The Crystal Structure and Luminescence Behavior of Self-Activated Halotungstates Ba3WO5Cl2 for W-LEDs Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of Ba3WO5Cl2
2.2. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, W.; Xiong, F.; Yang, Y.; Lin, H.; Meng, X.; Ma, E.; Zhu, W. A novel red-emitting Sr7Sb2O12:Eu3+, M+ (M = Li, Na, K) phosphor for warm white LED: Synthesis, optical properties, and LED fabrication. Appl. Phys. A 2022, 128, 584. [Google Scholar] [CrossRef]
- Chambers, M.; Clarke, D. Doped oxides for high-temperature luminescence and lifetime thermometry. Annu. Rev. Mater. Res. 2009, 39, 325–359. [Google Scholar] [CrossRef]
- Blois, L.; Neto, A.N.C.; Malta, O.L.; Brito, H.F. A theoretical framework for optical thermometry based on excited-state absorption and lifetimes of Eu3+ compounds. J. Lumin. 2022, 249, 119039. [Google Scholar] [CrossRef]
- Fu, Y.; Zhao, L.; Guo, Y.; Yu, H. Up-conversion luminescence lifetime thermometry based on the 1G4 state of Tm3+ modulated by cross relaxation processes. Dalton Trans. 2019, 48, 16034–16040. [Google Scholar] [CrossRef]
- Marciniak, L.; Trejgis, K. Luminescence lifetime thermometry with Mn3+–Mn4+ co-doped nanocrystals. J. Mater. Chem. C 2018, 6, 7092–7100. [Google Scholar] [CrossRef]
- Li, G.; Li, G.; Mao, Q.; Pei, L.; Yu, H.; Liu, M.; Chu, L.; Zhong, J. Efficient luminescence lifetime thermometry with enhanced Mn4+-activated BaLaCa1−xMgxSbO6 red phosphors. Chem. Eng. J. 2022, 430, 132923. [Google Scholar] [CrossRef]
- Zhu, H.; Lin, C.C.; Luo, W.; Shu, S.; Liu, Z.; Liu, Y.; Kong, J.; Ma, E.; Cao, Y.; Liu, R.-S. Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes. Nat. Commun. 2014, 5, 4312. [Google Scholar] [CrossRef]
- Wei, Y.; Xing, G.; Liu, K.; Li, G.; Dang, P.; Liang, S.; Liu, M.; Cheng, Z.; Jin, D.; Lin, J. New strategy for designing orangish-red-emitting phosphor via oxygen-vacancy-induced electronic localization. Light 2019, 8, 15. [Google Scholar] [CrossRef]
- Tong, J.; Luo, Z.; Liu, X.; Liang, H.; Liu, X.; He, P.; Lu, A. A non-rare-earth-doped self-activated blue fluorescent material of transparent glass-ceramics containing single-phase NaY (MoO4)2: The controllable synthesis, crystallization behavior and luminescent properties. J. Alloys Compd. 2023, 968, 172179. [Google Scholar] [CrossRef]
- Blasse, G. The luminescence of closed-shell transition-metal complexes. New developments. In Luminescence and Energy Transfer; Springer: Berlin/Heidelberg, Germany, 2005; pp. 1–41. [Google Scholar]
- Vlček, A., Jr.; Záliš, S. Modeling of charge-transfer transitions and excited states in d6 transition metal complexes by DFT techniques. Coordin. Chem. Rev. 2007, 251, 258–287. [Google Scholar] [CrossRef]
- Huo, H.; Shen, X.; Wang, C.; Zhang, L.; Röse, P.; Chen, L.-A.; Harms, K.; Marsch, M.; Hilt, G.; Meggers, E. Asymmetric photoredox transition-metal catalysis activated by visible light. Nature 2014, 515, 100–103. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wang, B.; Li, X.; Kang, L.; Chen, Y.; Chen, Y.; Sun, H.; Zeng, Q. Facile synthesis of self-activated oxyfluorotungstate phosphor with high QE and its thermal quenching. J. Alloys Compd. 2019, 770, 559–563. [Google Scholar] [CrossRef]
