Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = exact stochastic-fractional solutions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1929 KiB  
Article
Dynamical Behavior of Solitary Waves for the Space-Fractional Stochastic Regularized Long Wave Equation via Two Distinct Approaches
by Muneerah Al Nuwairan, Bashayr Almutairi and Anwar Aldhafeeri
Mathematics 2025, 13(13), 2193; https://doi.org/10.3390/math13132193 - 4 Jul 2025
Viewed by 194
Abstract
This study investigates the influence of multiplicative noise—modeled by a Wiener process—and spatial-fractional derivatives on the dynamics of the space-fractional stochastic Regularized Long Wave equation. By employing a complete discriminant polynomial system, we derive novel classes of fractional stochastic solutions that capture the [...] Read more.
This study investigates the influence of multiplicative noise—modeled by a Wiener process—and spatial-fractional derivatives on the dynamics of the space-fractional stochastic Regularized Long Wave equation. By employing a complete discriminant polynomial system, we derive novel classes of fractional stochastic solutions that capture the complex interplay between stochasticity and nonlocality. Additionally, the variational principle, derived by He’s semi-inverse method, is utilized, yielding additional exact solutions that are bright solitons, bright-like solitons, kinky bright solitons, and periodic structures. Graphical analyses are presented to clarify how variations in the fractional order and noise intensity affect essential solution features, such as amplitude, width, and smoothness, offering deeper insight into the behavior of such nonlinear stochastic systems. Full article
Show Figures

Figure 1

13 pages, 958 KiB  
Article
An Averaging Principle for Hilfer Fractional Stochastic Evolution Equations with Non-Instantaneous Impulses
by Beibei Li, Junyan Bao and Peiguang Wang
Fractal Fract. 2025, 9(6), 340; https://doi.org/10.3390/fractalfract9060340 - 26 May 2025
Viewed by 248
Abstract
This paper investigates non-instantaneous impulsive Hilfer fractional stochastic evolution equations. To obtain a more accurate convergence rate, an equivalent form of the above equation is derived by the time-scale separation method. Then, we prove that the solution of the equivalent equation converges to [...] Read more.
This paper investigates non-instantaneous impulsive Hilfer fractional stochastic evolution equations. To obtain a more accurate convergence rate, an equivalent form of the above equation is derived by the time-scale separation method. Then, we prove that the solution of the equivalent equation converges to that of the averaged equation. Furthermore, we estimate the convergence rate between the exact and approximate solutions of the equation. Finally, we provide an example to justify our result. Full article
(This article belongs to the Section General Mathematics, Analysis)
Show Figures

Figure 1

25 pages, 1286 KiB  
Article
Solving Fractional Stochastic Differential Equations via a Bilinear Time-Series Framework
by Rami Alkhateeb, Ma’mon Abu Hammad, Basma AL-Shutnawi, Nabil Laiche and Zouaoui Chikr El Mezouar
Symmetry 2025, 17(5), 764; https://doi.org/10.3390/sym17050764 - 15 May 2025
Viewed by 497
Abstract
This paper introduces a novel numerical approach for solving fractional stochastic differential equations (FSDEs) using bilinear time-series models, driven by the Caputo–Katugampola (C-K) fractional derivative. The C-K operator generalizes classical fractional derivatives by incorporating an additional parameter, enabling the enhanced modeling of memory [...] Read more.
This paper introduces a novel numerical approach for solving fractional stochastic differential equations (FSDEs) using bilinear time-series models, driven by the Caputo–Katugampola (C-K) fractional derivative. The C-K operator generalizes classical fractional derivatives by incorporating an additional parameter, enabling the enhanced modeling of memory effects and hereditary properties in stochastic systems. The primary contribution of this work is the development of an efficient numerical framework that combines bilinear time-series discretization with the C-K derivative to approximate solutions for FSDEs, which are otherwise analytically intractable due to their nonlinear and memory-dependent nature. We rigorously analyze the impact of fractional-order dynamics on system behavior. The bilinear time-series framework provides a computationally efficient alternative to traditional methods, leveraging multiplicative interactions between past observations and stochastic innovations to model complex dependencies. A key advantage of our approach is its flexibility in handling both stochasticity and fractional-order effects, making it suitable for applications in a famous nuclear physics model. To validate the method, we conduct a comparative analysis between exact solutions and numerical approximations, evaluating convergence properties under varying fractional orders and discretization steps. Our results demonstrate robust convergence, with simulations highlighting the superior accuracy of the C-K operator over classical fractional derivatives in preserving system dynamics. Additionally, we provide theoretical insights into the stability and error bounds of the discretization scheme. Using the changes in the number of simulations and the operator parameters of Caputo–Katugampola, we can extract some properties of the stochastic fractional differential model, and also note the influence of Brownian motion and its formulation on the model, the main idea posed in our contribution based on constructing the fractional solution of a proposed fractional model using known bilinear time series illustrated by application in nuclear physics models. Full article
Show Figures

