Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (79)

Search Parameters:
Keywords = exhaust air recovery systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4419 KB  
Article
Turbocharging Matching Investigation for High-Altitude Power Recovery in Aviation Hydrogen Internal Combustion Engines
by Weicheng Wang and Yu Yan
Fire 2026, 9(2), 51; https://doi.org/10.3390/fire9020051 - 23 Jan 2026
Viewed by 240
Abstract
Aviation hydrogen internal combustion engines represent a critical pathway for rapid decarbonization due to their reliability and compatibility with existing aircraft platforms. However, the significant reduction in air density at high altitudes causes severe power degradation in naturally aspirated port-fuel-injected hydrogen internal combustion [...] Read more.
Aviation hydrogen internal combustion engines represent a critical pathway for rapid decarbonization due to their reliability and compatibility with existing aircraft platforms. However, the significant reduction in air density at high altitudes causes severe power degradation in naturally aspirated port-fuel-injected hydrogen internal combustion engines, making turbocharging essential for maintaining propulsion capability. This study utilizes a combined experimental and simulation framework to investigate turbocharger matching for power recovery in a 1.4 L hydrogen engine. A simulation model was constructed and validated against experimental data within a 5% error margin to ensure technical accuracy. Theoretical compressor and turbine operating parameters were derived for altitudes ranging from 4 to 8 km, comparing two boost-pressure control strategies: variable geometry turbine and waste-gate turbine. The results demonstrate that both boosting strategies successfully restore sea-level power at altitudes up to 8 km, increasing high-altitude power output by approximately four-fold to five-fold compared to naturally aspirated conditions. Specifically, the variable of geometry turbine demonstrates superior overall performance, maintaining normalized turbine efficiencies between 78.4% and 96.3% while achieving lower pumping losses and improved brake thermal efficiency. These advantages arise from the variable geometry turbine’s ability to optimize exhaust-energy utilization across varying altitudes. This study establishes a quantitative methodology for turbocharger matching, providing essential guidance for developing efficient, high-altitude hydrogen propulsion systems. Full article
Show Figures

Figure 1

45 pages, 9477 KB  
Review
Decarbonization Pathways in Underground Mining in Cold and Arctic Climates: A Review of Heat Recovery Systems with Case Studies in Canada
by Hosein Kalantari and Seyed Ali Ghoreishi-Madiseh
Energies 2026, 19(1), 22; https://doi.org/10.3390/en19010022 - 19 Dec 2025
Viewed by 351
Abstract
In cold climates, mine air conditioning systems are essential for preventing liners and shaft components from freezing. Traditionally, fossil fuel burners are used to heat intake air, resulting in high energy consumption and significant greenhouse gas emissions. As part of efforts to reduce [...] Read more.
In cold climates, mine air conditioning systems are essential for preventing liners and shaft components from freezing. Traditionally, fossil fuel burners are used to heat intake air, resulting in high energy consumption and significant greenhouse gas emissions. As part of efforts to reduce both environmental impacts and energy use, mining companies are increasingly adopting innovative solutions, such as heat recovery systems. These systems offer a promising approach to significantly reduce energy demand for underground mine heating. This study evaluates several heat recovery technologies including exhaust air, water, hybrid exhaust air–water, diesel exhaust, jacket water, and hybrid diesel exhaust–jacket-water systems, through numerical modeling. Two case studies are presented: a grid-connected mine in British Columbia with moderately cold conditions, and an off-grid mine in the Northwest Territories, which experiences Arctic climate extremes. Results show that heat recovery can reduce heating costs by up to 89% in British Columbia and as much as 90% in the Northwest Territories, depending on the system applied. The findings also demonstrate substantial associated carbon emission reductions. Furthermore, a comprehensive feasibility analysis was carried out to evaluate the thermodynamic performance, financial savings, and carbon emission reductions of these systems across various mining operations, offering a preliminary assessment of their potential for mining settings. Full article
(This article belongs to the Special Issue Numerical Study of Waste and Exhaust Heat Recovery)
Show Figures

