Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (201)

Search Parameters:
Keywords = evolutionary conserved features

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2207 KiB  
Article
Mitogenomic Insights into Adaptive Evolution of African Ground Squirrels in Arid Environments
by Yamin Xing, Xibao Wang, Yao Chen, Yongquan Shang, Haotian Cai, Liangkai Wang and Xiaoyang Wu
Diversity 2025, 17(8), 538; https://doi.org/10.3390/d17080538 (registering DOI) - 31 Jul 2025
Viewed by 163
Abstract
African ground squirrels (Xerus spp.), the inhabitants of African arid zones, face extreme heat and water scarcity driving selection for metabolic optimization. We assembled and annotated the first mitogenomes of Xerus inauris and Xerus rutilus (16,525–16,517 bp), revealing conserved vertebrate architecture with [...] Read more.
African ground squirrels (Xerus spp.), the inhabitants of African arid zones, face extreme heat and water scarcity driving selection for metabolic optimization. We assembled and annotated the first mitogenomes of Xerus inauris and Xerus rutilus (16,525–16,517 bp), revealing conserved vertebrate architecture with genus-specific traits. Key features include Xerus rutilus’s elongated ATP6 (680 vs. 605 bp), truncated ATP8ATP6 spacers (4 vs. 43 bp), and tRNA-Pro control regions with 78.1–78.3% AT content. Their nucleotide composition diverged from that of related sciurids, marked by reduced T (25.78–26.9%) and extreme GC skew (−0.361 to −0.376). Codon usage showed strong Arg-CGA bias (RSCU = 3.78–3.88) and species-specific elevations in Xerus rutilus’s UGC-Cys (RSCU = 1.83 vs. 1.17). Phylogenetics positioned Xerus as sister to Ratufa bicolor (Bayesian PP = 0.928; ML = 1.0), aligning with African biogeographic isolation. Critically, we identified significant signatures of positive selection in key mitochondrial genes linked to arid adaptation. Positive selection signals in ND4 (ω = 1.8 × background), ND1, and ATP6 (p < 0.0033) correspond to enhanced proton gradient efficiency and ATP synthesis–molecular adaptations likely crucial for optimizing energy metabolism under chronic water scarcity and thermoregulatory stress in desert environments. Distinct evolutionary rates were observed across mitochondrial genes and complexes: Genes encoding Complex I subunits (ND2, ND6) and Complex III (Cytb) exhibited accelerated evolution in arid-adapted lineages, while genes encoding Complex IV subunits (COXI) and Complex V (ATP8) remained highly conserved. These findings resolve the Xerus mitogenomic diversity, demonstrating adaptive plasticity balancing arid-energy optimization and historical diversification while filling critical genomic gaps for this xeric-adapted lineage. Full article
(This article belongs to the Section Animal Diversity)
Show Figures

Figure 1

22 pages, 9284 KiB  
Article
Comparative Analysis of Tyrosine Hydroxylase Amacrine Cells in the Mammalian Retina: Distribution and Quantification in Mouse, Rat, Ground Squirrel and Macaque Retinas
by Kiyoharu J. Miyagishima, Xiaomin Lai, Amurta Nath, William N. Grimes, Xiyuan Ping, Jeffrey S. Diamond, Morven A. Cameron, Wei Li and Francisco M. Nadal-Nicolás
Int. J. Mol. Sci. 2025, 26(14), 6972; https://doi.org/10.3390/ijms26146972 - 20 Jul 2025
Viewed by 319
Abstract
Dopaminergic amacrine cells (DACs) are a subclass of amacrine cells that modulate retinal processing and light adaptation by releasing dopamine. Although the role of dopamine is largely conserved, their retinal distribution across mammals remains incompletely characterized. In mice, rats, thirteen-lined ground squirrels (TLGSs), [...] Read more.
Dopaminergic amacrine cells (DACs) are a subclass of amacrine cells that modulate retinal processing and light adaptation by releasing dopamine. Although the role of dopamine is largely conserved, their retinal distribution across mammals remains incompletely characterized. In mice, rats, thirteen-lined ground squirrels (TLGSs), and macaques, we systematically compared the localization, number, and topography of DACs by their expression of tyrosine hydroxylase (TH), a crucial enzyme in the biosynthesis of dopamine. In all species examined, TH+ cells were primarily located in the inner nuclear layer; however, there was a species-dependent influence on their number and distribution. Mice exhibited the highest density of TH+cells but completely lacked displaced TH+cells (dTH+cells) in the ganglion cell layer. Despite interspecies variation in the total number of TH+cells in the retina, the overall density in rats, TLGSs, and macaques was similar. Most species displayed a higher density of DACs toward central retinal regions. However, rats exhibited a distinctive dorsal concentration, particularly among dTH+cells. Although most species examined exhibited a similar ratio of TH+cells to Brn3a+ retinal ganglion cells, TLGSs showed a marked reduction, indicating a potentially diminished dopaminergic modulatory role. Species-specific DAC topographies aligned with specialized visual regions, such as the visual streak in TLGS and the macula in macaques. These results reveal both conserved and divergent features of retinal dopamine circuitry, reflecting evolutionary adaptations to visual processing demands. Full article
(This article belongs to the Section Molecular Nanoscience)
Show Figures

