Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,003)

Search Parameters:
Keywords = exhaustion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 310 KiB  
Article
The Impact of Mental Fatigue on the Accuracy of Penalty Kicks in College Soccer Players
by Qingguang Liu, Ruitian Huang, Zhibo Liu, Caiyu Sun, Linyu Qi and Antonio Cicchella
Sports 2025, 13(8), 259; https://doi.org/10.3390/sports13080259 - 7 Aug 2025
Abstract
Purpose: To investigate the impact of mental fatigue on the shooting accuracy and movement timing in the instep kick of Asian high-level soccer players. Methods: Eight male collegiate soccer players (age 22.00 ± 0.93 years) were tested before and after mental fatigue induction. [...] Read more.
Purpose: To investigate the impact of mental fatigue on the shooting accuracy and movement timing in the instep kick of Asian high-level soccer players. Methods: Eight male collegiate soccer players (age 22.00 ± 0.93 years) were tested before and after mental fatigue induction. Mental fatigue was induced via a 30 min Stroop task. The effectiveness of fatigue induction was assessed using heart rate variability (HRV), a visual analog scale (VAS), rating of perceived exertion (RPE), and the Athlete Burnout Questionnaire (ABQ). Shooting performance was evaluated before and after mental fatigue using the Loughborough Soccer Shooting Test (LSST) and by evaluating timing by means of high-speed imaging. Results: Following mental fatigue induction, HRV decreased. Subjects’ motivation (VAS) to exercise significantly decreased (p < 0.001), while VAS mental fatigue level (p < 0.001) and mental effort level (p < 0.002) significantly increased. Significant differences were observed after completing the Stroop task for ABQ Emotional/Physical Exhaustion (p < 0.007), Reduced Sense of Accomplishment (p < 0.007), Sport Devaluation (p < 0.006), and overall burnout level (p < 0.002). LSST showed that the subjects’ left foot test scores (−4.13, p < 0.013), right foot test scores (−3, p < 0.001), and total scores (−3.16, p < 0.001) significantly decreased. Although movement times increased slightly after fatigue, they did not reach statistical significance. Conclusions: Mental fatigue significantly impairs the shooting accuracy of collegiate soccer players, as evidenced by decreased LSST scores. However, it has no significant effect on event duration during shooting execution. Mental fatigue affected decision-making but not shooting movement timing. More cognitively challenging tasks are more affected by mental fatigue. Full article
Show Figures

Figure 1

18 pages, 3212 KiB  
Article
Supplementation with Live and Heat-Treated Lacticaseibacillus paracasei NB23 Enhances Endurance and Attenuates Exercise-Induced Fatigue in Mice
by Mon-Chien Lee, Ting-Yin Cheng, Ping-Jui Lin, Ting-Chun Lin, Chia-Hsuan Chou, Chao-Yuan Chen and Chi-Chang Huang
Nutrients 2025, 17(15), 2568; https://doi.org/10.3390/nu17152568 - 7 Aug 2025
Abstract
Background: Exercise-induced fatigue arises primarily from energy substrate depletion and the accumulation of metabolites such as lactate and ammonia, which impair performance and delay recovery. Emerging evidence implicates gut microbiota modulation—particularly via probiotics—as a means to optimize host energy metabolism and accelerate [...] Read more.
Background: Exercise-induced fatigue arises primarily from energy substrate depletion and the accumulation of metabolites such as lactate and ammonia, which impair performance and delay recovery. Emerging evidence implicates gut microbiota modulation—particularly via probiotics—as a means to optimize host energy metabolism and accelerate clearance of fatigue-associated by-products. Objective: This study aimed to determine whether live or heat-inactivated Lacticaseibacillus paracasei NB23 can enhance exercise endurance and attenuate fatigue biomarkers in a murine model. Methods: Forty male Institute of Cancer Research (ICR) mice were randomized into four groups (n = 10 each) receiving daily gavage for six weeks with vehicle, heat-killed NB23 (3 × 1010 cells/mouse/day), low-dose live NB23 (1 × 1010 CFU/mouse/day), or high-dose live NB23 (3 × 1010 CFU/mouse/day). Forelimb grip strength and weight-loaded swim-to-exhaustion tests assessed performance. Blood was collected post-exercise to measure serum lactate, ammonia, blood urea nitrogen (BUN), and creatine kinase (CK). Liver and muscle glycogen content was also quantified, and safety was confirmed by clinical-chemistry panels and histological examination. Results: NB23 treatment produced dose-dependent improvements in grip strength (p < 0.01) and swim endurance (p < 0.001). All NB23 groups exhibited significant reductions in post-exercise lactate (p < 0.0001), ammonia (p < 0.001), BUN (p < 0.001), and CK (p < 0.0001). Hepatic and muscle glycogen stores rose by 41–59% and 65–142%, respectively (p < 0.001). No changes in food or water intake, serum clinical-chemistry parameters, or tissue histology were observed. Conclusions: Our findings suggest that both live and heat-treated L. paracasei NB23 may contribute to improved endurance performance, increased energy reserves, and faster clearance of fatigue-related metabolites in our experimental model. However, these results should be interpreted cautiously given the exploratory nature and limitations of our study. Full article
Show Figures