Figure 1

18 pages, 1218 KiB  
Article
Modification to an Auxiliary Function Method for Solving Space-Fractional Stochastic Regularized Long-Wave Equation
by Muneerah Al Nuwairan and Adel Elmandouh
Fractal Fract. 2025, 9(5), 298; https://doi.org/10.3390/fractalfract9050298 - 4 May 2025
Cited by 2 | Viewed by 352
Abstract
This study aims to explore the effect of spatial-fractional derivatives and the multiplicative standard Wiener process on the solutions of the stochastic fractional regularized long-wave equation (SFRLWE) and contribute to its analysis. We introduce a new systematic method that combines the auxiliary function [...] Read more.
This study aims to explore the effect of spatial-fractional derivatives and the multiplicative standard Wiener process on the solutions of the stochastic fractional regularized long-wave equation (SFRLWE) and contribute to its analysis. We introduce a new systematic method that combines the auxiliary function method with the complete discriminant polynomial system. This method proves to be effective in discovering precise solutions for stochastic fractional partial differential equations (SFPDEs), including special cases. Applying this method to the SFRLWE yields new exact solutions, offering fresh insights. We investigated how noise affects stochastic solutions and discovered that more intense noise can result in flatter surfaces. We note that multiplicative noise can stabilize the solution, and we show how fractional derivatives influence the dynamics of noise. We found that the noise strength and fractional derivative affect the width, amplitude, and smoothness of the obtained solutions. Additionally, we conclude that multiplicative noise impacts and stabilizes the behavior of SFRLWE solutions. Full article
Show Figures

Figure 1

26 pages, 5784 KiB  
Article
Certain Analytic Solutions for Time-Fractional Models Arising in Plasma Physics via a New Approach Using the Natural Transform and the Residual Power Series Methods
by Asad Freihat, Mohammed Alabedalhadi, Shrideh Al-Omari, Sharifah E. Alhazmi, Shaher Momani and Mohammed Al-Smadi
Fractal Fract. 2025, 9(3), 152; https://doi.org/10.3390/fractalfract9030152 - 28 Feb 2025
Viewed by 533
Abstract
This paper studies three time-fractional models that arise in plasma physics: the modified Korteweg–deVries–Zakharov–Kuznetsov equation, the stochastic potential Korteweg–deVries equation, and the forced Korteweg–deVries equation. These equations are significant in plasma physics for modeling nonlinear ion acoustic waves and thus helping us to [...] Read more.
This paper studies three time-fractional models that arise in plasma physics: the modified Korteweg–deVries–Zakharov–Kuznetsov equation, the stochastic potential Korteweg–deVries equation, and the forced Korteweg–deVries equation. These equations are significant in plasma physics for modeling nonlinear ion acoustic waves and thus helping us to understand wave dynamics in plasmas. We introduce a new approach that relies on a new fractional expansion in the natural transform space and residual power series method to construct analytical solutions to the governing models. We investigate the theoretical analysis of the proposed method for these equations to expose this approach’s applicability, efficiency, and effectiveness in constructing analytical solutions to the governing equations. Moreover, we present a comparative discussion between the solutions derived during the work and those given in the literature to confirm that the proposed approach generates analytical solutions that rapidly converge to exact solutions, which proves the effectiveness of the proposed method. Full article
Show Figures

Figure 1

14 pages, 3979 KiB  
Article
Exploring the Exact Solution of the Space-Fractional Stochastic Regularized Long Wave Equation: A Bifurcation Approach
by Bashayr Almutairi, Muneerah Al Nuwairan and Anwar Aldhafeeri
Fractal Fract. 2024, 8(5), 298; https://doi.org/10.3390/fractalfract8050298 - 18 May 2024
Cited by 3 | Viewed by 1432
Abstract
This study explores the effects of using space-fractional derivatives and adding multiplicative noise, modeled by a Wiener process, on the solutions of the space-fractional stochastic regularized long wave equation. New fractional stochastic solutions are constructed, and the consistency of the obtained solutions is [...] Read more.
This study explores the effects of using space-fractional derivatives and adding multiplicative noise, modeled by a Wiener process, on the solutions of the space-fractional stochastic regularized long wave equation. New fractional stochastic solutions are constructed, and the consistency of the obtained solutions is examined using the transition between phase plane orbits. Their bifurcation and dependence on initial conditions are investigated. Some of these solutions are shown graphically, illustrating both the individual and combined influences of fractional order and noise on selected solutions. These effects appear as alterations in the amplitude and width of the solutions, and as variations in their smoothness. Full article
(This article belongs to the Special Issue Fractional Systems, Integrals and Derivatives: Theory and Application)
Show Figures