Figure 1

24 pages, 3598 KiB  
Article
Comprehensive Analysis of the Complete Mitochondrial Genome of Paeonia ludlowii Reveals a Dual-Circular Structure and Extensive Inter-Organellar Gene Transfer
by Zhefei Zeng, Zhengyan Zhang, Ngawang Norbu, Ngawang Bonjor, Xin Tan, Shutong Zhang, Norzin Tso, Junwei Wang and La Qiong
Biology 2025, 14(7), 854; https://doi.org/10.3390/biology14070854 - 14 Jul 2025
Viewed by 274
Abstract
Paeonia ludlowii, a critically endangered species endemic to Tibet, China, possesses significant ornamental, culinary, and medicinal value. However, its mitochondrial genome remains understudied, limiting insights into its evolutionary mechanisms and constraining conservation genetics applications and molecular breeding programs. We present the first [...] Read more.
Paeonia ludlowii, a critically endangered species endemic to Tibet, China, possesses significant ornamental, culinary, and medicinal value. However, its mitochondrial genome remains understudied, limiting insights into its evolutionary mechanisms and constraining conservation genetics applications and molecular breeding programs. We present the first complete assembly and comprehensive analysis of the P. ludlowii mitochondrial genome. Most remarkably, we discovered that the P. ludlowii mitogenome exhibits an atypical dual-circular structure, representing the first documented occurrence of this architectural feature within the genus Paeonia. The assembled genome spans 314,371 bp and encodes 42 tRNA genes, 3 rRNA genes, and 31 protein-coding genes, with a pronounced adenine–thymine bias. This multipartite genome structure is characterized by abundant repetitive elements (112 functionally annotated SSRs, 33 tandem repeats, and 945 dispersed repeats), which potentially drive genome rearrangements and facilitate adaptive evolution. Analyses of codon usage bias and nucleotide diversity revealed highly conserved gene expression regulation with limited variability. Phylogenetic reconstruction confirms that P. ludlowii, P. suffruticosa, and P. lactiflora form a monophyletic clade, reflecting close evolutionary relationships, while extensive syntenic collinearity with other Paeonia species underscores mitochondrial genome conservation at the genus level. Extensive inter-organellar gene transfer events, particularly from chloroplast to mitochondrion, suggest that such DNA exchanges enhance genetic diversity and promote environmental adaptation. The discovery of the dual-circular architecture provides novel insights into plant mitochondrial genome evolution and structural plasticity. This study elucidates the unique structural characteristics of the P. ludlowii mitochondrial genome and establishes a crucial genetic foundation for developing targeted conservation strategies and facilitating molecular-assisted breeding programs for this endangered species. Full article
Show Figures