Figure 1

22 pages, 7229 KiB  
Review
Evolution and Trends of the Exploration–Exploitation Balance in Bio-Inspired Optimization Algorithms: A Bibliometric Analysis of Metaheuristics
by Yoslandy Lazo, Broderick Crawford, Felipe Cisternas-Caneo, José Barrera-Garcia, Ricardo Soto and Giovanni Giachetti
Biomimetics 2025, 10(8), 517; https://doi.org/10.3390/biomimetics10080517 - 7 Aug 2025
Abstract
The balance between exploration and exploitation is a fundamental element in the design and performance of bio-inspired optimization algorithms. However, to date, its conceptual evolution and its treatment in the scientific literature have not been systematically characterized from a bibliometric approach. This study [...] Read more.
The balance between exploration and exploitation is a fundamental element in the design and performance of bio-inspired optimization algorithms. However, to date, its conceptual evolution and its treatment in the scientific literature have not been systematically characterized from a bibliometric approach. This study performs an exhaustive analysis of the scientific production on the balance between exploration and exploitation using records extracted from the Web of Science (WoS) database. The processing and analysis of the data were carried out through the combined use of Bibliometrix (R package) and VOSviewer, tools that made it possible to quantify productivity, map collaborative networks, and visualize emerging thematic trends. The results show a sustained growth in the volume of publications over the last decade, as well as the consolidation of academic collaboration networks and the emergence of new thematic lines in the field. In particular, metaheuristic algorithms have demonstrated a significant and growing impact, constituting a fundamental pillar in the advancement and methodological diversification of the exploration–exploitation balance. This work provides a quantitative framework and a structured view of the evolution of research, identifies the main actors and trends, and raises opportunities for future lines of research in the field of optimization using metaheuristics, the most prominent instantiation of bio-inspired optimization algorithms. Full article
(This article belongs to the Special Issue Nature-Inspired Metaheuristic Optimization Algorithms 2025)
Show Figures

