Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (188)

Search Parameters:
Keywords = excited state quenching

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2646 KiB  
Article
BOPAM’s Bright and Dark Excited States: Insight from Structural, Photophysical, and Quantum Chemical Investigations
by Kexin Yu, Thanh Chung Pham, Jianjun Huang, Yixuan Li, Luc Van Meervelt, Mark Van der Auweraer, Daniel Escudero and Wim Dehaen
Molecules 2025, 30(13), 2673; https://doi.org/10.3390/molecules30132673 - 20 Jun 2025
Viewed by 357
Abstract
BOPAM exhibits high fluorescence quantum yields, along with exceptional photostability, rendering it a promising platform for applications as fluorescence sensors. However, the development of BOPAM-based fluorophores with extended emission wavelengths remains limited, and the underlying mechanisms of fluorescence quenching via the population of [...] Read more.
BOPAM exhibits high fluorescence quantum yields, along with exceptional photostability, rendering it a promising platform for applications as fluorescence sensors. However, the development of BOPAM-based fluorophores with extended emission wavelengths remains limited, and the underlying mechanisms of fluorescence quenching via the population of dark twisted intramolecular charge transfer (1TICT) excited states are not yet fully understood. To address these gaps, we synthesized a series of BOPAM derivatives by incorporating electron-donating groups at the boron atoms and the phenyl rings of the BOPAM core. The introduction of bromide, phenyl, and naphthyl groups preserved the intrinsic locally excited (1LE) emission of BOPAM. In contrast, the incorporation of diphenylamine (BP-DA) and triphenylamine (BP-TA) moieties resulted in a red-shifted emission, attributed to an enhanced intramolecular charge transfer (ICT) process. Notably, in acetonitrile, BP-DA exhibited weak fluorescence originating from a 1TICT state, which was populated via the S21TICT transition. Furthermore, the emission observed from BP-TA was associated with a higher-lying excited state, likely the initially populated S2 state possessing a 1LE character. These findings not only introduce novel red-emissive BOPAM-based fluorophores, but also offer valuable insights into the role of the S2 state in governing fluorescence quenching mechanisms in BOPAM derivatives. Full article
(This article belongs to the Special Issue BODIPYs: State of the Art and Future Perspectives)
Show Figures

Graphical abstract

16 pages, 1593 KiB  
Article
The Impact of Seasonally Varying Dissolved Organic Matter in Natural Aquatic Environments on the Photodegradation of Pharmaceutical Pollutants
by Yue Chen, Jingshuang Cui, Fangyuan Cheng, Jiao Qu and Ya-Nan Zhang
Toxics 2025, 13(6), 450; https://doi.org/10.3390/toxics13060450 - 29 May 2025
Viewed by 433
Abstract
Photochemical degradation is a major removal pathway for pharmaceutical pollutants in water, and dissolved organic matter (DOM) in water is an important factor affecting this process. This study investigates the differential effects of seasonally-varied dissolved organic matter (DOM) from Songhua River and Liao [...] Read more.
Photochemical degradation is a major removal pathway for pharmaceutical pollutants in water, and dissolved organic matter (DOM) in water is an important factor affecting this process. This study investigates the differential effects of seasonally-varied dissolved organic matter (DOM) from Songhua River and Liao River on the photodegradation of pharmaceutical pollutants, using levofloxacin (LFX), sulfamethoxazole (SMZ), and ibuprofen (IBP) as target compounds. The results demonstrated that summer and autumn DOM inhibited the photodegradation of LFX and SMZ through light screening and dynamic quenching effects, with inhibition rates of 35.1% and 55.5%, respectively, whereas winter DOM enhanced degradation through photo-oxidation mechanisms. DOM from Songhua River and Liao River significantly promoted the photodegradation of IBP. Quenching experiments showed differences in the contributions of photochemically reactive intermediates (PPRIs) to the photodegradation of different target pollutants, with hydroxyl radicals (•OH) dominating LFX photodegradation (48.79% contribution), excited triplet states of DOM (3DOM*) dominating SMZ photodegradation (85.20% contribution), and singlet oxygen (1O2) dominating IBP photodegradation (79.89% contribution). The photodegradation pathways were elucidated by measuring the photodegradation by-products of the target pollutants: LFX mainly underwent piperazine ring cleavage and oxidative decarboxylation, SMZ underwent isoxazole ring opening and deamination during photodegradation, and IBP underwent photodecarboxylation and oxidation reactions. Under the influence of the DOM from the Songhua River and Liao River, the generation of multiple photodegradation by-products led to an increasing trend in the acute toxicity of target pollutants to luminescent bacteria. This investigation elucidates the dual regulatory mechanisms of natural aquatic DOM on both photo-induced degradation pathways and toxicity evolution dynamics of pharmaceutical contaminants, which is of great significance for understanding the photochemical transformation behavior and risk assessment of pharmaceutical pollutants in aquatic environments. Full article
(This article belongs to the Section Emerging Contaminants)
Show Figures