Figure 1

22 pages, 536 KiB  
Review
From Detection to Prediction: Advances in m6A Methylation Analysis Through Machine Learning and Deep Learning with Implications in Cancer
by Ruoting Jin, Quan Zou and Ximei Luo
Int. J. Mol. Sci. 2025, 26(14), 6701; https://doi.org/10.3390/ijms26146701 - 12 Jul 2025
Viewed by 449
Abstract
N6-methyladenosine (m6A) represents the most common and thoroughly investigated RNA modification and exerts essential functions in regulating gene expression through influencing the RNA stability, the translation efficiency, alternative splicing, and nuclear export processes. The rapid development of high-throughput sequencing approaches, including miCLIP and [...] Read more.
N6-methyladenosine (m6A) represents the most common and thoroughly investigated RNA modification and exerts essential functions in regulating gene expression through influencing the RNA stability, the translation efficiency, alternative splicing, and nuclear export processes. The rapid development of high-throughput sequencing approaches, including miCLIP and MeRIP-seq, has profoundly transformed epitranscriptomics research. These techniques facilitate the detailed transcriptome-wide profiling of m6A modifications, shedding light on their crucial roles in diverse biological pathways. This review comprehensively examines the identification, mechanisms of regulation, and functional consequences of m6A modifications. It emphasizes their critical roles in physiological contexts, encompassing immune function, neuronal development, and the differentiation of stem cells. Additionally, the review discusses the contributions of m6A dysregulation to pathological conditions, including cancer, neurodegenerative diseases, and disorders of metabolism. We also discuss the development and application of machine-learning algorithms for m6A site prediction, emphasizing the integration of sequence-based, structural, and evolutionary conservation features to enhance the predictive accuracy. Furthermore, the potential of applying the findings from m6A research in precision medicine and drug development is examined. By synthesizing the current knowledge and emerging trends, this review aims to provide a comprehensive understanding of m6A biology and its translational potential, offering new perspectives for future research and therapeutic innovation. Full article
(This article belongs to the Special Issue Molecular Epigenetic Mechanisms in Cognition)
Show Figures

Figure 1

16 pages, 6878 KiB  
Article
Cotton STARD Gene Family: Characterization, Evolution, and Expression Profiles During Salt Stress
by Ruifeng Cui, Jiuguang Sun, Shuyan Li, Yupeng Cui, Cun Rui, Minshan Sun and Wuwei Ye
Genes 2025, 16(7), 813; https://doi.org/10.3390/genes16070813 - 11 Jul 2025
Viewed by 309
Abstract
Background: Cotton, a key global economic crop, suffers yield and quality losses due to salt stress. This study aims to analyze the cotton STARD gene family and its role in salt stress responses. Methods: We conducted a genome-wide analysis of the [...] Read more.
Background: Cotton, a key global economic crop, suffers yield and quality losses due to salt stress. This study aims to analyze the cotton STARD gene family and its role in salt stress responses. Methods: We conducted a genome-wide analysis of the STARD gene family in four cotton species, using phylogenetic trees, chromosomal mapping, and collinearity analyses to explore their evolutionary relationships and expansion mechanisms. We also examined gene structures, conserved motifs, and promoter cis-elements. ResultsSTARD genes are evenly distributed across the four cotton species. Segmental duplication was found to be the main driver of gene expansion, with most pairs undergoing purifying selection. Distinct structural features and potential roles in plant growth and stress responses were identified. Notably, 11 GhSTARD genes showed significant expression changes under salt stress, especially GhSTARD45 in root tissues. Conclusions: This study provides new insights into the function and salt stress response mechanisms of the cotton STARD gene family, suggesting GhSTARD45 plays a key role in root-mediated salt tolerance and highlighting the potential of STARD genes in enhancing cotton’s salt tolerance. Full article
Show Figures