Figure 1

21 pages, 559 KiB  
Review
Interest Flooding Attacks in Named Data Networking and Mitigations: Recent Advances and Challenges
by Simeon Ogunbunmi, Yu Chen, Qi Zhao, Deeraj Nagothu, Sixiao Wei, Genshe Chen and Erik Blasch
Future Internet 2025, 17(8), 357; https://doi.org/10.3390/fi17080357 - 6 Aug 2025
Abstract
Named Data Networking (NDN) represents a promising Information-Centric Networking architecture that addresses limitations of traditional host-centric Internet protocols by emphasizing content names rather than host addresses for communication. While NDN offers advantages in content distribution, mobility support, and built-in security features, its stateful [...] Read more.
Named Data Networking (NDN) represents a promising Information-Centric Networking architecture that addresses limitations of traditional host-centric Internet protocols by emphasizing content names rather than host addresses for communication. While NDN offers advantages in content distribution, mobility support, and built-in security features, its stateful forwarding plane introduces significant vulnerabilities, particularly Interest Flooding Attacks (IFAs). These IFA attacks exploit the Pending Interest Table (PIT) by injecting malicious interest packets for non-existent or unsatisfiable content, leading to resource exhaustion and denial-of-service attacks against legitimate users. This survey examines research advances in IFA detection and mitigation from 2013 to 2024, analyzing seven relevant published detection and mitigation strategies to provide current insights into this evolving security challenge. We establish a taxonomy of attack variants, including Fake Interest, Unsatisfiable Interest, Interest Loop, and Collusive models, while examining their operational characteristics and network performance impacts. Our analysis categorizes defense mechanisms into five primary approaches: rate-limiting strategies, PIT management techniques, machine learning and artificial intelligence methods, reputation-based systems, and blockchain-enabled solutions. These approaches are evaluated for their effectiveness, computational requirements, and deployment feasibility. The survey extends to domain-specific implementations in resource-constrained environments, examining adaptations for Internet of Things deployments, wireless sensor networks, and high-mobility vehicular scenarios. Five critical research directions are proposed: adaptive defense mechanisms against sophisticated attackers, privacy-preserving detection techniques, real-time optimization for edge computing environments, standardized evaluation frameworks, and hybrid approaches combining multiple mitigation strategies. Full article
Show Figures

Figure 1

23 pages, 4591 KiB  
Article
Minimization of Resource Consumption with URLLC Constraints for Relay-Assisted IIoT
by Yujie Zhao, Tao Peng, Yichen Guo, Yijing Niu and Wenbo Wang
Sensors 2025, 25(15), 4846; https://doi.org/10.3390/s25154846 - 6 Aug 2025
Abstract
In relay-assisted Industrial Internet of Things (IIoT) systems with ultra-reliable low-latency communication (uRLLC) requirements, finite blocklength coding imposes stringent resource constraints. In this work, the packet error probability (PEP) and blocklength allocation across two-hop links are jointly optimized to minimize total blocklength (resource [...] Read more.
In relay-assisted Industrial Internet of Things (IIoT) systems with ultra-reliable low-latency communication (uRLLC) requirements, finite blocklength coding imposes stringent resource constraints. In this work, the packet error probability (PEP) and blocklength allocation across two-hop links are jointly optimized to minimize total blocklength (resource consumption) while satisfying reliability, latency, and throughput requirements. The original multi-variable problem is decomposed into two tractable subproblems. In the first subproblem, for a fixed total blocklength, the achievable rate is maximized. A near-optimal PEP is first derived via theoretical analysis. Subsequently, theoretical analysis proves that blocklength must be optimized to equalize the achievable rates between the two hops to maximize system performance. Consequently, the closed-form solution to optimal blocklength allocation is derived. In the second subproblem, the total blocklength is minimized via a bisection search method. Simulation results show that by adopting near-optimal PEPs, our approach reduces computation time by two orders of magnitude while limiting the achievable rate loss to within 1% compared to the exhaustive search method. At peak rates, the hop with superior channel conditions requires fewer resources. Compared with three baseline algorithms, the proposed algorithm achieves average resource savings of 21.40%, 14.03%, and 17.18%, respectively. Full article
33 pages, 7351 KiB  
Article
Constructal Design and Numerical Simulation Applied to Geometric Evaluation of Stiffened Steel Plates Subjected to Elasto-Plastic Buckling Under Biaxial Compressive Loading
by Andrei Ferreira Lançanova, Raí Lima Vieira, Elizaldo Domingues dos Santos, Luiz Alberto Oliveira Rocha, Thiago da Silveira, João Paulo Silva Lima, Emanuel da Silva Diaz Estrada and Liércio André Isoldi
Metals 2025, 15(8), 879; https://doi.org/10.3390/met15080879 (registering DOI) - 6 Aug 2025
Abstract
Widely employed in diverse engineering applications, stiffened steel plates are often subjected to biaxial compressive loads. Under these conditions, buckling may occur, initially within the elastic range but potentially progressing into the elasto-plastic domain, which can lead to permanent deformations or structural collapse. [...] Read more.
Widely employed in diverse engineering applications, stiffened steel plates are often subjected to biaxial compressive loads. Under these conditions, buckling may occur, initially within the elastic range but potentially progressing into the elasto-plastic domain, which can lead to permanent deformations or structural collapse. To increase the ultimate buckling stress of plates, the implementation of longitudinal and transverse stiffeners is effective; however, this complexity makes analytical stress calculations challenging. As a result, numerical methods like the Finite Element Method (FEM) are attractive alternatives. In this study, the Constructal Design method and the Exhaustive Search technique were employed and associated with the FEM to optimize the geometric configuration of stiffened plates. A steel plate without stiffeners was considered, and 30% of its volume was redistributed into stiffeners, creating multiple configuration scenarios. The objective was to investigate how different arrangements and geometries of stiffeners affect the ultimate buckling stress under biaxial compressive loading. Among the configurations evaluated, the optimal design featured four longitudinal and two transverse stiffeners, with a height-to-thickness ratio of 4.80. This configuration significantly improved the performance, achieving an ultimate buckling stress 472% higher than the unstiffened reference plate. In contrast, the worst stiffened configuration led to a 57% reduction in performance, showing that not all stiffening strategies are beneficial. These results demonstrate that geometric optimization of stiffeners can significantly enhance the structural performance of steel plates under biaxial compression, even without increasing material usage. The approach also revealed that intermediate slenderness values lead to better stress distribution and delayed local buckling. Therefore, the methodology adopted in this work provides a practical and effective tool for the design of more efficient stiffened plates. Full article
Show Figures

