Materials from Lignocellulosic Waste
Abstract
1. Introduction
2. Results and Discussion
2.1. Thermochemical Characteristics of Coffee Husk and Eggshell
2.2. Pore Properties of Resulting Carbon Materials
2.3. Textural and Chemical Characteristics of Resulting Carbon Materials
3. Materials and Methods
3.1. Materials
3.2. Thermochemical Properties and Thermogravimetric Analysis of Coffee Husk and Eggshell
3.3. Carbonization-Activation Experiments
3.4. Determinations of Textural and Chemical Characteristics of Coffee Husk-Based Biochar Products
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marsh, H.; Rodriguez-Reinoso, F. Activated Carbon; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Bansal, R.C.; Goyal, M. Activated Carbon Adsorption; CRC Press: Bocca Raton, FL, USA, 2005. [Google Scholar]
- Mehdi, R.; Khoja, A.H.; Naqvi, S.R.; Gao, N.; Amin, N.A.S. A Review on production and surface modifications of biochar materials via biomass pyrolysis process for supercapacitor applications. Catalysts 2022, 12, 798. [Google Scholar] [CrossRef]
- Li, T.; Yang, G.; Wang, J.; Zhou, Y.; Han, H. Excellent electrochemical performance of nitrogen-enriched hierarchical porous carbon electrodes prepared using nano-CaCO3 as template. J. Solid State Electrochem. 2013, 17, 2651–2660. [Google Scholar] [CrossRef]
- Wang, Z.; Xiong, Y.; Guan, S. A simple CaCO3-assisted template carbonization method for producing nitrogen doped porous carbons as electrode materials for supercapacitors. Electrochim. Acta 2016, 188, 757–766. [Google Scholar] [CrossRef]
- Xing, B.; Zhang, C.; Liu, Q.; Zhang, C.; Huang, G.; Guo, H.; Cao, J.; Cao, Y.; Yu, J.; Chen, Z. Green synthesis of porous graphitic carbons from coal tar pitch templated by nano-CaCO3 for high-performance lithium-ion batteries. J. Alloys Compd. 2019, 795, 91–102. [Google Scholar] [CrossRef]
- Yang, Y.; Yan, Y.; Ren, B.; Fan, C.; Liu, Y.; Deng, Q.; Zhong, L.; You, C.; Xu, Y.; Yang, R. Modified nano-CaCO3 hard template method for hierarchical porous carbon powder with enhanced electrochemical performance in lithium-sulfur battery. Adv. Powder Technol. 2021, 32, 3574–3584. [Google Scholar] [CrossRef]
- Shen, F.; Qiu, M.; Hua, Y.; Qi, X. Dual-functional templated methodology for the synthesis of hierarchical porous carbon for supercapacitor. ChemistrySelect 2018, 3, 586–591. [Google Scholar] [CrossRef]
- Panchal, M.; Raghvendra, G.; Ojha, S.; Omprakash, M.; Acharya, S.K. A single step process to synthesize ordered porous carbon from coconut shells-eggshells biowaste. Mater. Res. Express 2019, 6, 115613. [Google Scholar] [CrossRef]
- Hsu, C.H.; Pan, Z.B.; Qu, H.T.; Chen, C.R.; Lin, H.P.; Sun, I.W.; Huang, C.Y.; Li, C.H. Green synthesis of nitrogen-doped multiporous carbons for oxygen reduction reaction using water-caltrop shells and eggshell waste. RSC Adv. 2021, 11, 15738–15747. [Google Scholar] [CrossRef]
- Liu, D.; Hao, Z.; Chen, D.; Jiang, L.; Li, T.; Tian, B.; Yan, C.; Luo, Y.; Chen, G.; Ai, H. Use of eggshell-catalyzed biochar adsorbents for Pb removal from aqueous solution. ACS Omega 2022, 7, 21808–21819. [Google Scholar] [CrossRef]