Figure 1

17 pages, 11806 KiB  
Article
Identification and Methods of Influencing the Oxidation States of Mn and Ce in Silicate Glasses
by Jakub Volf, Petr Vařák, Maksym Buryi, Martin Kormunda and Pavla Nekvindová
Materials 2025, 18(9), 1948; https://doi.org/10.3390/ma18091948 - 25 Apr 2025
Viewed by 466
Abstract
Non-hygroscopic borosilicate glasses containing Ce3+ and Mn2+ ions were prepared using the conventional melt-quenching method. The electrochemical equilibrium of the Ce and Mn oxidation states has a significant effect on the energy levels and luminescence of both elements. Consequently, the oxidation [...] Read more.
Non-hygroscopic borosilicate glasses containing Ce3+ and Mn2+ ions were prepared using the conventional melt-quenching method. The electrochemical equilibrium of the Ce and Mn oxidation states has a significant effect on the energy levels and luminescence of both elements. Consequently, the oxidation states in the glasses were analyzed using a combination of XPS, EPR, and absorption spectroscopy. The oxidation–reduction equilibrium was altered by systematically changing three factors: the Mn concentration, the presence or absence of SnO as a reducing agent, and the optical basicity of the glass. Upon excitation with light with a wavelength of 320 nm, the prepared glasses exhibited a blue luminescence band in the region of 350–450 nm, corresponding to the Ce3+ ion, and a broad, weak red luminescence emission in the region of 540–640 nm, corresponding to Mn2+ ions. To obtain a high luminescence intensity for both bands, it was necessary to reduce the MnO content below 1 mol.%. Furthermore, doping the glasses with Sn2+ ions helped to maintain both cerium and manganese in low oxidation states, resulting in measurable luminescence in both observed bands. These low oxidation states of Ce and Mn can also be achieved by reducing the optical basicity of the glass through the addition of MgO. The general relationships obtained could potentially be applied in the production of light-emitting diodes or field-emission displays that utilize energy transfer. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