Figure 1

22 pages, 1187 KiB  
Article
Linking Leadership and Retention: Emotional Exhaustion and Creativity as Mechanisms in the Information Technology Sector
by Amra Džambić, Nereida Hadziahmetovic, Navya Gubbi Sateeshchandra, Kaddour Chelabi and Anastasios Fountis
Adm. Sci. 2025, 15(8), 309; https://doi.org/10.3390/admsci15080309 - 6 Aug 2025
Abstract
Employee turnover remains a critical challenge for organizations, prompting an examination of how leadership approaches influence employees’ intentions to leave. This study investigates the impact of transformational leadership on turnover intention, focusing on emotional exhaustion and creativity as potential mediators. The study employs [...] Read more.
Employee turnover remains a critical challenge for organizations, prompting an examination of how leadership approaches influence employees’ intentions to leave. This study investigates the impact of transformational leadership on turnover intention, focusing on emotional exhaustion and creativity as potential mediators. The study employs a quantitative design grounded in leadership and organizational psychology theory and surveys 182 professionals working in the information technology sector across Bosnia and Herzegovina, Croatia, Serbia, and Montenegro. Structural equation modeling reveals that transformational leadership reduces turnover intention by alleviating emotional exhaustion, highlighting the importance of psychological well-being in employee retention. While transformational leadership enhances employee creativity, creativity did not significantly mediate turnover intention in this context. These findings suggest that strategies that foster engagement and reduce burnout in knowledge-intensive industries can strengthen organizational commitment and improve retention. This study contributes to the understanding of behavioral mechanisms linking leadership to employee outcomes and offers actionable insights for modern organizations aiming to address turnover through supportive, empowering leadership practices. Additional mediators and contextual variables should be explored in further research. Full article
(This article belongs to the Section Leadership)
Show Figures