Figure 1

9 pages, 209 KiB  
Review
Glial Diversity and Evolution: Insights from Teleost Fish
by Carla Lucini and Claudia Gatta
Brain Sci. 2025, 15(7), 743; https://doi.org/10.3390/brainsci15070743 - 11 Jul 2025
Viewed by 440
Abstract
Glial cells, once considered mere support for neurons, have emerged as key players in brain function across vertebrates. The historical study of glia dates to the 19th century with the identification of ependymal cells and astrocytes, followed by the discovery of oligodendrocytes and [...] Read more.
Glial cells, once considered mere support for neurons, have emerged as key players in brain function across vertebrates. The historical study of glia dates to the 19th century with the identification of ependymal cells and astrocytes, followed by the discovery of oligodendrocytes and microglia. While neurocentric perspectives overlooked glial functions, recent research highlights their essential roles in neurodevelopment, synapse regulation, brain homeostasis, and neuroimmune responses. In teleost fish, a group comprising over 32,000 species, glial cells exhibit unique properties compared to their mammalian counterparts. Thus, the aim of this review is synthesizing the current literature on fish glial cells, emphasizing their evolutionary significance, diversity, and potential as models for understanding vertebrate neurobiology. Microglia originate from both yolk sac cells and hematopoietic stem cells, forming distinct populations with specialized functions in the adult brain. Neural stem cells, including radial glial cells (RGCs) and neuroepithelial cells, remain active throughout life, supporting continuous neuro- and gliogenesis, a phenomenon far more extensive than in mammals. Ependymocytes line brain ventricles and show structural variability, with some resembling quiescent progenitor cells. Astrocytes are largely absent in most fish species. However, zebrafish exhibit astrocyte-like glial cells which show some structural and functional features in common with mammalian astrocytes. Oligodendrocytes share conserved mechanisms with mammals in myelination and axon insulation. Full article
(This article belongs to the Section Neuroglia)
19 pages, 2035 KiB  
Article
Single Mutation in iolT1 in ptsG-Deficient Corynebacterium glutamicum Enables Growth Boost in Xylose-Containing Media
by Katharina Hofer, Lynn S. Schwardmann, Jung-Won Youn, Volker F. Wendisch and Ralf Takors
Microorganisms 2025, 13(7), 1606; https://doi.org/10.3390/microorganisms13071606 - 8 Jul 2025
Viewed by 441
Abstract
Efficient co-utilization of glucose and xylose from lignocellulosic biomass remains a critical bottleneck limiting the viability of sustainable biorefineries. While Corynebacterium glutamicum has emerged as a promising industrial host due to its robustness, further improvements in mixed-sugar co-utilization are needed. Here, we demonstrate [...] Read more.
Efficient co-utilization of glucose and xylose from lignocellulosic biomass remains a critical bottleneck limiting the viability of sustainable biorefineries. While Corynebacterium glutamicum has emerged as a promising industrial host due to its robustness, further improvements in mixed-sugar co-utilization are needed. Here, we demonstrate how a single amino acid substitution can dramatically transform cellular sugar transport capacity. By combining rational strain engineering with continuous adaptive laboratory evolution, we evolved a ptsG-deficient C. glutamicum strain in glucose–xylose mixtures for 600 h under consistent selection pressure. Whole-genome sequencing revealed a remarkable finding: a single point mutation; exchanging proline for alanine in the myo-inositol/proton symporter IolT1 was sufficient to boost glucose uptake by 83% and xylose uptake by 20%, while increasing the overall growth rate by 35%. This mutation, located in a highly conserved domain, likely disrupts an alpha helical structure, thus enhancing transport function. Reverse engineering confirmed that this single change alone reproduces the evolved phenotype, representing the first report of an engineered IolT1 variant in PTS-independent C. glutamicum that features significantly enhanced substrate uptake. These results both provide an immediately applicable engineering target for biorefinery applications and demonstrate the power of evolutionary approaches to identify non-intuitive solutions to complex metabolic engineering challenges. Full article
(This article belongs to the Special Issue Genetics and Physiology of Corynebacteria II)
Show Figures

Figure 1

14 pages, 2737 KiB  
Article
Strengthening the Role of PSMC5 as a Potential Gene Associated with Neurodevelopmental Disorders
by Mirella Vinci, Antonino Musumeci, Carla Papa, Alda Ragalmuto, Salvatore Saccone, Concetta Federico, Donatella Greco, Vittoria Greco, Francesco Calì and Simone Treccarichi
Int. J. Mol. Sci. 2025, 26(13), 6386; https://doi.org/10.3390/ijms26136386 - 2 Jul 2025
Viewed by 248
Abstract
The 26S proteasome is a large, ATP-dependent proteolytic complex responsible for degrading ubiquitinated proteins in eukaryotic cells. It plays a crucial role in maintaining cellular protein homeostasis by selectively eliminating misfolded, damaged, or regulatory proteins marked for degradation. In this study, whole-exome sequencing [...] Read more.
The 26S proteasome is a large, ATP-dependent proteolytic complex responsible for degrading ubiquitinated proteins in eukaryotic cells. It plays a crucial role in maintaining cellular protein homeostasis by selectively eliminating misfolded, damaged, or regulatory proteins marked for degradation. In this study, whole-exome sequencing (WES) was performed on an individual presenting with developmental delay and mild intellectual disability, as well as on both of his unaffected parents. This analysis identified a de novo variant, c.959C>G (p.Pro320Arg), in the PSMC5 gene. As predicted, this gene shows a very likely autosomal dominant inheritance pattern. Notably, PSMC5 has not previously been associated with any phenotype in the OMIM database. This variant was recently submitted to the ClinVar database as a variant of uncertain significance (VUS) and remains absent in both gnomAD and dbSNP. Notably, it has been identified in six unrelated individuals presenting with clinical features comparable to those observed in the patient described in this study. Multiple in silico prediction tools classified the variant as pathogenic, and a PhyloP conservation score supports strong evolutionary conservation of the mutated nucleotide. Protein structure predictions using the AlphaFold3 algorithm revealed notable structural differences between the mutant and wild-type PSMC5 proteins. We hypothesize that the p.Pro320Arg substitution alters the structure and function of PSMC5 as a regulatory subunit of the 26S proteasome, potentially impairing the stability and activity of the entire complex. Although functional studies are imperative, this study contributes to a deeper understanding of PSMC5, expands the spectrum of associated neurodevelopmental phenotypes, and highlights its potential as a therapeutic target. Furthermore, this study resulted in the submission of the identified variant to the ClinVar database (SCV006083352), where it was classified as pathogenic. Full article
Show Figures