17 pages, 5190 KiB  
Article
Engineering Photoluminescence of Lanthanide Doped Yttrium-MOF-76 for Volatile Organic Compound Sensing
by Oswaldo Rosas Rivas, Mariana Hamer, Héctor A. Baldoni, Maya Boone, Rik Van Deun and Germán E. Gomez
Polymers 2025, 17(9), 1135; https://doi.org/10.3390/polym17091135 - 22 Apr 2025
Viewed by 1156
Abstract
A set of three-dimensional metal-organic frameworks, named MOF-76, belonging to the tetragonal P4322 space group, based on [Y(BTC)(H2O)](DMF)1.1 (1,3,5-benzenetricarboxylate) doped with Eu3+, Tb3+, and Eu3+/Tb3+ were obtained under solvothermal conditions and [...] Read more.
A set of three-dimensional metal-organic frameworks, named MOF-76, belonging to the tetragonal P4322 space group, based on [Y(BTC)(H2O)](DMF)1.1 (1,3,5-benzenetricarboxylate) doped with Eu3+, Tb3+, and Eu3+/Tb3+ were obtained under solvothermal conditions and fully characterized by powder X-ray diffraction, thermal, and vibrational analyses. In addition, upon UV light excitation (280 nm), all the powdered samples exhibited fine 4f-4f transitions, of which the 5D07F2 (Eu3+) and 5D47F5 (Tb3+) were the most intense ones. All samples were photophysically analyzed by determining the luminescence lifetimes, and their emission colors were quantified by calculating their chromaticities and color purities. Moreover, the intrinsic quantum yield, radiative, and non-radiative constants were calculated and compared to establish a structure–property relationship. Specifically, the Eu/Tb co-doped sample was employed to monitor its hypersensitive emissions in the presence of small volatile organic compounds (VOCs), showing quenching or enhancement of emission in protic and non-protic solvents. Furthermore, DFT calculations were carried out to understand the energy transfer processes between the sensor and the respective analytes. These results are promising for the development of solid-state lighting devices and colorimetric chemical sensors for specific compounds. Full article
Show Figures

Graphical abstract

13 pages, 2546 KiB  
Article
Humidity-Triggered Reversible 0–1D Phase Transition in Hybrid Antimony Halides
by Yi Liu, Jiahua Luo, Abdusalam Ablez, Jinmei Liu, Nianhao Wang, Haowei Lin, Zeping Wang and Xiaoying Huang
Nanomaterials 2025, 15(6), 442; https://doi.org/10.3390/nano15060442 - 14 Mar 2025
Cited by 1 | Viewed by 622
Abstract
Stimulus-responsive inorganic–organic hybrid metal halides (IOMHs) have shown great potential in applications such as sensing and anti-counterfeiting. IOMHs can undergo a variety of structural changes when triggered by humidity; however, relevant reports of structural dimensionality change from zero dimension (0D) to one dimension [...] Read more.
Stimulus-responsive inorganic–organic hybrid metal halides (IOMHs) have shown great potential in applications such as sensing and anti-counterfeiting. IOMHs can undergo a variety of structural changes when triggered by humidity; however, relevant reports of structural dimensionality change from zero dimension (0D) to one dimension (1D) are rare. This study investigates the synthesis, structure, and properties of two antimony-based IOMHs, namely 0D-(Mp)3SbCl6·MeCN and 1D-(Mp)2SbCl5 (Mp = protonated morpholine; MeCN = acetonitrile). Photophysical characterizations show that (Mp)3SbCl6·MeCN, when being excited at 375 nm, exhibits typical self-trapped exciton triplet state broad-band emission, with a peak at 620 nm and a quantum yield as high as 75.06%. Under humid conditions, the 0D structure of (Mp)3SbCl6·MeCN undergoes a phase transition, leading to the 1D structure of (Mp)2SbCl5. This transition is accompanied by fluorescence quenching. X-ray powder diffraction, Raman spectroscopy, and thermogravimetric analysis confirm the phase transition process and its reversibility. Based on the high contrast of fluorescence before and after phase transition, (Mp)3SbCl6·MeCN is demonstrated as an ideal material for fluorescence water sensing, capable of detecting trace amounts of water in tetrahydrofuran with a detection limit of 0.2% v/v. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