- Zhao, D.; Zhao, J.; Fan, Y.-C.; Ma, Z.; Zhang, R.-J.; Liu, B.-Z. Synthesis, crystal structure and luminescent properties of a new pyrochlore type tungstate CsGa0.333W1.667O6. Physica B 2018, 539, 97–100. [Google Scholar] [CrossRef]
- Zhang, M.; Lian, Z.; Wang, Y.; Pan, S. Nonlinear optical and self-activated luminescent properties of A2W3 O10 (A = Rb and Cs). RSC Adv. 2016, 6, 39234–39239. [Google Scholar] [CrossRef]
- Wu, S.; Xiong, P.; Liu, Q.; Xiao, Y.; Sun, Y.; Song, E.; Chen, Y. Self-activated tungstate phosphor for near-infrared light-emitting diodes. Adv. Opt. Mater. 2022, 10, 2201718. [Google Scholar] [CrossRef]
- Hirai, D.; Yajima, T.; Nawa, K.; Kawamura, M.; Hiroi, Z. Anisotropic triangular lattice realized in rhenium oxychlorides A3ReO5Cl2 (A = Ba, Sr). Inorg. Chem. 2020, 59, 10025–10033. [Google Scholar] [CrossRef]
- Li, Y.; Hirosaki, N.; Xie, R.; Takeka, T.; Mitomo, M. Crystal, electronic structures and photoluminescence properties of rare-earth doped LiSi2N3. J. Solid State Chem. 2009, 182, 301–311. [Google Scholar] [CrossRef]
- Cavalcante, L.; Longo, V.; Sczancoski, J.; Almeida, M.; Batista, A.; Varela, J.A.; Orlandi, M.O.; Longo, E.; Li, M.S. Electronic structure, growth mechanism and photoluminescence of CaWO4 crystals. CrystEngComm 2012, 14, 853–868. [Google Scholar] [CrossRef]
- Qian, H.; Zhang, J.; Yin, L. Crystal structure and optical properties of white light-emitting Y2WO6:Sm3+ phosphor with excellent color rendering. RSC Adv. 2013, 3, 9029–9034. [Google Scholar] [CrossRef]
- Shi, F.; Meng, J.; Ren, Y.; Su, Q. Structure, luminescence and magnetic properties of AgLnW2O8 (Ln = Eu, Gd, Tb and Dy) compounds. J. Phys. Chem. Solids 1998, 59, 105–110. [Google Scholar] [CrossRef]
- Trung, D.; Tu, N.; Quang, N.; Tran, M.; Du, N.; Huy, P. Non-rare-earth dual green and red-emitting Mn-doped ZnAl2O4 phosphors for potential application in plan-growth LEDs. J. Alloys Compd. 2020, 845, 156326. [Google Scholar] [CrossRef]
- Liu, Z.; Dong, Y.; Fu, M.; Wang, C. Highly efficient rare-earth free vanadate phosphors for WLEDs. Dalton Trans. 2023, 52, 16819–16828. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Zhong, Y.; Su, T.; Wang, W.; Pan, Y.; Wei, X.; Li, Y. Structure and luminescence characteristics of self-activated vanadate garnet phosphors. Phys. Chem. Chem. Phys. 2024, 26, 25048–25056. [Google Scholar] [CrossRef]
- Kim, Y.H.; Arunkumar, P.; Kim, B.Y.; Unithrattil, S.; Kim, E.; Moon, S.-H.; Hyun, J.Y.; Kim, K.H.; Lee, D.; Lee, J.-S. A zero-thermal-quenching phosphor. Nat. Mater. 2017, 16, 543–550. [Google Scholar] [CrossRef]
- Amachraa, M.; Wang, Z.; Chen, C.; Hariyani, S.; Tang, H.; Brgoch, J.; Ong, S.P. Predicting thermal quenching in inorganic phosphors. Chem. Mater. 2020, 32, 6256–6265. [Google Scholar] [CrossRef]
- Sharma, V.; Maurya, S.; Rao, A. Photoluminescence and Optical Studies of a Temperature Sustainable Dy3+ Doped Silicate Phosphor for Photonic Applications. In Proceedings of the International Conference on Advanced Functional Materials and Devices, New Delhi, India, 13–15 March 2023; Springer: Singapore, 2023; pp. 127–136. [Google Scholar]