Figure 1

21 pages, 6590 KiB  
Article
Comparative Analysis of the Complete Chloroplast Genomes of Eight Salvia Medicinal Species: Insights into the Deep Phylogeny of Salvia in East Asia
by Yan Du, Yang Luo, Yuanyuan Wang, Jiaxin Li, Chunlei Xiang and Meiqing Yang
Curr. Issues Mol. Biol. 2025, 47(7), 493; https://doi.org/10.3390/cimb47070493 - 27 Jun 2025
Viewed by 367
Abstract
Salvia, a medicinally and economically important genus, is widely used in traditional medicine, agriculture, and horticulture. This study compares the chloroplast genomes of eight East Asian Salvia species to assess genetic diversity, structural features, and evolutionary relationships. Complete chloroplast genomes were sequenced, [...] Read more.
Salvia, a medicinally and economically important genus, is widely used in traditional medicine, agriculture, and horticulture. This study compares the chloroplast genomes of eight East Asian Salvia species to assess genetic diversity, structural features, and evolutionary relationships. Complete chloroplast genomes were sequenced, annotated, and analyzed for gene content, codon usage, and repetitive sequences. Phylogenetic relationships were reconstructed using Maximum Likelihood, Maximum Parsimony and Bayesian inference. The genomes exhibited a conserved quadripartite structure (151,081–152,678 bp, GC content 37.9–38.1%), containing 114 unique genes with consistent arrangement. Codon usage favored A/T endings, with leucine (Leu) most frequent and cysteine (Cys) least. We identified 281 long sequence repeats (LSRs) and 345 simple sequence repeats (SSRs), mostly in non-coding regions. Comparative analysis revealed five hypervariable regions (trnH-psbA, rbcL-accD, petA-psbJ, rpl32-trnL, ycf1) as potential molecular markers. Phylogenetic analysis confirmed the monophyly of East Asian Salvia, dividing them into five clades, with Sect. Sonchifoliae basal. While G1, G3, and G8 were monophyletic, G5 and G6 were paraphyletic, and the G7-G8 relationship challenged traditional classifications. The genomic evidence provides crucial insights for resolving long-standing taxonomic uncertainties and refining the classification system of Salvia. These findings suggest a complex evolutionary history involving hybridization and incomplete lineage sorting, providing valuable genomic insights for Salvia phylogeny, taxonomy, and conservation. Full article
Show Figures