19 pages, 3997 KiB  
Article
The Triplet–Triplet Annihilation Efficiency of Some 9,10-Substituted Diphenyl Anthracene Variants—A Decisive Analysis from Kinetic Rate Constants
by Mikael Lindgren, Victoria M. Bjelland, Thor-Bernt Melø, Callum McCracken, Satoshi Seo and Harue Nakashima
Optics 2025, 6(1), 8; https://doi.org/10.3390/opt6010008 - 12 Mar 2025
Viewed by 1164
Abstract
Triplet–triplet transfer photochemical reactions are essential in many biological, chemical, and photonic applications. Here, the Pd-octaethylporphyrin sensitizer along with triplet–triplet annihilator (TTA) active 9,10-diphenylantracenes (DPA) and the related substituted variants in low concentrations were examined. A full experimental approach is presented for finding [...] Read more.
Triplet–triplet transfer photochemical reactions are essential in many biological, chemical, and photonic applications. Here, the Pd-octaethylporphyrin sensitizer along with triplet–triplet annihilator (TTA) active 9,10-diphenylantracenes (DPA) and the related substituted variants in low concentrations were examined. A full experimental approach is presented for finding the necessary rate parameters with statistical standard deviation parameters. This was achieved by solving the pertinent non-analytical kinetic differential equation and fitting it to the experimental time-resolved photoluminescence of both slow fluorescence and sensitizer phosphorescence. The efficiency of the triplet–triplet energy transfer rate was found to be around 90% in THF but only around 75% in toluene. This appears to follow from the shorter lifetime of the sensitizer triplet in toluene. Moreover, the TTA transfer rate was on average more than 40% in THF toluene whereas a considerably lower value around 20–30% was found for toluene. This originated in an order of magnitude higher solvent quenching rate using toluene, based on the analysis of the delayed fluorescence decay traces. These are also higher than the statistically expected 1/9 TTA efficiency but in accordance with recent results in the literature, that attributed these high values to an inverse intersystem crossing process. In addition, quantum chemical calculations were carried out to reveal the pertinent excited triplet molecular orbitals of the lowest triplet excited state for a series of substituted DPAs, in comparison with the singlet ground state. Conclusively, these states distribute mainly in an anthracene ring in all compounds being in the range 1.64–1.65 eV above the ground state. The TTA efficiency was found to vary depending on the DPA annihilator substitution scheme and found to be smaller in THF. This is likely because the molecular framework over which the T1 excited molecular orbitals distribute is less sensitive for a longer lifetime of the annihilator triplet state. Full article
Show Figures

Figure 1

13 pages, 4116 KiB  
Article
Excited-State-Altering Ratiometric Fluorescent Probes for the Response of β-Galactosidase in Senescent Cells
by Ya-Nan Han, Lei Dong, Lu-Lu Sun, Wen-Jia Li, Jianjing Xie, Congyu Li, Shuhui Ren, Zhan Zhang, Hai-Hao Han and Zhong Zhang
Molecules 2025, 30(6), 1221; https://doi.org/10.3390/molecules30061221 - 8 Mar 2025
Cited by 1 | Viewed by 1217
Abstract
β-galactosidase (β-Gal) has emerged as a pivotal biomarker for the comprehensive investigation of diseases associated with cellular senescence. The development of a fluorescent sensor is of considerable importance for precisely detecting the activity and spatial distribution of β-Gal. In [...] Read more.
β-galactosidase (β-Gal) has emerged as a pivotal biomarker for the comprehensive investigation of diseases associated with cellular senescence. The development of a fluorescent sensor is of considerable importance for precisely detecting the activity and spatial distribution of β-Gal. In this study, we developed two excited-state-altering responsive fluorescent sensors (TF1 and TF2) for ratiometric detection of β-Gal. Two TCF dyes, composed of tricyanofuran (TCF) and naphthol units, feature electron “pull–push” systems and are quenched fluorescence by β-Gal. Upon β-Gal hydrolysis, a significant ratiometric shift in absorption from ca. 475 nm to 630 nm is observed, accompanied by the emergence of a fluorescence signal at ca. 660 nm. The enzyme-responsive optical red-shifts are attributed to the excited-state transition from intramolecular charge transfer (ICT) state to local excited (LE) state, which was confirmed by density functional theory (DFT) calculations. Both fluorescent sensors display exceptional sensitivity and selectivity for the response of β-Gal in PBS solution and are capable of tracking β-Gal within senescent A549 cells. This study introduces a framework for developing multimodal optical probes by systematically modulating excited-state properties, demonstrating their utility in senescence studies, diagnostic assay design, and therapeutic assessment. Full article
(This article belongs to the Special Issue Fluorescent Probes in Biomedical Detection and Imaging)
Show Figures