Figure 1

18 pages, 337 KiB  
Article
Numerical Approximation for a Stochastic Fractional Differential Equation Driven by Integrated Multiplicative Noise
by James Hoult and Yubin Yan
Mathematics 2024, 12(3), 365; https://doi.org/10.3390/math12030365 - 23 Jan 2024
Cited by 1 | Viewed by 1435
Abstract
We consider a numerical approximation for stochastic fractional differential equations driven by integrated multiplicative noise. The fractional derivative is in the Caputo sense with the fractional order α(0,1), and the non-linear terms satisfy the global Lipschitz [...] Read more.
We consider a numerical approximation for stochastic fractional differential equations driven by integrated multiplicative noise. The fractional derivative is in the Caputo sense with the fractional order α(0,1), and the non-linear terms satisfy the global Lipschitz conditions. We first approximate the noise with the piecewise constant function to obtain the regularized stochastic fractional differential equation. By applying Minkowski’s inequality for double integrals, we establish that the error between the exact solution and the solution of the regularized problem has an order of O(Δtα) in the mean square norm, where Δt denotes the step size. To validate our theoretical conclusions, numerical examples are presented, demonstrating the consistency of the numerical results with the established theory. Full article
25 pages, 375 KiB  
Article
Spatial Discretization for Stochastic Semilinear Superdiffusion Driven by Fractionally Integrated Multiplicative Space–Time White Noise
by James A. Hoult and Yubin Yan
Foundations 2023, 3(4), 763-787; https://doi.org/10.3390/foundations3040043 - 6 Dec 2023
Viewed by 1301
Abstract
We investigate the spatial discretization of a stochastic semilinear superdiffusion problem driven by fractionally integrated multiplicative space–time white noise. The white noise is characterized by its properties of being white in both space and time, and the time fractional derivative is considered in [...] Read more.
We investigate the spatial discretization of a stochastic semilinear superdiffusion problem driven by fractionally integrated multiplicative space–time white noise. The white noise is characterized by its properties of being white in both space and time, and the time fractional derivative is considered in the Caputo sense with an order α∈ (1, 2). A spatial discretization scheme is introduced by approximating the space–time white noise with the Euler method in the spatial direction and approximating the second-order space derivative with the central difference scheme. By using the Green functions, we obtain both exact and approximate solutions for the proposed problem. The regularities of both the exact and approximate solutions are studied, and the optimal error estimates that depend on the smoothness of the initial values are established. Full article
11 pages, 2677 KiB  
Article
Effects of the Wiener Process and Beta Derivative on the Exact Solutions of the Kadomtsev–Petviashvili Equation
by Farah M. Al-Askar, Clemente Cesarano and Wael W. Mohammed
Axioms 2023, 12(8), 748; https://doi.org/10.3390/axioms12080748 - 29 Jul 2023
Cited by 11 | Viewed by 1066
Abstract
We take into account the (2 + 1)-dimensional stochastic Kadomtsev–Petviashvili equation with beta-derivative (SKPE-BD) in this paper. To develop new hyperbolic, trigonometric, elliptic, and rational solutions, the Riccati equation and Jacobi elliptic function methods are employed. Because the KP equation is required for [...] Read more.
We take into account the (2 + 1)-dimensional stochastic Kadomtsev–Petviashvili equation with beta-derivative (SKPE-BD) in this paper. To develop new hyperbolic, trigonometric, elliptic, and rational solutions, the Riccati equation and Jacobi elliptic function methods are employed. Because the KP equation is required for explaining the development of quasi-one-dimensional shallow-water waves, the solutions obtained can be used to interpret various attractive physical phenomena. To display how the multiplicative white noise and beta-derivative impact the exact solutions of the SKPE-BD, we plot a few graphs in MATLAB and display different 3D and 2D figures. We deduce how multiplicative noise stabilizes the solutions of SKPE-BD at zero. Full article
(This article belongs to the Special Issue Mathematical Models and Simulations)
Show Figures