Graphical abstract

18 pages, 1528 KiB  
Review
Sex Differences in Colorectal Cancer: Epidemiology, Risk Factors, and Clinical Outcomes
by Sophia Tsokkou, Ioannis Konstantinidis, Menelaos Papakonstantinou, Paraskevi Chatzikomnitsa, Eftychia Liampou, Evdokia Toutziari, Dimitrios Giakoustidis, Petros Bangeas, Vasileios Papadopoulos and Alexandros Giakoustidis
J. Clin. Med. 2025, 14(15), 5539; https://doi.org/10.3390/jcm14155539 - 6 Aug 2025
Abstract
Colorectal cancer (CRC) constitutes a major global health concern, ranking as the third most common cancer and the second leading cause of cancer-related mortality. The current review explores sex-based differences in CRC epidemiology, risk factors, tumor biology, and clinical outcomes. Males exhibit a [...] Read more.
Colorectal cancer (CRC) constitutes a major global health concern, ranking as the third most common cancer and the second leading cause of cancer-related mortality. The current review explores sex-based differences in CRC epidemiology, risk factors, tumor biology, and clinical outcomes. Males exhibit a higher incidence and mortality rate, with left-sided (distal) CRC predominating, while females are more frequently diagnosed with right-sided (proximal) tumors, which tend to be more aggressive and less responsive to conventional chemotherapy. Genetic disparities, including microsatellite instability and X-chromosome tumor suppressor genes, contribute to sex-specific differences in tumor progression and treatment response. Immune variations also influence disease outcomes, with females exhibiting stronger immune surveillance but higher exhaustion markers. Lifestyle factors such as body mass index (BMI), smoking, and hormonal influences further modulate CRC risk. While males are more vulnerable to obesity-related CRC, central obesity (waist-to-hip ratio) emerges as a stronger predictor in females. Additionally, smoking increases CRC risk differentially by tumor location. These findings underscore the importance of sex-specific approaches in CRC prevention, screening, and treatment, advocating for personalized medicine strategies tailored to gender-based biological and clinical distinctions. Full article
(This article belongs to the Special Issue Gastrointestinal Cancer: Outcomes and Therapeutic Management)
Show Figures

Figure 1

18 pages, 2672 KiB  
Article
Development Process of TGDI SI Engine Combustion Simulation Model Using Ethanol–Gasoline Blends as Fuel
by Bence Zsoldos, András L. Nagy and Máté Zöldy
Appl. Sci. 2025, 15(15), 8677; https://doi.org/10.3390/app15158677 (registering DOI) - 5 Aug 2025
Abstract
The Fit for 55 package introduced by the European Union aims to achieve a 55% reduction in greenhouse gas emissions by 2030. In parallel, increasingly stringent exhaust gas regulations have intensified research into alternative fuels. Ethanol presents a promising option due to its [...] Read more.
The Fit for 55 package introduced by the European Union aims to achieve a 55% reduction in greenhouse gas emissions by 2030. In parallel, increasingly stringent exhaust gas regulations have intensified research into alternative fuels. Ethanol presents a promising option due to its compatibility with gasoline, higher octane rating, and lower exhaust emissions compared to conventional gasoline. Additionally, ethanol can be derived from agricultural waste, further enhancing its sustainability. This study examines the impact of two ethanol–gasoline blends (E10, E20) on emissions and performance in a turbocharged gasoline direct injection (TGDI) spark-ignition (SI) engine. The investigation is conducted using three-dimensional computational fluid dynamics (3D CFD) simulations to minimize development time and costs. This paper details the model development process and presents the initial results. The boundary conditions for the simulations are derived from one-dimensional (1D) simulations, which have been validated against experimental data. Subsequently, the simulated performance and emissions results are compared with experimental measurements. The E10 simulations correlated well with experimental measurements, with the largest deviation in cylinder pressure being an RMSE of 1.42. In terms of emissions, HC was underpredicted, while CO was overpredicted compared to the experimental data. For E20, the IMEP was slightly higher at some operating points; however, the deviations were negligible. Regarding emissions, HC and CO emissions were higher with E20, whereas NOx and CO2 emissions were lower. Full article
(This article belongs to the Special Issue Sustainable Mobility and Transportation (SMTS 2025))
Show Figures

