In Situ Study of the Temperature and Fluence Dependence of Yb2+ Luminescence in Yttrium Aluminum Garnet (YAG) Single Crystals
Abstract
:1. Introduction
2. Experiment
3. Results and Discussion
3.1. IBIL Experiment: 100–300 K
3.2. IBIL Experiment: 100–300–100 K
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shiran, N.; Gektin, A.; Gridin, S.; Nesterkina, V.; Vasyukov, S.; Zelenskaya, O. Defect-Controlled Scintillation Process in Undoped Y3 Al5 O12 Crystals. IEEE Trans. Nucl. Sci. 2018, 65, 871–876. [Google Scholar] [CrossRef]
- Yilmaz, M.; Esser, J.; Kraft, L.; Petzold, R.; Sigle, A.; Gratzke, C.; Suarez-Ibarrola, R.; Miernik, A. Experimental Ex-Vivo Performance Study Comparing a Novel, Pulsed Thulium Solid-State Laser, Chopped Thulium Fibre Laser, Low and High-Power Holmium:YAG Laser for Endoscopic Enucleation of the Prostate. World J. Urol. 2022, 40, 601–606. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Hu, H.; Song, Z.; Han, H.; Guan, X.; Lu, Y.; Chen, X.; Yi, Y. Experiment Investigation on Pulsed Gamma-Ray Fluence Rate Effect on Yb-Doped Yttrium Aluminum Garnet Scintillator. Rev. Sci. Instrum. 2021, 92, 063304. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.Q.; Bi, X.L.; Zhu, S.Q.; Li, Z.; Yin, H.; Zhang, P.X.; Chen, Z.Q.; Lv, Q.T. Multi-Wavelength Passively Q-Switched Red Lasers with Nd3+:YAG/YAG/V3+:YAG/YAG Composite Crystal. Opt. Quant Electron. 2018, 50, 56. [Google Scholar] [CrossRef]
- Gawlik, G.; Sarnecki, J.; Jóźwik, I.; Jagielski, J.; Pawłowska, M. Ion and Electron Beam Induced Luminescence οf Rare Earth Doped YAG Crystals. Acta Phys. Pol. A 2011, 120, 181–183. [Google Scholar] [CrossRef]
- Havlák, L.; Bárta, J.; Buryi, M.; Jarý, V.; Mihóková, E.; Laguta, V.; Boháček, P.; Nikl, M. Eu2+ Stabilization in YAG Structure: Optical and Electron Paramagnetic Resonance Study. J. Phys. Chem. C 2016, 120, 21751–21761. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, K.; Pan, M.; Lu, Y.; Wang, R.; Yan, X.; Peng, C.; Shi, Z.; Han, H.; Song, Z.; et al. The Self-Absorption Effect on the X-Ray Excited Luminescence and Cathodoluminescence Spectra of YAG: Yb Crystals. J. Lumin. 2022, 252, 119274. [Google Scholar] [CrossRef]
- Li, L.; Lou, C.; Sun, X.; Xie, Y.; Hu, L.; Kumar, K.S. Temperature Dependent Energy Transfer in Ce3+ -Yb3+ Co-Doped YAG Phosphors. ECS J. Solid State Sci. Technol. 2016, 5, R146–R149. [Google Scholar] [CrossRef]
- Martynyuk, N.; Buryy, O.; Ubizskii, S.; Syvorotka, I.; Becker, K.D. Peculiarities of Recharging Process Yb2+ → Yb3+ in Yb:Y3Al5O12 Epitaxial Films under High Temperature Oxidation. In Proceedings of the International Conference on Oxide Materials for Electronic Engineering—Fabrication, Properties and Applications (OMEE-2014), Lviv, Ukraine, 26–30 May 2014; IEEE: Lviv, Ukraine, 2014; pp. 157–158. [Google Scholar]
- Peng, H.Y.; Yam, F.K. Comparison of the Changes in Luminescence Properties Between Cool White and Warm White LEDs at Varying Temperatures. IEEE Trans. Compon. Packag. Manufact. Technol. 2018, 8, 2113–2121. [Google Scholar] [CrossRef]
- Robbins, D.J.; Cockayne, B.; Glasper, J.L.; Lent, B. The Temperature Dependence of Rare-Earth Activated Garnet Phosphors: I. Intensity and Lifetime Measurements on Undoped and Ce-Doped. J. Electrochem. Soc. 1979, 126, 1213–1220. [Google Scholar] [CrossRef]