- Li, C.; Zhou, S.; Li, Q.; Gao, G.; Zhang, L.; Zhang, S.; Huang, Y.; Ding, K.; Hu, X. Activation of sawdust with eggshells. J. Anal. Appl. Pyrolysis 2023, 171, 105968. [Google Scholar] [CrossRef]
- Janissen, B.; Huynh, T. Chemical composition and value-adding applications of coffee industry by-products: A review. Resour. Conserv. Recycl. 2018, 128, 110–117. [Google Scholar] [CrossRef]
- Klingel, T.; Kremer, J.I.; Gottstein, V.; Rajcic de Rezende, T.; Schwarz, S.; Lachenmeier, D.W. A Review of coffee by-products including leaf, flower, cherry, husk, silver skin, and spent grounds as novel foods within the European Union. Foods 2020, 9, 665. [Google Scholar] [CrossRef]
- Hoseini, M.; Cocco, S.; Casucci, C.; Cardelli, V.; Corti, G. Coffee by-products derived resources. A review. Biomass Bioenergy 2021, 148, 106009. [Google Scholar] [CrossRef]
- Sugebo, B. A review on enhanced biofuel production from coffee by-products using different enhancement techniques. Mater. Renew. Sustain. Energy 2022, 11, 91–103. [Google Scholar] [CrossRef]
- Mora-Villalobos, J.A.; Aguilar, F.; Carballo-Arce, A.F.; José-Roberto Vega-Baudrit, J.R.; Trimino-Vazquez, H.; Villegas-Peñaranda, L.R.; Stöbener, A.; Eixenberger, D.; Bubenheim, P.; Sandoval-Barrantes, M.; et al. Tropical agroindustrial biowaste revalorization through integrative biorefineries—Review part I: Coffee and palm oil by-products. Biomass Convers. Biorefinery 2023, 13, 1469–1487. [Google Scholar] [CrossRef]
- Domingues, R.R.; Trugilho, P.F.; Silva, C.A.; de Melo, I.C.N.A.; Melo, L.C.A.; Magriotis, Z.M.; Sannchez-Monedero, M.A. Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. PLoS ONE 2017, 12, e0176884. [Google Scholar] [CrossRef]
- Schellekens, J.; Silva, C.A.; Buurman, P.; Rittl, T.F.; Domingues, R.R.; Justi, M.; Vidal-Torrado, P.; Trugilho, P.F. Molecular characterization of biochar from five Brazilian agricultural residues obtained at different charring temperatures. J. Anal. Appl. Pyrolysis 2018, 130, 106–117. [Google Scholar] [CrossRef]
- Asfaw, E.; Nebiyu, A.; Bekele, E.; Ahmed, M.; Astatkie, T. Coffee-husk biochar application increased AMF root colonization, P accumulation, N2 fixation, and yield of soybean grown in a tropical Nitisol, southwest Ethiopia. J. Plant Nutr. Soil Sci. 2019, 181, 419–428. [Google Scholar] [CrossRef]
- Nguyen, X.C.; Nguyen, T.T.H.; Nguyen, T.H.C.; Le, Q.V.; Vo, T.Y.B.; Tran, T.C.P.; La, D.D.; Kumar, G.; Nguyen, V.K.; Chang, S.W.; et al. Sustainable carbonaceous biochar adsorbents derived from agro-wastes and invasive plants for cation dye adsorption from water. Chemosphere 2021, 282, 131009. [Google Scholar] [CrossRef]
- Ngalani, G.P.; Ondo, J.A.; Njimou, J.R.; Njiki, C.P.N.; Prudent, P.; Ngameni, E. Effect of coffee husk and cocoa pods biochar on phosphorus fixation and release processes in acid soils from West Cameroon. Soil Use Manag. 2023, 39, 817–832. [Google Scholar] [CrossRef]