Figure 1

28 pages, 1145 KiB  
Article
Uncovering Hidden Risks: Non-Targeted Screening and Health Risk Assessment of Aromatic Compounds in Summer Metro Carriages
by Han Wang, Guangming Li, Cuifen Dong, Youyan Chi, Kwok Wai Tham, Mengsi Deng and Chunhui Li
Buildings 2025, 15(15), 2761; https://doi.org/10.3390/buildings15152761 - 5 Aug 2025
Abstract
Metro carriages, as enclosed transport microenvironments, have been understudied regarding pollution characteristics and health risks from ACs, especially during high-temperature summers that amplify exposure. This study applied NTS techniques for the first time across three major Chengdu metro lines, systematically identifying sixteen ACs, [...] Read more.
Metro carriages, as enclosed transport microenvironments, have been understudied regarding pollution characteristics and health risks from ACs, especially during high-temperature summers that amplify exposure. This study applied NTS techniques for the first time across three major Chengdu metro lines, systematically identifying sixteen ACs, including hazardous species such as acetophenone, benzonitrile, and benzoic acid that are often overlooked in conventional BTEX-focused monitoring. The TAC concentration reached 41.40 ± 5.20 µg/m3, with half of the compounds exhibiting significant increases during peak commuting periods. Source apportionment using diagnostic ratios and PMF identified five major contributors: carriage material emissions (36.62%), human sources (22.50%), traffic exhaust infiltration (16.67%), organic solvents (16.55%), and industrial emissions (7.66%). Although both non-cancer (HI) and cancer (TCR) risks for all population groups were below international thresholds, summer tourists experienced higher exposure than daily commuters. Notably, child tourists showed the greatest vulnerability, with a TCR of 5.83 × 10−7, far exceeding that of commuting children (1.88 × 10−7). Benzene was the dominant contributor, accounting for over 50% of HI and 70% of TCR. This study presents the first integrated NTS and quantitative risk assessment to characterise ACs in summer metro environments, revealing a broader range of hazardous compounds beyond BTEX. It quantifies population-specific risks, highlights children’s heightened vulnerability. The findings fill critical gaps in ACs exposure and provide a scientific basis for improved air quality management and pollution mitigation strategies in urban rail transit systems. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

17 pages, 1707 KiB  
Article
Influence of Work Environment Factors on Burnout Syndrome Among Freelancers
by Youri Ianakiev and Teodora Medneva
Psychiatry Int. 2025, 6(3), 95; https://doi.org/10.3390/psychiatryint6030095 (registering DOI) - 5 Aug 2025
Viewed by 124
Abstract
The problem associated with the manifestation of burnout syndrome is the subject of ongoing interest. In recent years, occupational burnout has been actively studied among professionals in the helping professions (teachers, physicians, social workers, psychologists, prison officers, etc.). However, the phenomenon has been [...] Read more.
The problem associated with the manifestation of burnout syndrome is the subject of ongoing interest. In recent years, occupational burnout has been actively studied among professionals in the helping professions (teachers, physicians, social workers, psychologists, prison officers, etc.). However, the phenomenon has been poorly studied among freelancers. Therefore, the aim of this study is to fill this gap by determining the level of burnout syndrome among Bulgarian freelancers and investigate the influence of some work environment factors on professional burnout in the sample. A survey of 1138 freelancers was carried out using the Burnout Self-Assessment Questionnaire developed by Maslach and a questionnaire developed in-house to explore the factors of the occupational environment and ask questions related to socio-demographic factors. Hypotheses are tested using correlation analysis and structural equation modelling. The study reveals high levels of emotional exhaustion (40.91%, n = 484). High values on the scale of depersonalization were reported for 26,3% of the respondents (n = 311). Only 3.1% of the respondents (n = 37) had high values on the reduced personal accomplishment scale. The high levels of burnout among freelancers could be influenced by the specific characteristics of their work environment and the nature of their tasks. Full article
Show Figures