Figure 1

11 pages, 1925 KiB  
Article
Concentration-Dependent Photoproduction of Singlet Oxygen by Common Photosensitizers
by Grzegorz Szewczyk and Krystian Mokrzyński
Molecules 2025, 30(5), 1130; https://doi.org/10.3390/molecules30051130 - 1 Mar 2025
Cited by 3 | Viewed by 1061
Abstract
Singlet oxygen quantum yield (ΦΔ) is a critical parameter in photodynamic studies, particularly for evaluating photosensitizers’ efficiency in diverse applications such as photodynamic therapy and environmental remediation. Standard photosensitizers, including Rose Bengal, Methylene Blue, and porphyrins, are widely employed as benchmarks [...] Read more.
Singlet oxygen quantum yield (ΦΔ) is a critical parameter in photodynamic studies, particularly for evaluating photosensitizers’ efficiency in diverse applications such as photodynamic therapy and environmental remediation. Standard photosensitizers, including Rose Bengal, Methylene Blue, and porphyrins, are widely employed as benchmarks for determining ΦΔ. However, accurate determination of ΦΔ relies not only on the intrinsic properties of these photosensitizers but also on their experimental conditions, such as concentration. This study investigated the influence of photosensitizer concentration on singlet oxygen quantum yield using several standard photosensitizers. Our findings revealed a significant decrease in ΦΔ with increasing photosensitizer concentrations across all tested compounds. This decline was attributed to self-quenching effects and molecular aggregation, which reduced the efficiency of energy transfer from the excited triplet state of the photosensitizer to molecular oxygen. The results emphasize the importance of optimizing photosensitizer concentration to ensure reliable ΦΔ measurements and avoid underestimations. This work underscores the need to consider concentration-dependent effects in future studies to ensure accurate and reproducible outcomes. Full article
(This article belongs to the Section Photochemistry)
Show Figures

Figure 1

16 pages, 2475 KiB  
Article
Control of Inhibition-Stabilized Oscillations in Wilson-Cowan Networks with Homeostatic Plasticity
by Camille Godin, Matthew R. Krause, Pedro G. Vieira, Christopher C. Pack and Jean-Philippe Thivierge
Entropy 2025, 27(2), 215; https://doi.org/10.3390/e27020215 - 19 Feb 2025
Viewed by 1075
Abstract
Interactions between excitatory and inhibitory neurons in the cerebral cortex give rise to different regimes of activity and modulate brain oscillations. A prominent regime in the cortex is the inhibition-stabilized network (ISN), defined by strong recurrent excitation balanced by inhibition. While theoretical models [...] Read more.
Interactions between excitatory and inhibitory neurons in the cerebral cortex give rise to different regimes of activity and modulate brain oscillations. A prominent regime in the cortex is the inhibition-stabilized network (ISN), defined by strong recurrent excitation balanced by inhibition. While theoretical models have captured the response of brain circuits in the ISN state, their connectivity is typically hard-wired, leaving unanswered how a network may self-organize to an ISN state and dynamically switch between ISN and non-ISN states to modulate oscillations. Here, we introduce a mean-rate model of coupled Wilson-Cowan equations, link ISN and non-ISN states to Kolmogorov-Sinai entropy, and demonstrate how homeostatic plasticity (HP) allows the network to express both states depending on its level of tonic activity. This mechanism enables the model to capture a broad range of experimental effects, including (i) a paradoxical decrease in inhibitory activity, (ii) a phase offset between excitation and inhibition, and (iii) damped gamma oscillations. Further, the model accounts for experimental work on asynchronous quenching, where an external input suppresses intrinsic oscillations. Together, findings show that oscillatory activity is modulated by the dynamical regime of the network under the control of HP, thus advancing a framework that bridges neural dynamics, entropy, oscillations, and synaptic plasticity. Full article
(This article belongs to the Section Entropy and Biology)
Show Figures