- Setiawan, A.; Nurjannah, S.; Riskina, S.; Fona, Z.; Muhammad; Drewery, M.; Kennedy, E.M.; Stockenhuber, M. Understanding the thermal and physical properties of biochar derived from pre-washed arabica coffee agroindustry residues. Bioenergy Res. 2025, 18, 16. [Google Scholar] [CrossRef]
- Saenger, M.; Hartge, E.U.; Werther, J.; Ogada, T.; Siagi, Z. Combustion of coffee husks. Renew. Energy 2001, 23, 103–121. [Google Scholar] [CrossRef]
- Carneiro, A.d.C.O.; Zanuncio, A.J.V.; Carvalho, A.G.; Jorge, J.A.C.G.; dos Santos, R.J.C.; Demuner, I.F.; Peres, L.C.; Winter, S.G.; de Castro, V.R.; Branco-Vieira, M.; et al. Sustainable production of coffee husk pellets: Applying circular economy in waste management and renewable energy production. Resources 2025, 14, 26. [Google Scholar] [CrossRef]
- Chen, D.; Cen, K.; Zhuang, X.; Gan, Z.; Zhou, J.; Zhang, Y.; Zhang, H. Insight into biomass pyrolysis mechanism based on cellulose, hemicellulose, and lignin: Evolution of volatiles and kinetics, elucidation of reaction pathways, and characterization of gas, biochar and bio-oil. Combust. Flame 2022, 242, 112142. [Google Scholar] [CrossRef]
- Bansal, R.C.; Donnet, J.B.; Stoeckli, F. Active Carbon; Marcel Dekker: New York, NY, USA, 1988. [Google Scholar]
- Tsai, W.T.; Yang, J.M.; Hsu, H.C.; Lin, K.Y.; Chiu, C.S.; Chiu, C.H. Development and characterization of mesoporosity in eggshell ground by planetary ball milling. Microporous Mesoporous Mater. 2008, 111, 379–386. [Google Scholar] [CrossRef]
- Keiluweit, M.; Vico, P.S.; Johnson, M.G.; Kleber, M. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 2010, 44, 1247–1253. [Google Scholar] [CrossRef]
- Condon, J.B. Surface Area and Porosity Determinations by Physisorption: Measurements and Theory; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Lowell, S.; Shields, J.E.; Thomas, M.A.; Thommes, M. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density; Springer: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Jagiello, J.; Castro-Gutierrez, J.; Canevesi, R.L.S.; Celzard, A.; Fierro, V. Comprehensive analysis of hierarchical porous carbons using a dual-shape 2D-NLDFT model with an adjustable slit-cylinder pore shape Boundary. ACS Appl. Mater. Interfaces 2021, 13, 49472–49481. [Google Scholar] [CrossRef]
- Gautam, S.; Charak, R. Calcium oxide: Synthesis and applications. In Calcium-Based Materials: Processing, Characterization, and Applications; Nanda, S.S., Singh, J.P., Gautam, S., Yi, D.K., Eds.; CRC Press: Boca Raton, FL, USA, 2024; pp. 88–105. [Google Scholar]
- Liu, X.; Shen, F.; Qi, X. Adsorption recovery of phosphate from aqueous solution by CaO-biochar composites prepared from eggshell and rice straw. Sci. Total Environ. 2019, 666, 694–702. [Google Scholar] [CrossRef]
- Li, L.; Yao, X.; Li, H.; Liu, Z.; Ma, W.; Liang, X. Thermal stability of oxygen-containing functional groups on activated carbon surfaces in a thermal oxidative environment. J. Chem. Eng. Jpn. 2004, 47, 21–27. [Google Scholar] [CrossRef]