Figure 1

26 pages, 1401 KB  
Article
Thermodynamic, Economic, and Environmental Analysis and Optimization of a Multi-Heat-Source Organic Rankine Cycle for Large Marine Diesel Engine
by Youyi Li and Jinao Shen
Processes 2025, 13(11), 3651; https://doi.org/10.3390/pr13113651 - 11 Nov 2025
Viewed by 832
Abstract
The Organic Rankine Cycle (ORC)-based waste-heat recovery system represents an important technological pathway toward decarbonization in the maritime industry. This study focuses on the design and optimization of a multi-heat-source Organic Rankine Cycle (MHSORC) power generation system specifically developed for large marine diesel [...] Read more.
The Organic Rankine Cycle (ORC)-based waste-heat recovery system represents an important technological pathway toward decarbonization in the maritime industry. This study focuses on the design and optimization of a multi-heat-source Organic Rankine Cycle (MHSORC) power generation system specifically developed for large marine diesel engines, which simultaneously utilizes exhaust gas, cylinder jacket water, and scavenging air as heat sources. Unified thermodynamic, economic, and environmental models are constructed to evaluate the coupled performance of the system.Eight low GWP working fluids are assessed, and a multi-objective optimization is performed to balance efficiency, cost, and environmental impact. The optimal design point is subsequently identified using a decision-making algorithm. The results indicate that, for the MHSORC, higher evaporating temperatures and lower condensing temperatures improve system performance, and the heat-source temperature exerts a direct and substantial influence on that performance. Among the candidate fluids, R601 exhibits the best overall performance, whereas R1234ze performs the worst. With R601 as the working fluid, the MHSORC achieves an exergy efficiency of 41.69%, a LCOE of 0.0495 $/kWh, and greenhouse gas emissions of 0.8019 kt of CO2,eq. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

33 pages, 30964 KB  
Article
Experimental Assessment of a Passive Waste Heat Recovery System Using Thermosyphons and Thermoelectric Generators for Integration into District Heating Applications
by Luis V. G. Fachini, Pedro Leineker Ochoski Machado, Kamal A. R. Ismail, Felipe M. Biglia, Aleffe J. C. Vaz, Romeu M. Szmoski and Thiago Antonini Alves
Energies 2025, 18(19), 5090; https://doi.org/10.3390/en18195090 - 25 Sep 2025
Viewed by 1080
Abstract
The efficient recovery of waste heat is essential for improving sustainability in industrial and urban energy systems. This study presents the experimental evaluation of a passive heat recovery unit composed of finned thermosyphons and Bismuth Telluride (Bi2Te3) thermoelectric generators [...] Read more.
The efficient recovery of waste heat is essential for improving sustainability in industrial and urban energy systems. This study presents the experimental evaluation of a passive heat recovery unit composed of finned thermosyphons and Bismuth Telluride (Bi2Te3) thermoelectric generators (TEGs). The primary objective was to characterize its simultaneous thermal recovery and electrical generation capabilities under airflow and temperature conditions simulating low-grade industrial exhaust streams. The system was tested in an open-loop wind tunnel simulating exhaust gases under air velocities of 0.6, 1.1, and 1.7 m/s. Heat was transferred to the TEGs through finned thermosyphons, enabling power generation via the Seebeck effect. The passive heat exchange mechanism successfully recovered up to 250.9 W of thermal power, preheating the inlet air by a maximum of 9.5 °C with a peak thermal effectiveness of 44.4%. Simultaneously, the system achieved a maximum temperature difference of 30.0 °C across the thermoelectric modules, generating a total electrical power of 163.7 mW (81.8 mW per TEG). This dual-purpose operation resulted in a maximum overall first-law efficiency of 9.38% and an electrical power density of 52.20 W/m2 from the low-grade thermal stream. These results confirm the technical feasibility of this compact, passive, and maintenance-free design, highlighting its potential for integration into applications like district heating or industrial ventilation, where balancing thermal and electrical outputs is crucial. Full article
Show Figures