- Tang, F.; Wang, W.; Yuan, X.; Zhu, C.; Huang, J.; Ma, C.; Wang, F.; Lin, Y.; Cao, Y. Dependence of Optical and Thermal Properties on Concentration and Temperature for Yb:YAG Laser Ceramics. J. Alloys Compd. 2014, 593, 123–127. [Google Scholar] [CrossRef]
- Solomonov, V.; Osipov, V.; Spirina, A. Luminescence of Yb-Doped YAG: Divalent Ytterbium Ions. J. Lumin. 2016, 169, 151–155. [Google Scholar] [CrossRef]
- Solomonov, V.I.; Osipov, V.V.; Spirina, A.V. Luminescence and Absorption of Divalent Ytterbium Ion in Yttrium-Aluminum Garnet Ceramics. Opt. Spectrosc. 2014, 117, 441–446. [Google Scholar] [CrossRef]
- Chen, X.; Wu, Y.; Lu, T.; Wei, N.; Li, Y.; Hua, T.; Zeng, Q. Electric-Field-Induced Composite Color Centers Formation and Yb Ions Valence State Change in Spark Plasma Sintered Yb:YAG Transparent Ceramics. Opt. Mater. 2019, 95, 109192. [Google Scholar] [CrossRef]
- Huang, Y.; Wei, P.; Zhang, S.; Seo, H.J. Luminescence Properties of Yb2+ Doped NaBaPO4 Phosphate Crystals. J. Electrochem. Soc. 2011, 158, H465. [Google Scholar] [CrossRef]
- Moine, B.; Courtois, B.; Pedrini, C. Luminescence and Photoionization Processes of Yb2+ in CaF 2, SrF2 and BaF2. J. Phys. Fr. 1989, 50, 2105–2119. [Google Scholar] [CrossRef]
- Yin, X.; Lin, H.; Zhang, D.; Hong, R.; Gao, W.; Zhang, J.; Sachuronggui, B. Photoluminescence Properties of Yb2+-Doped Ba0.75Al11O17.25 Green Phosphor Ceramic. J. Appl. Phys. 2022, 132, 115105. [Google Scholar] [CrossRef]
- Agulló-López, F.; Climent-Font, A.; Muñoz-Martín, Á.; Olivares, J.; Zucchiatti, A. Ion Beam Modification of Dielectric Materials in the Electronic Excitation Regime: Cumulative and Exciton Models. Prog. Mater. Sci. 2016, 76, 1–58. [Google Scholar] [CrossRef]
- Crespillo, M.L.; Graham, J.T.; Agulló-López, F.; Zhang, Y.; Weber, W.J. Non-Radiative Luminescence Decay with Self-Trapped Hole Migration in Strontium Titanate: Interplay between Optical and Transport Properties. Appl. Mater. Today 2021, 23, 101041. [Google Scholar] [CrossRef]
- Crespillo, M.L.; Graham, J.T.; Zhang, Y.; Weber, W.J. In-Situ Luminescence Monitoring of Ion-Induced Damage Evolution in SiO2 and Al2O3. J. Lumin. 2016, 172, 208–218. [Google Scholar] [CrossRef]
- Srivastava, S.K.; Gangopadhyay, P.; Chinnathambi, S.; Magudapathy, P. Ion-Beam Induced Luminescence and Optical Response Measurement Setup at IGCAR: First Experimental Results. AIP Adv. 2020, 10, 095228. [Google Scholar] [CrossRef]
- Song, Y.; Qiu, M.; Zhang, J.; Wu, Y.; Zhou, M.; Lin, X.; Wang, G. Ion Fluence-Dependent Luminescence of the Yb2+ Centre in an Undoped YAG Single Crystal. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2023, 541, 392–398. [Google Scholar] [CrossRef]
- Qiu, M.; Yin, P.; Luo, C.; Zheng, L.; Chu, Y.; Xu, M.; Wang, G. Development of an Ion Beam Induced Luminescence Set-up with a Temperature Controlled Target Stage and Its Application. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2019, 450, 69–72. [Google Scholar] [CrossRef]
- Junling, W.; Rui, W.; Tiancheng, Y.; Yong, Z.; Rong, W. Negative Thermal Quenching of the Defects in GaInP Top Cell with Temperature-Dependent Photoluminescence Analysis. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2018, 414, 1–3. [Google Scholar] [CrossRef]
- Kamenskikh, I.; Dujardin, C.; Garnier, N.; Guerassimova, N.; Ledoux, G.; Mikhailin, V.; Pedrini, C.; Petrosyan, A.; Vasil’ev, A. Temperature Dependence of the Charge Transfer and f–f Luminescence of Yb3+ in Garnets and YAP. J. Phys. Condens. Matter 2005, 17, 5587–5594. [Google Scholar] [CrossRef]