- Treadaway, M.J.; Powell, R.C. Luminescence of calcium tungstate crystals. J. Chem. Phys. 1974, 61, 4003–4011. [Google Scholar] [CrossRef]
- De Santana, Y.V.; Gomes, J.E.C.; Matos, L.; Cruvinel, G.H.; Perrin, A.; Perrin, C.; Andrès, J.; Varela, J.A.; Longo, E. Silver molybdate and silver tungstate nanocomposites with enhanced photoluminescence. Nanomater. Nanotechno. 2014, 4, 22. [Google Scholar] [CrossRef]
- Hazenkamp, M.; Voogt, E.; Blasse, G. Luminescence of two dioxod0 transition-metal complexes: K2MoO2F4·H2O and NaWO2PO4. J. Solid State Chem. 1992, 101, 26–31. [Google Scholar] [CrossRef]
- Ni, W.; Zhang, C.; Liu, H.; Wang, M.; Zou, Y.; Liu, W.; Ding, S. Trivalent terbium host-sensitized orthoniobate green phosphor with high luminescence thermal stability for promising backlighting white light-emitting diodes. J. Mater. Sci. Mater. Electron. 2024, 35, 1562. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, H.; Li, Y.; Liu, Z.; Wan, J.; Hu, Y. Synthesis of Sr2Ta2O7:Eu3+ red phosphor and its luminescence characteristics. J. Mater. Sci. Mater. Electron. 2023, 34, 1740. [Google Scholar] [CrossRef]
Formula | Ba3WO5Cl2 | Refined Ba3WO5Cl2 |
---|---|---|
Symmetry | Orthorhombic | Orthorhombic |
Space group# | C m c m (63) | C m c m (63) |
a/Å | 5.796 (2) | 5.783 (9) |
b/Å | 13.825 (2) | 13.836 (7) |
c/Å | 11.469 (2) | 11.466 (2) |
Z | 4 | 4 |
V/Å3 | 919.01 (38) | 919.14 (22) |
Rp | - | 0.0234 |
Rwp | - | 0.0164 |
χ2 | - | 1.250 |
Atom | Ox. | Wyck. | Site | x/a | y/b | z/c | U [Å2] |
---|---|---|---|---|---|---|---|
Ba1 | 2 | 8f | m | 1/2 | 0.1521 (1) | 0.4555 (1) | 0.0025 (6) |
Ba2 | 2 | 4c | m2m | 1/2 | 0.4082 (1) | 1/4 | 0.0025 (6) |
W1 | 6 | 4c | m2m | 0 | 0.2457 (1) | 1/4 | 0.0025 (6) |
Cl1 | −1 | 4a | 2/m | 0 | 0 | 0 | 0.0025 (6) |
Cl2 | −1 | 4c | m2m | 0 | 0.4947 (5) | 1/4 | 0.0025 (6) |
O1 | −2 | 16h | 1 | 0.2242(13) | 0.2809 (5) | 0.1363 (6) | 0.0025 (6) |
O2 | −2 | 4c | m2m | 0 | 0.119 (2) | 1/4 | 0.0025 (6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Zhou, S.; Meng, J.; Zhang, Y.; Zhang, J.; Ma, Q.; Qin, L.; Luo, M. The Crystal Structure and Luminescence Behavior of Self-Activated Halotungstates Ba3WO5Cl2 for W-LEDs Applications. Nanomaterials 2025, 15, 311. https://doi.org/10.3390/nano15040311
Zhang L, Zhou S, Meng J, Zhang Y, Zhang J, Ma Q, Qin L, Luo M. The Crystal Structure and Luminescence Behavior of Self-Activated Halotungstates Ba3WO5Cl2 for W-LEDs Applications. Nanomaterials. 2025; 15(4):311. https://doi.org/10.3390/nano15040311
Chicago/Turabian StyleZhang, Liuyang, Shijin Zhou, Jiani Meng, Yuxin Zhang, Jiarui Zhang, Qinlan Ma, Lin Qin, and Man Luo. 2025. "The Crystal Structure and Luminescence Behavior of Self-Activated Halotungstates Ba3WO5Cl2 for W-LEDs Applications" Nanomaterials 15, no. 4: 311. https://doi.org/10.3390/nano15040311
APA StyleZhang, L., Zhou, S., Meng, J., Zhang, Y., Zhang, J., Ma, Q., Qin, L., & Luo, M. (2025). The Crystal Structure and Luminescence Behavior of Self-Activated Halotungstates Ba3WO5Cl2 for W-LEDs Applications. Nanomaterials, 15(4), 311. https://doi.org/10.3390/nano15040311