Figure 1

11 pages, 3669 KiB  
Article
The Crystal Structure and Luminescence Behavior of Self-Activated Halotungstates Ba3WO5Cl2 for W-LEDs Applications
by Liuyang Zhang, Shijin Zhou, Jiani Meng, Yuxin Zhang, Jiarui Zhang, Qinlan Ma, Lin Qin and Man Luo
Nanomaterials 2025, 15(4), 311; https://doi.org/10.3390/nano15040311 - 18 Feb 2025
Viewed by 741
Abstract
The self-activated halotungstate Ba3WO5Cl2 was successfully synthesized using a high-temperature solid-state method. X-ray diffraction analysis (XRD) confirmed the formation of a single-phase compound with a monoclinic crystal structure, ensuring the material’s purity and structural integrity. The luminescence properties [...] Read more.
The self-activated halotungstate Ba3WO5Cl2 was successfully synthesized using a high-temperature solid-state method. X-ray diffraction analysis (XRD) confirmed the formation of a single-phase compound with a monoclinic crystal structure, ensuring the material’s purity and structural integrity. The luminescence properties of Ba3WO5Cl2 were thoroughly investigated using both optical and laser-excitation spectroscopy. The photoluminescent excitation (PLE) and emission (PL) spectra, together with the corresponding decay curves, were recorded across a broad temperature range, from 10 K to 480 K. The charge transfer band (CTB) of the [WO5Cl] octahedron was clearly identified in both the PL and the PLE spectra under ultraviolet light excitation, indicating efficient energy transfer within the material’s structure. A strong blue emission could be detected around 450 nm, which is characteristic of the material’s luminescent properties. However, this emission exhibited thermal quenching as the temperature increased, a common phenomenon where the luminescence intensity diminishes due to thermal effects. To better understand the thermal quenching behavior, variations in luminescence intensity and decay time were analyzed using a straightforward thermal quenching model. This comprehensive study of Ba3WO5Cl2 luminescent properties not only deepens the understanding of its photophysical behavior but also contributes to the development of novel materials with tailored optical properties for specific technological applications. Full article
Show Figures

Figure 1

15 pages, 5019 KiB  
Article
Biomass-Derived Carbon Dots as Fluorescent Probes for Label-Free Sensing of Hemin and as Radical Scavengers
by Neha Sharma and Hae-Jeung Lee
Biosensors 2025, 15(2), 105; https://doi.org/10.3390/bios15020105 - 12 Feb 2025
Viewed by 1292
Abstract
Carbon dots (CDs) derived from biomass are promising fluorescent probes for specific analyte detection due to their specificity, biocompatibility, selectivity, and sensitivity. In this work, carbon dots were prepared hydrothermally from natural material, Myrica esculenta fruits (hereafter referred to as MPCDs), without adding [...] Read more.
Carbon dots (CDs) derived from biomass are promising fluorescent probes for specific analyte detection due to their specificity, biocompatibility, selectivity, and sensitivity. In this work, carbon dots were prepared hydrothermally from natural material, Myrica esculenta fruits (hereafter referred to as MPCDs), without adding any chemicals. The prepared MPCDs were characterized using optical, microscopic, and spectroscopic methods that revealed the presence of numerous functional groups and fluorescent properties. MPCDs exhibited exceptional characteristics such as water solubility, photostability, excitation-dependent fluorescence emission, and ionic stability. Transmission electron microscopy found that the average size of the MPCDs was 8 nm. MPCDs exhibited remarkable sensing ability for hemin, with a good linearity (R2 = 0.999) and a lower limit of detection of 14.1 nM. MPCDs demonstrated fluorescence quenching-based detection of hemin, primarily owing to ground state complex formation and the inner filter effect. Furthermore, the prepared material exhibited excellent antioxidant potential against 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) and 2,2-diphenyl-1-picrylhydrazyl radicals with EC50 values of 25.4 and 205.4 µg/mL, respectively. The study suggests that CDs from Myrica esculenta fruits could be used as optical sensors for hemin detection as well as to scavenge selected radicals. Full article
(This article belongs to the Special Issue Optical Biosensors: Advances and New Perspectives)
Show Figures