- Shibata, H. Negative Thermal Quenching Curves in Photoluminescence of Solids. Jpn. J. Appl. Phys. 1998, 37, 550. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Pang, G.T.; Xing, G.C.; Chen, R. Temperature Dependent Optical Characteristics of All-Inorganic CsPbBr3 Nanocrystals Film. Mater. Today Phys. 2020, 15, 100259. [Google Scholar] [CrossRef]
- Liu, C.; Qi, Z.; Ma, C.-G.; Dorenbos, P.; Hou, D.; Zhang, S.; Kuang, X.; Zhang, J.; Liang, H. High Light Yield of Sr8 (Si4 O12)Cl8:Eu2+ under X-Ray Excitation and Its Temperature-Dependent Luminescence Characteristics. Chem. Mater. 2014, 26, 3709–3715. [Google Scholar] [CrossRef]
- Esteves, D.M.; Rodrigues, A.L.; Alves, L.C.; Alves, E.; Dias, M.I.; Jia, Z.; Mu, W.; Lorenz, K.; Peres, M. Probing the Cr3+ Luminescence Sensitization in β-Ga2O3 with Ion-Beam-Induced Luminescence and Thermoluminescence. Sci. Rep. 2023, 13, 4882. [Google Scholar] [CrossRef]
- Bachmann, V.; Ronda, C.; Meijerink, A. Temperature Quenching of Yellow Ce3+ Luminescence in YAG:Ce. Chem. Mater. 2009, 21, 2077–2084. [Google Scholar] [CrossRef]
- Shao, Q.; Lin, H.; Dong, Y.; Jiang, J. Temperature-Dependent Photoluminescence Properties of (Ba,Sr)2SiO4:Eu2+ Phosphors for White LEDs Applications. J. Lumin. 2014, 151, 165–169. [Google Scholar] [CrossRef]
- Kim, J.S.; Park, Y.H.; Kim, S.M.; Choi, J.C.; Park, H.L. Temperature-Dependent Emission Spectra of M2SiO4:Eu2+ (M=Ca, Sr, Ba) Phosphors for Green and Greenish White LEDs. Solid State Commun. 2005, 133, 445–448. [Google Scholar] [CrossRef]
- Qin, J.; Hu, C.; Lei, B.; Li, J.; Liu, Y.; Ye, S.; Pan, M. Temperature-Dependent Luminescence Characteristic of SrSi2O2N2:Eu2+ Phosphor and Its Thermal Quenching Behavior. J. Mater. Sci. Technol. 2014, 30, 290–294. [Google Scholar] [CrossRef]
- Yan, S. On the Origin of Temperature Dependence of the Emission Maxima of Eu2+and Ce3+- Activated Phosphors. Opt. Mater. 2018, 79, 172–185. [Google Scholar] [CrossRef]
Number | Temperature Conditions/K |
---|---|
1 | 100 |
2 | 150 |
3 | 200 |
4 | 100→300 |
5 | 100→300→100 |
Peak Number | Peak Position (eV) | R2 |
---|---|---|
1 | 1.745 | |
2 | 1.762 | |
3 | 1.775 | 0.979 |
4 | 1.803 | |
5 | 1.965 | |
6 | 2.033 | |
7 | 2.092 |
Parameter | Activation Energy (meV) |
---|---|
E1 | 0.329 |
E2 | 0.088 |
E3 | 0.320 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, R.; Song, Y.; Hu, H.; Lv, S.; Wang, G.; Qiu, M. In Situ Study of the Temperature and Fluence Dependence of Yb2+ Luminescence in Yttrium Aluminum Garnet (YAG) Single Crystals. Atoms 2025, 13, 13. https://doi.org/10.3390/atoms13020013
Chang R, Song Y, Hu H, Lv S, Wang G, Qiu M. In Situ Study of the Temperature and Fluence Dependence of Yb2+ Luminescence in Yttrium Aluminum Garnet (YAG) Single Crystals. Atoms. 2025; 13(2):13. https://doi.org/10.3390/atoms13020013
Chicago/Turabian StyleChang, Ruotong, Yingjie Song, Hongtao Hu, Shasha Lv, Guangfu Wang, and Menglin Qiu. 2025. "In Situ Study of the Temperature and Fluence Dependence of Yb2+ Luminescence in Yttrium Aluminum Garnet (YAG) Single Crystals" Atoms 13, no. 2: 13. https://doi.org/10.3390/atoms13020013
APA StyleChang, R., Song, Y., Hu, H., Lv, S., Wang, G., & Qiu, M. (2025). In Situ Study of the Temperature and Fluence Dependence of Yb2+ Luminescence in Yttrium Aluminum Garnet (YAG) Single Crystals. Atoms, 13(2), 13. https://doi.org/10.3390/atoms13020013