Figure 1

23 pages, 3138 KB  
Article
Design of Organic Rankine Cycle Recovering Multi-Grade Waste Heat from a Two-Stroke Marine Engine
by Jinfeng Feng, Yuncheng Gu, Shengjun Han, Xunhu Zhao, Yujun Tang, Sipeng Zhu, Hao Yuan and Guihua Wang
J. Mar. Sci. Eng. 2025, 13(9), 1679; https://doi.org/10.3390/jmse13091679 - 1 Sep 2025
Cited by 1 | Viewed by 2326
Abstract
Waste heat recovery using Organic Rankine Cycle (ORC) systems shows significant potential for reducing CO2 emissions from ships. This study designs and analyzes ORC systems for recovering multi-grade waste heat from the exhaust gas, jacket water, and scavenging air of a marine [...] Read more.
Waste heat recovery using Organic Rankine Cycle (ORC) systems shows significant potential for reducing CO2 emissions from ships. This study designs and analyzes ORC systems for recovering multi-grade waste heat from the exhaust gas, jacket water, and scavenging air of a marine two-stroke diesel engine. A thermodynamic model is developed to investigate the effects of working fluid preheating temperature, evaporation pressure, and heat source conditions on system performance. Results show that appropriately increasing the preheating temperature of the working fluid can enhance power output. For hydrocarbons with higher critical temperatures, power output exhibits an extremum as preheating temperature increases, while for fluids with lower critical temperatures, power output increases continuously until the evaporation pressure limit is reached. Increasing evaporation pressure decreases power output but improves thermal efficiency, with a corresponding increase in heat transfer and exergy loss rates in the exhaust gas preheater. Additionally, the temperature of the heat source has an important effect on the energy and exergy balance distribution and power output of the ORC. For every 10 K rise in exhaust temperature, the bottoming cycle power output of cyclohexane increases by approximately 12.3%. This study provides theoretical support for efficient marine waste heat recovery and working fluid selection. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

15 pages, 1229 KB  
Article
Effect of Gas Holdup on the Performance of Column Flotation of a Low-Grade Apatite Ore
by Larissa R. Demuner, Angelica S. Reis and Marcos A. S. Barrozo
Minerals 2025, 15(9), 901; https://doi.org/10.3390/min15090901 - 25 Aug 2025
Viewed by 854
Abstract
As a consequence of the gradual exhaustion of apatite ore reserves, intensive comminution has been implemented in mineral processing operations to enhance phosphorus liberation. Consequently, improving the flotation efficiency of fine particles has remained a persistent challenge within the phosphate industry. The performance [...] Read more.
As a consequence of the gradual exhaustion of apatite ore reserves, intensive comminution has been implemented in mineral processing operations to enhance phosphorus liberation. Consequently, improving the flotation efficiency of fine particles has remained a persistent challenge within the phosphate industry. The performance of flotation columns is strongly affected by the interaction between gas (bubble) and particle. The present research was designed to evaluate how certain process variables and chemical dosages influence gas holdup and its correlation with the column flotation performance of fine particles derived from a low-grade apatite ore. Column flotation experiments were conducted employing a factorial experimental approach to evaluate the effects of air flow rate, surfactant concentration, collector dosage, and depressant dosage on gas holdup, P2O5 grade, and recovery. The results made it possible to identify the levels of gas holdup that lead to appropriate values of P2O5 grade and recovery simultaneously, and their relation with the operating variables and reagent dosage. Gas holdup values higher than 23.5% led to the desired values of P2O5 grade (>30%) and recovery (>60%) simultaneously. Statistical models were developed with high correlation coefficients (R2 > 0.98) to predict P2O5 grade and recovery as functions of the operating variables. This research provides a comprehensive framework of the gas holdup effect on column flotation systems, offering significant potential for improving the economic viability of low-grade phosphate ore processing. Full article
(This article belongs to the Special Issue Surface Chemistry and Reagents in Flotation)
Show Figures