Figure 1

20 pages, 3520 KiB  
Article
Molecular Adjuvant Potential of GCSF and MCSF in Starry Flounder Challenged with Streptococcus parauberis
by Min-Young Sohn, Gyoungsik Kang, Kyung-Ho Kim, Ha-Jeong Son and Chan-Il Park
Animals 2025, 15(13), 1848; https://doi.org/10.3390/ani15131848 - 23 Jun 2025
Cited by 1 | Viewed by 385
Abstract
In fish, the innate immune system is crucial for rapid defense against pathogens. In this study, we performed transcriptome sequencing using next-generation sequencing (NGS) to identify and characterize granulocyte colony-stimulating factor (GCSF) and macrophage colony-stimulating factor (MCSF) in starry [...] Read more.
In fish, the innate immune system is crucial for rapid defense against pathogens. In this study, we performed transcriptome sequencing using next-generation sequencing (NGS) to identify and characterize granulocyte colony-stimulating factor (GCSF) and macrophage colony-stimulating factor (MCSF) in starry flounder (Platichthys stellatus). The GCSF gene (594 bp, 198 aa) features a conserved IL-6 domain, while the MCSF gene (621 bp, 207 aa) contains a predicted transmembrane region. Phylogenetic analysis confirmed high evolutionary conservation with other marine species. Quantitative real-time PCR revealed that GCSF is highly expressed in the skin, peripheral blood leukocytes, and muscle, with significant up-regulation in immune organs following Streptococcus parauberis infection; MCSF exhibited a similar tissue-specific expression pattern. Recombinant GCSF (rGCSF) was produced using a cell-free system and effectively enhanced leukocyte phagocytic activity at an optimal concentration of 150 μg/mL, without causing cytotoxicity in hemolytic assays. In contrast, rMCSF exhibited folding issues during purification. These findings highlight the potential of rGCSF as a molecular adjuvant to enhance immune responses in aquaculture. This study provides foundational knowledge for developing cytokine-based adjuvants, which could reduce antibiotic dependency and enhance vaccine efficacy in sustainable aquaculture systems. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

19 pages, 4558 KiB  
Article
Genome-Wide Characterization and Expression Profile of the Jumonji-C Family Genes in Populus alba × Populus glandulosa Reveal Their Potential Roles in Wood Formation
by Zhenghao Geng, Rui Liu and Xiaojing Yan
Int. J. Mol. Sci. 2025, 26(12), 5666; https://doi.org/10.3390/ijms26125666 - 13 Jun 2025
Viewed by 436
Abstract
The Jumonji C (JMJ-C) domain-containing gene family regulates epigenetic and developmental processes in plants. We identified 55 JMJ-C genes in Populus alba × Populus glandulosa using HMM and BLASTp analyses. Chromosomal mapping revealed an asymmetric distribution with conserved synteny. Phylogenetic reconstruction revealed that [...] Read more.
The Jumonji C (JMJ-C) domain-containing gene family regulates epigenetic and developmental processes in plants. We identified 55 JMJ-C genes in Populus alba × Populus glandulosa using HMM and BLASTp analyses. Chromosomal mapping revealed an asymmetric distribution with conserved synteny. Phylogenetic reconstruction revealed that PagJMJ genes segregate into five evolutionarily conserved subfamilies, exhibiting classification patterns identical to those of Arabidopsis thaliana and Populus trichocarpa. Synteny analysis indicated a closer relationship with P. trichocarpa than with A. thaliana. Motif and promoter analyses highlighted subfamily-specific features and diverse cis-elements, particularly light-responsive motifs. Expression profiling revealed tissue-specific patterns, with key genes enriched in roots, vascular tissues, and leaves. Developmental analysis in cambium and xylem identified four expression clusters related to wood formation. Co-expression analysis identified six key PagJMJ genes (PagJMJ6, 29, 34, 39, 53, and 55) strongly associated with wood formation-related transcription factors. ChIP-qPCR analysis revealed that key genes co-expressed with PagJMJ genes were marked by H3K4me3 and H3K9me2 modifications. These findings provide insights into the evolutionary and functional roles of PagJMJ genes in poplar vascular development and wood formation. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