Figure 1

12 pages, 4934 KiB  
Article
In Situ Study of the Temperature and Fluence Dependence of Yb2+ Luminescence in Yttrium Aluminum Garnet (YAG) Single Crystals
by Ruotong Chang, Yingjie Song, Hongtao Hu, Shasha Lv, Guangfu Wang and Menglin Qiu
Atoms 2025, 13(2), 13; https://doi.org/10.3390/atoms13020013 - 27 Jan 2025
Viewed by 757
Abstract
In this study, ion-beam-induced luminescence with 2 MeV H+ was used to excite YAG single crystals at different temperatures. Under several constant temperatures, the luminescence intensity of Yb2+ monotonically decreases with increasing fluence, eventually reaching approximately 35% of the initial intensity [...] Read more.
In this study, ion-beam-induced luminescence with 2 MeV H+ was used to excite YAG single crystals at different temperatures. Under several constant temperatures, the luminescence intensity of Yb2+ monotonically decreases with increasing fluence, eventually reaching approximately 35% of the initial intensity at a fluence of 3.5 × 1014 cm−2. The nonmonotonic evolution behavior of Yb2+ luminescence intensity with temperature can be effectively described by the intermediate-state model under consecutive temperature variations. The presence of an intermediate state may be the primary cause of the negative thermal quenching of Yb2+ luminescence. Yb2+ luminescence intensity decreased to 60% of the initial intensity when the temperature was continuously varied in the 100–300 K range, although the peak position remained rather stable. The luminescence of Yb2+ exhibits good radiation resistance and thermal stability in the experimental temperature range. Full article
Show Figures

Figure 1

16 pages, 8337 KiB  
Article
Computational Chemistry Study of pH-Responsive Fluorescent Probes and Development of Supporting Software
by Ximeng Zhu, Yongchun Wei and Xiaogang Liu
Molecules 2025, 30(2), 273; https://doi.org/10.3390/molecules30020273 - 12 Jan 2025
Viewed by 1603
Abstract
This study employs quantum chemical computational methods to predict the spectroscopic properties of fluorescent probes 2,6-bis(2-benzimidazolyl)pyridine (BBP) and (E)-3-(2-(1H-benzo[d]imidazol-2-yl)vinyl)-9-(2-(2-methoxyethoxy)ethyl)-9H-carbazole (BIMC). Using time-dependent density functional theory (TDDFT), we successfully predicted the fluorescence emission wavelengths of BBP [...] Read more.
This study employs quantum chemical computational methods to predict the spectroscopic properties of fluorescent probes 2,6-bis(2-benzimidazolyl)pyridine (BBP) and (E)-3-(2-(1H-benzo[d]imidazol-2-yl)vinyl)-9-(2-(2-methoxyethoxy)ethyl)-9H-carbazole (BIMC). Using time-dependent density functional theory (TDDFT), we successfully predicted the fluorescence emission wavelengths of BBP under various protonation states, achieving an average deviation of 6.0% from experimental excitation energies. Molecular dynamics simulations elucidated the microscopic mechanism underlying BBP’s fluorescence quenching under acidic conditions. The spectroscopic predictions for BIMC were performed using the STEOM-DLPNO-CCSD method, yielding an average deviation of merely 0.57% from experimental values. Based on Einstein’s spontaneous emission formula and empirical internal conversion rate formulas, we calculated fluorescence quantum yields for spectral intensity calibration, enabling the accurate prediction of experimental spectra. To streamline the computational workflow, we developed and open-sourced the EasySpecCalc software v0.0.1 on GitHub, aiming to facilitate the design and development of fluorescent probes. Full article
(This article belongs to the Special Issue Fluorescent Probes in Biomedical Detection and Imaging)
Show Figures