Figure 1

19 pages, 724 KiB  
Article
Analytical and Computational Analysis of Fractional Stochastic Models Using Iterated Itô Integrals
by Adeeb Noor, Mohammed Bazuhair and Mohamed El-Beltagy
Fractal Fract. 2023, 7(8), 575; https://doi.org/10.3390/fractalfract7080575 - 26 Jul 2023
Cited by 3 | Viewed by 1131
Abstract
Biological and financial models are examples of dynamical systems where both stochastic and historical behavior are important to be considered. The fractional Brownian motion (fBM) is commonly used, sometimes with fractional-order derivatives, to model the combined stochastic and fractional effects. Recently, spectral techniques [...] Read more.
Biological and financial models are examples of dynamical systems where both stochastic and historical behavior are important to be considered. The fractional Brownian motion (fBM) is commonly used, sometimes with fractional-order derivatives, to model the combined stochastic and fractional effects. Recently, spectral techniques are used to analyze models with fBM using, e.g., iterated Itô fractional integrals such as the fractional Wiener-Hermite (FWHE). In the current work, FWHE is generalized and adapted to be consistent with the Malliavin calculus approach. The conditions for existence and uniqueness are outlined in addition to the proof of convergence. The solution algorithm is described in detail. Using FWHE, the stochastic fractional model is replaced by a deterministic fractional-order system that can be handled using well-known mathematical tools to evaluate the solution statistics. Analytical solutions can be obtained for many important models such as the fractional stochastic Black–Scholes model. The convergence is studied and compared with the exact solution and high convergence is noticed compared with other techniques. A general numerical algorithm is described to analyze the resultant deterministic system in the case of no feasible analytical solutions. The algorithm is applied to study and simulate the population model with nonlinear losses for different values of the Hurst parameter. The results show the efficiency of FWHE in analyzing practical linear and nonlinear models. Full article
(This article belongs to the Section Numerical and Computational Methods)
Show Figures

Figure 1

12 pages, 431 KiB  
Article
A Numerical Approach of Handling Fractional Stochastic Differential Equations
by Iqbal M. Batiha, Ahmad A. Abubaker, Iqbal H. Jebril, Suha B. Al-Shaikh and Khaled Matarneh
Axioms 2023, 12(4), 388; https://doi.org/10.3390/axioms12040388 - 17 Apr 2023
Cited by 15 | Viewed by 2799
Abstract
This work proposes a new numerical approach for dealing with fractional stochastic differential equations. In particular, a novel three-point fractional formula for approximating the Riemann–Liouville integrator is established, and then it is applied to generate approximate solutions for fractional stochastic differential equations. Such [...] Read more.
This work proposes a new numerical approach for dealing with fractional stochastic differential equations. In particular, a novel three-point fractional formula for approximating the Riemann–Liouville integrator is established, and then it is applied to generate approximate solutions for fractional stochastic differential equations. Such a formula is derived with the use of the generalized Taylor theorem coupled with a recent definition of the definite fractional integral. Our approach is compared with the approximate solution generated by the Euler–Maruyama method and the exact solution for the purpose of verifying our findings. Full article
(This article belongs to the Special Issue Stochastic Processes: Theory and Application)
Show Figures

Figure 1

13 pages, 1596 KiB  
Article
Soliton Solutions of Fractional Stochastic Kraenkel–Manna–Merle Equations in Ferromagnetic Materials
by Wael W. Mohammed, M. El-Morshedy, Clemente Cesarano and Farah M. Al-Askar
Fractal Fract. 2023, 7(4), 328; https://doi.org/10.3390/fractalfract7040328 - 14 Apr 2023
Cited by 20 | Viewed by 2028
Abstract
In this study, we take into account the fractional stochastic Kraenkel–Manna–Merle system (FSKMMS). The mapping approach may be used to produce various type of stochastic fractional solutions, such as elliptic, hyperbolic, and trigonometric functions. Solutions to the Kraenkel–Manna–Merle system equation, which explains the [...] Read more.
In this study, we take into account the fractional stochastic Kraenkel–Manna–Merle system (FSKMMS). The mapping approach may be used to produce various type of stochastic fractional solutions, such as elliptic, hyperbolic, and trigonometric functions. Solutions to the Kraenkel–Manna–Merle system equation, which explains the propagation of a magnetic field in a zero-conductivity ferromagnet, may provide insight into a variety of fascinating scientific phenomena. Moreover, we construct a variety of 3D and 2D graphics in MATLAB to illustrate the influence of the stochastic term and the conformable derivative on the exact solutions of the FSKMMS. Full article
Show Figures