Figure 1

12 pages, 1565 KB  
Article
Impact of High-Efficiency Filter Pressure Drop on the Energy Performance of Residential Energy Recovery Ventilators
by Suh-hyun Kwon, Beungyong Park and Byoungchull Oh
Energies 2025, 18(16), 4326; https://doi.org/10.3390/en18164326 - 14 Aug 2025
Viewed by 2542
Abstract
As the importance of both indoor air quality (IAQ) and energy efficiency grows in residential buildings, the application of air filters in energy recovery ventilators has become essential. However, high-efficiency filters such as MERV 12 inevitably increase the pressure drop, adversely affecting the [...] Read more.
As the importance of both indoor air quality (IAQ) and energy efficiency grows in residential buildings, the application of air filters in energy recovery ventilators has become essential. However, high-efficiency filters such as MERV 12 inevitably increase the pressure drop, adversely affecting the airflow, fan energy use, and heat exchange balance. This study quantitatively investigates how different levels of filter resistance—from clean conditions to 200% dust loading—affect system airflow, static pressure, exhaust air transfer, and power consumption. A standardized dust loading procedure was adopted to simulate long-term use conditions. The results show a 37% reduction in net supply airflow under heavily clogged filters, while the unit exhaust air transfer ratio increased from 7.2% to 17.7%, exceeding compliance limits. Surprisingly, electrical energy consumption decreased as the fan load dropped with the airflow. Despite an increase in the apparent heat exchange efficiency, this gain was driven by return air recirculation rather than true thermal effectiveness. These findings highlight the need for filter performance-based ERV certification and operational strategies that balance IAQ, energy use, and system compliance. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

16 pages, 3079 KB  
Article
Optimized Solar-Powered Evaporative-Cooled UFAD System for Sustainable Thermal Comfort: A Case Study in Riyadh, KSA
by Mohamad Kanaan, Semaan Amine and Mohamed Hmadi
Thermo 2025, 5(3), 26; https://doi.org/10.3390/thermo5030026 - 30 Jul 2025
Cited by 1 | Viewed by 1564
Abstract
Evaporative cooling (EC) offers an energy-efficient alternative to direct expansion (DX) cooling but suffers from high water consumption. This limitation can be mitigated by pre-cooling incoming fresh air using cooler exhaust air via energy recovery. This study presents and optimizes a solar-driven EC [...] Read more.
Evaporative cooling (EC) offers an energy-efficient alternative to direct expansion (DX) cooling but suffers from high water consumption. This limitation can be mitigated by pre-cooling incoming fresh air using cooler exhaust air via energy recovery. This study presents and optimizes a solar-driven EC system integrated with underfloor air distribution (UFAD) to enhance thermal comfort and minimize water use in a temporary office in Riyadh’s arid climate. A 3D CFD model was developed and validated against published data to simulate indoor airflow, providing data for thermal comfort evaluation using the predicted mean vote model in cases with and without energy recovery. A year-round hourly energy analysis revealed that the solar-driven EC-UFAD system reduces grid power consumption by 93.5% compared to DX-based UFAD under identical conditions. Energy recovery further cuts annual EC water usage by up to 31.3%. Operational costs decreased by 84% without recovery and 87% with recovery versus DX-UFAD. Full article
Show Figures

Figure 1

37 pages, 1099 KB  
Review
Application Advances and Prospects of Ejector Technologies in the Field of Rail Transit Driven by Energy Conservation and Energy Transition
by Yiqiao Li, Hao Huang, Shengqiang Shen, Yali Guo, Yong Yang and Siyuan Liu
Energies 2025, 18(15), 3951; https://doi.org/10.3390/en18153951 - 24 Jul 2025
Cited by 1 | Viewed by 1751
Abstract
Rail transit as a high-energy consumption field urgently requires the adoption of clean energy innovations to reduce energy consumption and accelerate the transition to new energy applications. As an energy-saving fluid machinery, the ejector exhibits significant application potential and academic value within this [...] Read more.
Rail transit as a high-energy consumption field urgently requires the adoption of clean energy innovations to reduce energy consumption and accelerate the transition to new energy applications. As an energy-saving fluid machinery, the ejector exhibits significant application potential and academic value within this field. This paper reviewed the recent advances, technical challenges, research hotspots, and future development directions of ejector applications in rail transit, aiming to address gaps in existing reviews. (1) In waste heat recovery, exhaust heat is utilized for propulsion in vehicle ejector refrigeration air conditioning systems, resulting in energy consumption being reduced by 12~17%. (2) In vehicle pneumatic pressure reduction systems, the throttle valve is replaced with an ejector, leading to an output power increase of more than 13% and providing support for zero-emission new energy vehicle applications. (3) In hydrogen supply systems, hydrogen recirculation efficiency exceeding 68.5% is achieved in fuel cells using multi-nozzle ejector technology. (4) Ejector-based active flow control enables precise ± 20 N dynamic pantograph lift adjustment at 300 km/h. However, current research still faces challenges including the tendency toward subcritical mode in fixed geometry ejectors under variable operating conditions, scarcity of application data for global warming potential refrigerants, insufficient stability of hydrogen recycling under wide power output ranges, and thermodynamic irreversibility causing turbulence loss. To address these issues, future efforts should focus on developing dynamic intelligent control technology based on machine learning, designing adjustable nozzles and other structural innovations, optimizing multi-system efficiency through hybrid architectures, and investigating global warming potential refrigerants. These strategies will facilitate the evolution of ejector technology toward greater intelligence and efficiency, thereby supporting the green transformation and energy conservation objectives of rail transit. Full article
(This article belongs to the Special Issue Advanced Research on Heat Exchangers Networks and Heat Recovery)
Show Figures