Figure 1

23 pages, 5135 KiB  
Article
Strategic Multi-Stage Optimization for Asset Investment in Electricity Distribution Networks Under Load Forecasting Uncertainties
by Clainer Bravin Donadel
Eng 2025, 6(8), 186; https://doi.org/10.3390/eng6080186 - 5 Aug 2025
Viewed by 79
Abstract
Electricity distribution systems face increasing challenges due to demand growth, regulatory requirements, and the integration of distributed generation. In this context, distribution companies must make strategic and well-supported investment decisions, particularly in asset reinforcement actions such as reconductoring. This paper presents a multi-stage [...] Read more.
Electricity distribution systems face increasing challenges due to demand growth, regulatory requirements, and the integration of distributed generation. In this context, distribution companies must make strategic and well-supported investment decisions, particularly in asset reinforcement actions such as reconductoring. This paper presents a multi-stage methodology to optimize reconductoring investments under load forecasting uncertainties. The approach combines a decomposition strategy with Monte Carlo simulation to capture demand variability. By discretizing a lognormal probability density function and selecting the largest loads in the network, the methodology balances computational feasibility with modeling accuracy. The optimization model employs exhaustive search techniques independently for each network branch, ensuring precise and consistent investment decisions. Tests conducted on the IEEE 123-bus feeder consider both operational and regulatory constraints from the Brazilian context. Results show that uncertainty-aware planning leads to a narrow investment range—between USD 55,108 and USD 66,504—highlighting the necessity of reconductoring regardless of demand scenarios. A comparative analysis of representative cases reveals consistent interventions, changes in conductor selection, and schedule adjustments based on load conditions. The proposed methodology enables flexible, cost-effective, and regulation-compliant investment planning, offering valuable insights for utilities seeking to enhance network reliability and performance while managing demand uncertainties. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

16 pages, 506 KiB  
Article
The Transition to Caregiver in Advanced Alzheimer’s Disease: From Emotional Connection to Care Responsibility—A Grounded Theory Approach
by Federica Dellafiore, Orejeta Diamanti, Luca Guardamagna, Gloria Modena, Pierpaolo Servi, Donato Antonio Rotondo, Tiziana Nania, Andreina Saba and Giovanna Artioli
Nurs. Rep. 2025, 15(8), 284; https://doi.org/10.3390/nursrep15080284 - 4 Aug 2025
Viewed by 185
Abstract
Background: The progression of Alzheimer’s Disease (AD) deeply affects not only the diagnosed person but also their close relatives, who are often called to take on the role of informal caregivers. This transition is frequently unplanned and emotionally complex, yet poorly understood in [...] Read more.
Background: The progression of Alzheimer’s Disease (AD) deeply affects not only the diagnosed person but also their close relatives, who are often called to take on the role of informal caregivers. This transition is frequently unplanned and emotionally complex, yet poorly understood in its deeper processual dimensions. This study aims to explore and theorize the transition experienced by a family member becoming the primary informal caregiver for a person with advanced AD. Methods: A qualitative study based on the Constructivist Grounded Theory according to Charmaz’s approach (2006) was conducted. In-depth interviews were carried out with 10 participants who had become informal caregivers for a loved one with advanced AD. Data were analyzed using initial coding, focused coding, the constant comparative method, and theoretical coding. Results: Ten caregivers (mean age 39 years, range 35–54; nine females) of patients with advanced AD participated in the study. The analysis revealed a complex, emotionally intense caregiving experience marked by sacrifice, feelings of powerlessness, identity loss, and the necessity of sharing caregiving responsibilities. A core category emerged: A Silent and Certain Willingness to Care, representing the caregivers’ deep, often unconscious commitment to prioritize the care of their loved ones above their own needs. Four interconnected phases characterized the caregiving process: (1) The Changing Daily Life—involving significant sacrifices in personal and social life; (2) Feeling Powerless—confronting the inevitable decline without means to alter the course; (3) Losing Oneself—experiencing physical and psychological exhaustion and a sense of identity loss; and (4) Sharing with Others—seeking external support to sustain caregiving. These findings highlight the evolving nature of becoming a caregiver and the enduring dedication that sustains this role despite the challenges. Conclusions: The progression of AD deeply transforms the lives of caregivers, who become co-sufferers and active participants in the disease’s management. The results underscore the urgency of designing integrative care strategies—including psychological, social, and potentially technological support—that can enhance both patient outcomes and caregiver resilience. Grounded in real-world experiences, this study contributes to the broader neurodegeneration discourse by emphasizing caregiving as a critical factor in long-term disease management and therapeutic success. Full article
Show Figures