Figure 1

13 pages, 3412 KiB  
Article
Furan-Indole-Chromenone-Based Organic Photocatalyst for α-Arylation of Enol Acetate and Free Radical Polymerization Under LED Irradiation
by Aurélien Galibert-Guijarro, Adel Noon, Joumana Toufaily, Tayssir Hamieh, Eric Besson, Stéphane Gastaldi, Jacques Lalevée and Laurence Feray
Molecules 2025, 30(2), 265; https://doi.org/10.3390/molecules30020265 - 11 Jan 2025
Viewed by 1230
Abstract
In this study we report on the efficiency of a furane-indole-chromenone-based organic derivative (FIC) as a photocatalyst in the α-arylation of enol acetate upon LED irradiation at 405 nm, and as a photoinitiator/photocatalyst in the free radical polymerization of an acrylate [...] Read more.
In this study we report on the efficiency of a furane-indole-chromenone-based organic derivative (FIC) as a photocatalyst in the α-arylation of enol acetate upon LED irradiation at 405 nm, and as a photoinitiator/photocatalyst in the free radical polymerization of an acrylate group in the presence of bis-(4-tert-butylphenyl)iodonium hexafluorophosphate (Iod) as an additive, or in the presence of both Iod and ethyl-4-(dimethyl amino) benzoate (EDB) under LED irradiation at 365 nm. The photochemical properties of this new light-sensitive compound are described, and the wide redox window (3.27 eV) and the high excited-state potentials FIC*/FIC●− (+2.64 V vs. SCE) and FIC●+/FIC* (−2.41 V vs. SCE) offered by this photocatalyst are revealed. The chemical mechanisms that govern the radical chemistry are discussed by means of different techniques, including fluorescence-quenching experiments, UV-visible absorption and fluorescence spectroscopy, and cyclic voltammetry analysis. Full article
(This article belongs to the Section Cross-Field Chemistry)
Show Figures

Graphical abstract

15 pages, 4833 KiB  
Article
Fluorescent Polymers via Coordination of bis-Terpyridine Ligands with Transition Metals and Their pH Response Properties
by Tao Zhang, Fengxue Liu, Yongxin Liu, Kaixiu Li, Zhengguang Li, Yaqin Li, Fan Fu, Mingliang Liu, Yiming Li, Die Liu and Pingshan Wang
Polymers 2025, 17(1), 87; https://doi.org/10.3390/polym17010087 - 31 Dec 2024
Viewed by 1191
Abstract
Stimulus-responsive luminescent materials are pivotal in the field of sensing. Fluorescent transition metal complexes with a charge transfer excited state, especially terpyridine-coordinated polymers, are of particular interest due to their tunable emission. In this paper, a novel bis-terpyridine ligand was synthesized and assembled [...] Read more.
Stimulus-responsive luminescent materials are pivotal in the field of sensing. Fluorescent transition metal complexes with a charge transfer excited state, especially terpyridine-coordinated polymers, are of particular interest due to their tunable emission. In this paper, a novel bis-terpyridine ligand was synthesized and assembled into a coordination polymer, which showed intense visible light absorption and fluorescence emission in the solid state that could be regulated by an acidic or basic pH. After being protonated by acid, the fluorescence of the polymer P2 was quenched. The emission of the polymer split from 635 nm to two peaks of 674 and 440 nm, and then stabilized at 728 nm for 7 days, which showed a significant red-shift and good protonation stability. The fluorescence emission wavelength of the protonated polymers recovered after alkalization, and the fluorescence intensity of the polymer was greatly improved after alkalization, showing interesting acid–base-response luminescence characteristics. The sensitive response of the synthesized coordination polymers to acids and bases will contribute to expanding the application of linear coordination polymers in sensing and other fields. Full article
Show Figures

Figure 1

Back to TopTop