10 pages, 1874 KiB  
Article
Crystal Structural Analysis of Oryza sativa SGT1-TPR Domain
by Yongqi Chang, Lifeng Ji, Yiling Qin, Yaqi Yi, Chen Qian, Jie Jiang, Tian Liu, Junfeng Liu and Xin Zhang
Crystals 2025, 15(6), 543; https://doi.org/10.3390/cryst15060543 - 6 Jun 2025
Viewed by 734
Abstract
SGT1 (the suppressor of the G2 allele of Skp1) functions as an adaptor protein that positively regulates plant defense and developmental processes. It comprises three functional domains: the tetratricopeptide repeat (TPR) domain, Chord SGT1 motif (CS), and SGT1-specific motif (SGS). In this study, [...] Read more.
SGT1 (the suppressor of the G2 allele of Skp1) functions as an adaptor protein that positively regulates plant defense and developmental processes. It comprises three functional domains: the tetratricopeptide repeat (TPR) domain, Chord SGT1 motif (CS), and SGT1-specific motif (SGS). In this study, we resolved the crystal structure of the Oryza sativa OsSGT1-TPR domain at 1.53 Å resolution. Structural analysis showed that the TPR domain adopts a homo-dimeric architecture stabilized by salt bridges (mediated by K52/R79/R109) and hydrophobic interactions (involving F17). Functional validation through gel filtration chromatography revealed that the disruption of the dimerization interface via F17A/K52A/R79A mutations caused complete dissociation into monomers, establishing the essential role of TPR-mediated oligomerization in maintaining the structural stability of full-length OsSGT1. Yeast two-hybrid assays showed that the dimerization disruption of SGT1 mutants retained the interaction with OsHSP81-2 (an HSP90 ortholog) and OsRAR1, indicating that SGT1 oligomerization serves primarily as a structural stabilizer rather than a prerequisite for partner interaction. Evolutionary analysis through the sequence alignment of plant SGT1 proteins revealed the conservation of the dimerization interface residues. This study provides structural insights into the conserved molecular features of SGT1 proteins and highlights the functional significance of their oligomerization state. Full article
(This article belongs to the Section Biomolecular Crystals)
Show Figures

Figure 1

21 pages, 2707 KiB  
Article
Distribution of Genetic Determinants Associated with CRISPR-Cas Systems and Resistance to Antibiotics in the Genomes of Archaea and Bacteria
by Laura Antequera-Zambrano, Ángel Parra-Sánchez, Lenin González-Paz, Eduardo Fernandez and Gema Martinez-Navarrete
Microorganisms 2025, 13(6), 1321; https://doi.org/10.3390/microorganisms13061321 - 6 Jun 2025
Viewed by 1398
Abstract
The CRISPR-Cas system represents an adaptive immune mechanism found across diverse Archaea and Bacteria, allowing them to defend against invading genetic elements such as viruses and plasmids. Despite its broad distribution, the prevalence and complexity of CRISPR-Cas systems differ significantly between these domains. [...] Read more.
The CRISPR-Cas system represents an adaptive immune mechanism found across diverse Archaea and Bacteria, allowing them to defend against invading genetic elements such as viruses and plasmids. Despite its broad distribution, the prevalence and complexity of CRISPR-Cas systems differ significantly between these domains. This study aimed to characterize and compare the genomic distribution, structural features, and functional implications of CRISPR-Cas systems and associated antibiotic resistance genes in 30 archaeal and 30 bacterial genomes. Through bioinformatic analyses of CRISPR arrays, cas gene architectures, direct repeats (DRs), and thermodynamic properties, we observed that Archaea exhibit a higher number and greater complexity of CRISPR loci, with more diverse cas gene subtypes exclusively of Class 1. Bacteria, in contrast, showed fewer CRISPR loci, comprising a mix of Class 1 and Class 2 systems, with Class 1 representing the majority (~75%) of the detected systems. Notably, Bacteria lacking CRISPR-Cas systems displayed a higher prevalence of antibiotic resistance genes, suggesting a possible inverse correlation between the presence of these immune systems and the acquisition of such genes. Phylogenetic and thermodynamic analyses further highlighted domain-specific adaptations and conservation patterns. These findings support the hypothesis that CRISPR-Cas systems play a dual role: first, as a defense mechanism preventing the integration of foreign genetic material—reflected in the higher complexity and diversity of CRISPR loci in Archaea—and second, as a regulator of horizontal gene transfer, evidenced by the lower frequency of antibiotic resistance genes in organisms with active CRISPR-Cas systems. Together, these results underscore the evolutionary and functional diversification of CRISPR-Cas systems in response to environmental and selective pressures. Full article
(This article belongs to the Special Issue Microbial Evolutionary Genomics and Bioinformatics)
Show Figures