Figure 1

22 pages, 5204 KB  
Article
Ventilation Strategies for Deep Energy Renovations of High-Rise Apartment Buildings: Energy Efficiency and Implementation Challenges
by Anti Hamburg, Ülar Palmiste, Alo Mikola and Targo Kalamees
Energies 2025, 18(11), 2785; https://doi.org/10.3390/en18112785 - 27 May 2025
Cited by 2 | Viewed by 3684
Abstract
Ensuring proper indoor air quality in high-rise apartment buildings is a crucial challenge, particularly when upgrading ventilation systems during deep energy renovation of existing buildings. This study evaluates the condition of existing ventilation systems and assesses the performance, cost, and energy efficiency of [...] Read more.
Ensuring proper indoor air quality in high-rise apartment buildings is a crucial challenge, particularly when upgrading ventilation systems during deep energy renovation of existing buildings. This study evaluates the condition of existing ventilation systems and assesses the performance, cost, and energy efficiency of different mechanical ventilation solutions with heat recovery, including centralized and decentralized balanced ventilation with heat recovery, single-room ventilation units, and mechanical extract ventilation with heat pump heat recovery or without heat recovery. An onsite survey revealed significant deficiencies in existing ventilation systems, such as airtight window installations without dedicated fresh air valves, misaligned and decayed exhaust shafts, and inadequate extract airflow in kitchens and bathrooms. SWOT analyses for each system highlighted their strengths, weaknesses, opportunities, and threats, providing valuable insights for decision-makers. The results indicate that while centralized and decentralized mechanical ventilation with heat recovery enhances energy efficiency and indoor air quality in high-rise multifamily apartment buildings, challenges such as high installation costs, maintenance complexity, and architectural constraints must be addressed. Heat recovery with exhaust air heat pumps is a viable alternative for high-rise apartment buildings when more efficient options are not feasible. Full article
(This article belongs to the Special Issue Recent Challenges in Buildings Ventilation and Indoor Air Quality)
Show Figures

Figure 1

26 pages, 3831 KB  
Article
Validation of a Heat Pump System Model for Energy Recycling in Grocery Stores Through On-Site Energy Monitoring
by Niklas Söderholm, Mikko Gröndahl, Tuomo Niemelä, Juha Jokisalo, Risto Kosonen and Long Ni
Energies 2025, 18(4), 1003; https://doi.org/10.3390/en18041003 - 19 Feb 2025
Cited by 2 | Viewed by 1649
Abstract
This paper presents a validated simulation model for heat pump-based energy recycling systems, with a focus on heat recovery applications in grocery stores. Heat is recovered through heat pumps from a subcritical CO2-based refrigeration system, with exhaust air heat recovery used [...] Read more.
This paper presents a validated simulation model for heat pump-based energy recycling systems, with a focus on heat recovery applications in grocery stores. Heat is recovered through heat pumps from a subcritical CO2-based refrigeration system, with exhaust air heat recovery used on demand according to the heating demand. The model is validated through a case study on a Finnish hypermarket-sized grocery store, where the heat pump system has been operational since 2020. Multi-objective energy optimization is used to validate the model by estimating critical decision variable values and providing error estimates compared to the measured data. The calibrated energy system model has a maximum mean bias error, MBE, of ±5% and a 10–15% coefficient of variation of root mean squared error, CV(RMSE), for the heat pump-related energy balance. Energy optimizations indicate that the control algorithm of the investigated heat pump system can be enhanced to reduce district heating consumption by 12%. The study emphasizes the need for numerous input parameters tailored to a system-specific layout to accurately reproduce the heat pump system’s control algorithm. Compared to a typical transcritical CO2 booster system with heat recovery, the novel heat recovery system shows superior heat recovery potential and a high total COP for both heating and cooling. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