Figure 1

14 pages, 2606 KiB  
Article
A Soft Computing Scaled Conjugate Gradient Procedure for the Fractional Order Majnun and Layla Romantic Story
by Zulqurnain Sabir and Juan L. G. Guirao
Mathematics 2023, 11(4), 835; https://doi.org/10.3390/math11040835 - 7 Feb 2023
Cited by 15 | Viewed by 2301
Abstract
The current study shows the numerical performances of the fractional order mathematical model based on the Majnun and Layla (FO-MML) romantic story. The stochastic computing numerical scheme based on the scaled conjugate gradient neural networks (SCGNNs) is presented to solve the FO-MML. The [...] Read more.
The current study shows the numerical performances of the fractional order mathematical model based on the Majnun and Layla (FO-MML) romantic story. The stochastic computing numerical scheme based on the scaled conjugate gradient neural networks (SCGNNs) is presented to solve the FO-MML. The purpose of providing the solutions of the fractional derivatives is to achieve more accurate and realistic performances of the FO-MML romantic story model. The mathematical model is divided into four dynamics, while the exactness is authenticated through the comparison of obtained and reference Adam results. Moreover, the negligible absolute error enhances the accuracy of the stochastic scheme. Fourteen numbers of neurons have been taken and the information statics are divided into authorization, training, and testing, which are divided into 12%, 77% and 11%, respectively. The reliability, capability, and accuracy of the stochastic SCGNNs is performed through the stochastic procedures using the regression, error histograms, correlation, and state transitions for solving the mathematical model. Full article
Show Figures

Figure 1

12 pages, 1519 KiB  
Article
Effects of M-Truncated Derivative and Multiplicative Noise on the Exact Solutions of the Breaking Soliton Equation
by Wael W. Mohammed, M. El-Morshedy, Abdelkader Moumen, Ekram E. Ali, M. Benaissa and Ahmed E. Abouelregal
Symmetry 2023, 15(2), 288; https://doi.org/10.3390/sym15020288 - 20 Jan 2023
Cited by 17 | Viewed by 2121
Abstract
In this article, the fractional–space stochastic (2+1)-dimensional breaking soliton equation (SFSBSE) is taken into account in the sense of M-Truncated derivative. To get the exact solutions to the SFSBSE, we use the modified F-expansion method. There are several varieties of obtained exact solutions, [...] Read more.
In this article, the fractional–space stochastic (2+1)-dimensional breaking soliton equation (SFSBSE) is taken into account in the sense of M-Truncated derivative. To get the exact solutions to the SFSBSE, we use the modified F-expansion method. There are several varieties of obtained exact solutions, including trigonometric and hyperbolic functions. The attained solutions of the SFSBSE established in this paper extend a number of previously attained results. Moreover, in order to clarify the influence of multiplicative noise and M-Truncated derivative on the behavior and symmetry of the solutions for the SFSBSE, we employ Matlab to plot three-dimensional and two-dimensional diagrams of the exact fractional–stochastic solutions achieved here. In general, a noise term that destroy the symmetry of the solutions increases the solution’s stability. Full article
Show Figures

Figure 1

14 pages, 1229 KiB  
Article
Solitary Wave Solutions of the Fractional-Stochastic Quantum Zakharov–Kuznetsov Equation Arises in Quantum Magneto Plasma
by Wael W. Mohammed, Farah M. Al-Askar, Clemente Cesarano and M. El-Morshedy
Mathematics 2023, 11(2), 488; https://doi.org/10.3390/math11020488 - 16 Jan 2023
Cited by 13 | Viewed by 2155
Abstract
In this paper, we consider the (3 + 1)-dimensional fractional-stochastic quantum Zakharov–Kuznetsov equation (FSQZKE) with M-truncated derivative. To find novel trigonometric, hyperbolic, elliptic, and rational fractional solutions, two techniques are used: the Jacobi elliptic function approach and the modified F-expansion method. We also [...] Read more.
In this paper, we consider the (3 + 1)-dimensional fractional-stochastic quantum Zakharov–Kuznetsov equation (FSQZKE) with M-truncated derivative. To find novel trigonometric, hyperbolic, elliptic, and rational fractional solutions, two techniques are used: the Jacobi elliptic function approach and the modified F-expansion method. We also expand on a few earlier findings. The extended quantum Zakharov–Kuznetsov has practical applications in dealing with quantum electronpositron–ion magnetoplasmas, warm ions, and hot isothermal electrons in the presence of uniform magnetic fields, which makes the solutions obtained useful in analyzing a number of intriguing physical phenomena. We plot our data in MATLAB and display various 3D and 2D graphical representations to explain how the stochastic term and fractional derivative influence the exact solutions of the FSEQZKE. Full article
(This article belongs to the Special Issue Mathematics: 10th Anniversary)
Show Figures

Figure 1

Back to TopTop