Graphical abstract

16 pages, 2906 KiB  
Article
Characterization of Walls Are Thin 1 Family in Cucumis sativus and Functional Identification of CsWAT1-20 in Response to Podosphaera xanthii
by Jinghang Hong, Hongyan Zhao, Youmei Yuan, Jinming Wu, Yang Yu, Na Cui, Xiangnan Meng and Haiyan Fan
Horticulturae 2025, 11(6), 620; https://doi.org/10.3390/horticulturae11060620 - 1 Jun 2025
Viewed by 510
Abstract
Cucumber (Cucumis sativus) is an economically important vegetable but powdery mildew (caused by Podosphaera xanthii) limits cucumber production. The WALLS ARE THIN1 (WAT1) gene is crucial for regulating secondary cell wall thickness and is pivotal in plant immune [...] Read more.
Cucumber (Cucumis sativus) is an economically important vegetable but powdery mildew (caused by Podosphaera xanthii) limits cucumber production. The WALLS ARE THIN1 (WAT1) gene is crucial for regulating secondary cell wall thickness and is pivotal in plant immune responses. However, the role of WAT1 in cucumber defense against P. xanthii remains poorly characterized. In this study, we identified 47 CsWAT1 genes in the C. sativus genome and classified them into five clusters. Comprehensive analyses of the chromosome location, gene structure, and protein motifs revealed both conserved evolutionary and functional characteristics across plant species, as well as novel features specific to cucumber. Promoter analysis suggested that nine CsWAT1 genes may participate in the cucumber response to P. xanthii stress. Further expression profiling and functional analysis indicated that CsWAT1-20 positively regulates cucumber defense against P. xanthii stress. Our results provide fundamental insights into the characterization of CsWAT1 genes and the function of CsWAT1-20 in P. xanthii defense, laying the groundwork for further studies on the roles of the CsWAT1 gene family in cucumber plants. Full article
(This article belongs to the Special Issue New Insights into Protected Horticulture Stress)
Show Figures

Figure 1

18 pages, 3132 KiB  
Article
Comparative and Phylogenetic Analysis of the Complete Chloroplast Genomes of Lithocarpus Species (Fagaceae) in South China
by Shi Shi, Ziyan Zhang, Xinhao Lin, Linjing Lu, Keyi Fu, Miaoxin He, Shiou Yih Lee, Hui Yin and Jingwei Yu
Genes 2025, 16(6), 616; https://doi.org/10.3390/genes16060616 - 22 May 2025
Viewed by 590
Abstract
Background/Objectives: In South China, Lithocarpus species dominate mixed evergreen broadleaf forests, forming symbiotic relationships with ectomycorrhizal fungi and serving as food resources for diverse fauna, including frugivorous birds and mammals. The limited understanding of chloroplast genomes in this genus restricts our insights [...] Read more.
Background/Objectives: In South China, Lithocarpus species dominate mixed evergreen broadleaf forests, forming symbiotic relationships with ectomycorrhizal fungi and serving as food resources for diverse fauna, including frugivorous birds and mammals. The limited understanding of chloroplast genomes in this genus restricts our insights into its species diversity. This study investigates the chloroplast genome (cp genome) sequences from seven Lithocarpus species, aims to elucidate their structural variation, evolutionary relationships, and functional gene content to provide effective support for future genetic conservation and breeding efforts. Methods: We isolated total DNA from fresh leaves and sequenced the complete cp genomes of these samples. To develop a genomic resource and clarify the evolutionary relationships within Lithocarpus species, comparative chloroplast genome studies and phylogenetic investigations were performed. Results: All studied species exhibited a conserved quadripartite chloroplast genome structure, with sizes ranging from 161,495 to 163,880 bp. Genome annotation revealed 130 functional genes and a GC content of 36.72–37.76%. Codon usage analysis showed a predominance of leucine-encoding codons. Our analysis identified 322 simple sequence repeats (SSRs), which were predominantly palindromic in structure (82.3%). All eight species exhibited the same 19 SSR categories in similar proportions. Eight highly variable regions (ndhF, ycf1, trnS-trnG-exon1, trnk(exon1)-rps16(exon2), rps16(exon2), rbcL-accD, and ccsA-ndh) have been identified, which could be valuable as molecular markers in future studies on the population genetics and phylogeography of this genus. The phylogeny tree provided critical insights into the evolutionary trajectory of Fagaceae, suggesting that Lithocarpus was strongly supported as monophyletic, while Quercus was inferred to be polyphyletic, showing a significant cytonuclear discrepancy. Conclusions: We characterized and compared the chloroplast genome features across eight Lithocarpus species, followed by comprehensive phylogenetic analyses. These findings provide critical insights for resolving taxonomic uncertainties and advancing systematic research in this genus. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Adaptive Evolution in Trees)
Show Figures

Figure 1

Back to TopTop