21 pages, 5719 KB  
Article
Exergy Analysis of a Convective Heat Pump Dryer Integrated with a Membrane Energy Recovery Ventilator
by Anand Balaraman, Md Ashiqur Rahman, Davide Ziviani and David M. Warsinger
Entropy 2025, 27(2), 197; https://doi.org/10.3390/e27020197 - 13 Feb 2025
Cited by 2 | Viewed by 2953
Abstract
To increase energy efficiency, heat pump dryers and membrane dryers have been proposed to replace conventional fossil fuel dryers. Both conventional and heat pump dryers require substantial energy for condensing and reheating, while “active” membrane systems require vacuum pumps that are insufficiently developed. [...] Read more.
To increase energy efficiency, heat pump dryers and membrane dryers have been proposed to replace conventional fossil fuel dryers. Both conventional and heat pump dryers require substantial energy for condensing and reheating, while “active” membrane systems require vacuum pumps that are insufficiently developed. Lower temperature dehumidification systems make efficient use of membrane energy recovery ventilators (MERVs) that do not need vacuum pumps, but their high heat losses and lack of vapor selectivity have prevented their use in industrial drying. In this work, we propose an insulating membrane energy recovery ventilator for moisture removal from drying exhaust air, thereby reducing sensible heat loss from the dehumidification process and reheating energy. The second law analysis of the proposed system is carried out and compared with a baseline convective heat pump dryer. Irreversibilities in each component under different ambient temperatures (5–35 °C) and relative humidity (5–95%) are identified. At an ambient temperature of 35 °C, the proposed system substantially reduces sensible heat loss (47–60%) in the dehumidification process, resulting in a large reduction in condenser load (45–50%) compared to the baseline system. The evaporator in the proposed system accounts for up to 59% less irreversibility than the baseline system. A maximum of 24.5% reduction in overall exergy input is also observed. The highest exergy efficiency of 10.2% is obtained at an ambient condition of 35 °C and 5% relative humidity, which is more than twice the efficiency of the baseline system under the same operating condition. Full article
(This article belongs to the Special Issue Thermodynamic Optimization of Energy Systems)
Show Figures

Figure 1

16 pages, 9541 KB  
Article
Thermal Comfort Assessment for Simultaneous Operation of Cooling and an Energy Recovery Ventilator in a Residential Building During Summer
by Kyungmo Kang and Daeung Danny Kim
Buildings 2025, 15(4), 582; https://doi.org/10.3390/buildings15040582 - 13 Feb 2025
Cited by 1 | Viewed by 1465
Abstract
After the COVID-19 pandemic in South Korea, residential buildings are equipped with an energy recovery ventilator for ventilation and building energy efficiency. During summer, it is required to operate both the ERV system and air conditioners to maintain thermal comfort as well as [...] Read more.
After the COVID-19 pandemic in South Korea, residential buildings are equipped with an energy recovery ventilator for ventilation and building energy efficiency. During summer, it is required to operate both the ERV system and air conditioners to maintain thermal comfort as well as ensure indoor air quality. The ventilation efficiency of the ERV system can be varied by various layouts of the inlet and outlet vents. Moreover, cooling can be wasted through the exhaust of the ERV system. Considering this, the present study assessed thermal comfort by applying various layouts of the supply and exhaust of ERV systems with different supply air temperatures and air volumes of the air conditioners. Using CFD (computational fluid dynamics) simulation, the ventilation and thermal performance with the PMV (predicted mean vote) were analyzed. As a result, the PMV was highly affected by the supply air temperature and ventilation flow rates of the air conditioners. While additional installations of the inlet or outlet vents showed improved ventilation performance, the PMV index presented “slightly cold” or “cold”. Considering energy saving, this proves that it can provide an opportunity to reduce cooling energy consumption through the intermittent operation mode of the air conditioners. Full article
(This article belongs to the Special Issue Building Energy Performance and Simulations)
Show Figures