Figure 1

14 pages, 1959 KiB  
Article
Influence of Molecular Weight of Anthraquinone Acid Dyes on Color Strength, Migration, and UV Protection of Polyamide 6 Fabrics
by Nawshin Farzana, Abu Naser Md Ahsanul Haque, Shamima Akter Smriti, Abu Sadat Muhammad Sayem, Fahmida Siddiqa, Md Azharul Islam, Md Nasim and S M Kamrul Hasan
Physchem 2025, 5(3), 31; https://doi.org/10.3390/physchem5030031 - 4 Aug 2025
Viewed by 139
Abstract
Anthraquinone acid dyes are widely used in dyeing polyamide due to their good exhaustion and brightness. While ionic interactions primarily govern dye–fiber bonding, the molecular weight (Mw) of these dyes can significantly influence migration, apparent color strength, and fastness behavior. This study offers [...] Read more.
Anthraquinone acid dyes are widely used in dyeing polyamide due to their good exhaustion and brightness. While ionic interactions primarily govern dye–fiber bonding, the molecular weight (Mw) of these dyes can significantly influence migration, apparent color strength, and fastness behavior. This study offers comparative insight into how the Mw of structurally similar anthraquinone acid dyes impacts their diffusion, fixation, and functional outcomes (e.g., UV protection) on polyamide 6 fabric, using Acid Blue 260 (Mw~564) and Acid Blue 127:1 (Mw~845) as representative low- and high-Mw dyes. The effects of dye concentration, pH, and temperature on color strength (K/S) were evaluated, migration index and zeta potential were measured, and UV protection factor (UPF) and FTIR analyses were used to assess fabric functionality. Results showed that the lower-Mw dye exhibited higher migration tendency, particularly at increased dye concentrations, while the higher-Mw dye demonstrated greater color strength and superior wash fastness. Additionally, improved UPF ratings were associated with higher-Mw dye due to enhanced light absorption. These findings offer practical insights for optimizing acid dye selection in polyamide coloration to balance color performance and functional attributes. Full article
(This article belongs to the Section Surface Science)
Show Figures

Figure 1

16 pages, 2235 KiB  
Article
Plasma Lysophosphatidylcholine Levels Correlate with Prognosis and Immunotherapy Response in Squamous Cell Carcinoma
by Tomoyuki Iwasaki, Hidekazu Shirota, Eiji Hishinuma, Shinpei Kawaoka, Naomi Matsukawa, Yuki Kasahara, Kota Ouchi, Hiroo Imai, Ken Saijo, Keigo Komine, Masanobu Takahashi, Chikashi Ishioka, Seizo Koshiba and Hisato Kawakami
Int. J. Mol. Sci. 2025, 26(15), 7528; https://doi.org/10.3390/ijms26157528 - 4 Aug 2025
Viewed by 253
Abstract
Cancer is a systemic disease rather than a localized pathology and is characterized by widespread effects, including whole-body exhaustion and chronic inflammation. A thorough understanding of cancer pathophysiology requires a systemic approach that accounts for the complex interactions between cancer cells and host [...] Read more.
Cancer is a systemic disease rather than a localized pathology and is characterized by widespread effects, including whole-body exhaustion and chronic inflammation. A thorough understanding of cancer pathophysiology requires a systemic approach that accounts for the complex interactions between cancer cells and host tissues. To explore these dynamics, we employed a comprehensive metabolomic analysis of plasma samples from patients with either esophageal or head and neck squamous cell carcinoma (SCC). Plasma samples from 149 patients were metabolically profiled and correlated with clinical data. Among the metabolites identified, lysophosphatidylcholine (LPC) emerged as the sole biomarker strongly correlated with prognosis. A significant reduction in plasma LPC levels was linked to poorer overall survival. Plasma LPC levels demonstrated minimal correlation with patient-specific factors, such as tumor size and general condition, but showed significant association with the response to immune checkpoint inhibitor therapy. Proteomic and cytokine analyses revealed that low plasma LPC levels reflected systemic chronic inflammation, characterized by high levels of inflammatory proteins, the cytokines interleukin-6 and tumor necrosis factor-α, and coagulation-related proteins. These findings indicate that plasma LPC levels may be used as reliable biomarkers for predicting prognosis and evaluating the efficacy of immunotherapy in patients with SCC. Full article
(This article belongs to the Special Issue Molecular Diagnostics and Genomics of Tumors)
Show Figures

Figure 1

Back to TopTop