- Islam, M.S.; Ang, B.C.; Gharehkhani, S.; Afifi, A.B.M. Adsorption capability of activated carbon synthesized from coconut shell. Carbon Lett. 2016, 20, 1–9. [Google Scholar] [CrossRef]
- Johnston, C.T. Biochar analysis by Fourier-transform infra-red spectroscopy. In Biochar: A Guide to Analytical Methods; Singh, B., Camps-Arbestain, M., Lehmann, J., Eds.; CRC Press: Boca Raton, FL, USA, 2017; pp. 199–228. [Google Scholar]
- Qiu, C.; Jiang, L.; Gao, Y.; Sheng, L. Effects of oxygen-containing functional groups on carbon materials in supercapacitors: A review. Mater. Des. 2023, 230, 111952. [Google Scholar] [CrossRef]
Property | Value |
---|---|
Proximate analysis a,b | |
Ash (wt%) (wt%) | 1.05 ± 0.33 |
Volatile matter (wt%) | 79.60 ± 0.96 |
Fixed carbon c (wt%) | 19.36 |
Elemental analysis by EDS b,d | |
Carbon (wt%) | 45.60 |
Oxygen (wt%) | 53.45 |
Sulfur (wt%) | 0.13 |
Magnesium (wt%) | 0.46 |
Calcium (wt%) | 0.36 |
Calorific value b (MJ/kg) | 19.41 ± 0.80 |
Carbon Product Code | BET Surface Area a (m2/g) | Total Pore Volume b (cm3/g) | Residual Eggshell (wt%) |
---|---|---|---|
CFH-BC-850-30 | 321.38 | 0.148 | - |
CFH-AC-850-30-2 | 592.46 | 0.271 | 60.65 |
CFH-AC-850-30-4 | 636.77 | 0.291 | 71.72 |
CFH-AC-850-30-6 | 694.40 | 0.321 | 73.04 |
CFH-AC-850-30-8 | 714.56 | 0.324 | 78.75 |
CFH-AC-850-20-8 | 687.45 | 0.259 | 79.06 |
CFH-AC-850-10-8 | 712.24 | 0.321 | 79.44 |
Pore Property | Carbon Product Code | |
---|---|---|
CFH-BC-850-30 | CFH-AC-850-30-8 | |
Surface area | ||
Single-point surface area (m2/g, at P/P0 of about 0.14) | 332.78 | 732.97 |
BET surface area (m2/g) a | 321.38 | 714.56 |
Langmuir surface area (m2/g) | 402.40 | 887.67 |
t-plot micropore area (m2/g) b | 280.01 | 620.14 |
t-plot external surface area (m2/g) | 41.37 | 94.42 |
Pore volume | ||
Single-point adsorption total pore volume of pores at P/Po of about 0.995 (cm3/g) | 0.148 | 0.324 |
t-plot micropore volume (cm3/g) b | 0.121 | 0.265 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, C.-H.; Morgan, H.M., Jr.; Tsai, W.-T. Valorization of Eggshell Powder as a Catalytic Activation Agent for Producing Porous Carbon Materials from Lignocellulosic Waste. Catalysts 2025, 15, 712. https://doi.org/10.3390/catal15080712
Tsai C-H, Morgan HM Jr., Tsai W-T. Valorization of Eggshell Powder as a Catalytic Activation Agent for Producing Porous Carbon Materials from Lignocellulosic Waste. Catalysts. 2025; 15(8):712. https://doi.org/10.3390/catal15080712
Chicago/Turabian StyleTsai, Chi-Hung, Hervan Marion Morgan, Jr., and Wen-Tien Tsai. 2025. "Valorization of Eggshell Powder as a Catalytic Activation Agent for Producing Porous Carbon Materials from Lignocellulosic Waste" Catalysts 15, no. 8: 712. https://doi.org/10.3390/catal15080712
APA StyleTsai, C.-H., Morgan, H. M., Jr., & Tsai, W.-T. (2025). Valorization of Eggshell Powder as a Catalytic Activation Agent for Producing Porous Carbon Materials from Lignocellulosic Waste. Catalysts, 15(8), 712. https://doi.org/10.3390/catal15080712