Figure 1

23 pages, 3351 KB  
Article
Assessing the Economic and Environmental Dimensions of Large-Scale Energy-Efficient Renovation Decisions in District-Heated Multifamily Buildings from Both the Building and Urban Energy System Perspectives
by Alaa Khadra, Jan Akander, Xingxing Zhang and Jonn Are Myhren
Energies 2025, 18(3), 513; https://doi.org/10.3390/en18030513 - 23 Jan 2025
Cited by 1 | Viewed by 1551
Abstract
The European Union (EU) has introduced a range of policies to promote energy efficiency, including setting specific targets for energy-efficient renovations across the EU building stock. This study provides a comprehensive environmental and economic assessment of energy-efficient renovation scenarios in a large-scale multifamily [...] Read more.
The European Union (EU) has introduced a range of policies to promote energy efficiency, including setting specific targets for energy-efficient renovations across the EU building stock. This study provides a comprehensive environmental and economic assessment of energy-efficient renovation scenarios in a large-scale multifamily building project that is district-heated, considering both the building and the broader urban energy system. A systematic framework was developed for this assessment and applied to a real case in Sweden, where emission factors from energy production are significantly lower than the EU average: 114 g CO2e/kWh for district heating and 37 g CO2e/kWh for electricity. The project involved the renovation of four similar district-heated multifamily buildings with comparable energy efficiency measures. The primary distinction between the measures lies in the type of HVAC system installed: (1) exhaust ventilation with air pressure control, (2) mechanical ventilation with heat recovery, (3) exhaust ventilation with an exhaust air heat pump, and (4) exhaust ventilation with an exhaust air heat pump combined with photovoltaic (PV) panels. The study’s findings show that the building with an exhaust air heat pump which operates intermittently with PV panels achieves the best environmental performance from both perspectives. A key challenge identified for future research is balancing the reduced electricity production from Combined Heat and Power (CHP) plants within the energy system. Full article
(This article belongs to the Special Issue Advances in Energy Management and Control for Smart Buildings)
Show Figures

Figure 1

17 pages, 5082 KB  
Article
Data-Driven-Based Full Recovery Technology and System for Transformer Insulating Oil
by Feng Chen, Li Wang, Zhiyao Zheng, Bin Pan, Yujia Hu and Kexin Zhang
Energies 2024, 17(24), 6345; https://doi.org/10.3390/en17246345 - 17 Dec 2024
Cited by 1 | Viewed by 1452
Abstract
This study aims to develop an efficient recovery solution for waste transformer insulating oil, addressing the challenge of incomplete separation of residual oil in existing recovery technologies. A multi-module integrated system is constructed, comprising a waste oil extraction module, a residual oil vaporization [...] Read more.
This study aims to develop an efficient recovery solution for waste transformer insulating oil, addressing the challenge of incomplete separation of residual oil in existing recovery technologies. A multi-module integrated system is constructed, comprising a waste oil extraction module, a residual oil vaporization module, an exhaust gas treatment module, and an online monitoring module. By combining steps such as oil extraction, residual oil absorption, hot air circulation heating, and negative-pressure low-frequency induction heating, the complete recovery of waste oil is achieved. The recovery process incorporates oil–gas saturation monitoring and an oil–gas precipitation assessment algorithm based on neural networks to enable intelligent control, ensuring thorough recovery of residual oil from transformers. The proposed system and methods demonstrate excellent recovery efficiency and environmental protection effects during the pre-treatment of waste transformer oil. Experiments conducted on 50 discarded transformers showed an average recovery efficiency exceeding 99%, with 49 transformers exhibiting no damage to core components after the recovery process. From a theoretical perspective, this research introduces monitoring and control methods for transformer insulating oil recovery, providing significant support for the green processing and reutilization of discarded transformer insulating oil. From an application value perspective, the recovery process helps reduce environmental pollution and facilitates the disassembly of transformers. This enables better analysis of transformer operating characteristics, thereby enhancing the reliability and safety of power systems. Full article
Show Figures

Figure 1

Back to TopTop