Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = evolution of Er phase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 17044 KiB  
Article
Evolution of Griffiths-like Anomaly in Isostructural Swedenborgite Compounds Ho1−xErxBaCo4O7+δ
by Biplab Pakhuria, Rafikul Ali Saha, Carlo Meneghini, Fabrice Bert, Shruti Kundu and Sugata Ray
Magnetochemistry 2025, 11(7), 55; https://doi.org/10.3390/magnetochemistry11070055 - 30 Jun 2025
Viewed by 298
Abstract
In this study, we investigate the presence of the Griffiths-like anomaly in the geometrically frustrated antiferromagnet HoBaCo4O7+δ and globally its absence in ErBaCo4O7+δ, despite only small differences in the ionic radii, f [...] Read more.
In this study, we investigate the presence of the Griffiths-like anomaly in the geometrically frustrated antiferromagnet HoBaCo4O7+δ and globally its absence in ErBaCo4O7+δ, despite only small differences in the ionic radii, f-electron occupancy, and the corresponding crystal structures of the Ho3+ and Er3+-members. Previous studies have identified the Griffiths phase in the Dy-analog, DyBaCo4O7+δ, suggesting certain inherent features of this class of materials that regularly give rise to such anomalies. To explore the curious disappearance of such an anomalous feature in ErBaCo4O7+δ, we prepared a series of compounds with varying compositions Ho1xErxBaCo4O7+δ (0x1) and systematically studied the evolution of various physical properties as a function of Er-doping. Our experimental studies, including X-ray diffraction (XRD), magnetic, X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), heat capacity, and muon spin relaxation spectroscopy (μSR spectroscopy), revealed that while the Griffiths-like anomaly indeed disappears with doping at the macroscopic level, signatures of inhomogeneity are retained in ErBaCo4O7+δ too, at least at the local level. Overall, our results highlight the significant role of ionic radius and local structural distortions in stabilizing the Griffiths phase in this class of systems. Full article
Show Figures

Figure 1

12 pages, 3272 KiB  
Article
Microstructural Evolution and Thermal Stability of Long Period Stacking Ordered Phases in Mg97Er2Ni1 and Mg97Er2Zn1 Alloys
by Jian Yin, Yushun Liu and Guo-Zhen Zhu
Crystals 2024, 14(12), 1092; https://doi.org/10.3390/cryst14121092 - 19 Dec 2024
Viewed by 948
Abstract
The influence of transition metals (Ni and Zn) on the formation, morphology, and thermal stability of long-period stacking ordered (LPSO) phases in Mg97Er2Ni1 and Mg97Er2Zn1 alloys was investigated. In the as-cast state, both [...] Read more.
The influence of transition metals (Ni and Zn) on the formation, morphology, and thermal stability of long-period stacking ordered (LPSO) phases in Mg97Er2Ni1 and Mg97Er2Zn1 alloys was investigated. In the as-cast state, both alloys consist of α-Mg and LPSO phases. Heat treatment at 540 °C for 20 h dissolves block-like and lamellar LPSO phases into the α-Mg matrix in the Mg97Er2Zn1 alloy, with lamellar LPSO phases reprecipitating during subsequent cooling from 540 °C to 400 °C. Comparative analysis shows that Ni significantly enhances the thermal stability of the LPSO phase compared to Zn. Ni favors the formation of block-shaped LPSO phases, while Zn facilitates lamellar LPSO precipitation within the α-Mg matrix. The LPSO phase in the Mg97Er2Ni1 alloy exhibits an exceptionally high melting temperature of 605 °C, the highest reported for an LPSO phase. Additionally, heat treatment at 500 °C for 100 h preserves the area fraction of the LPSO phase in the Mg97Er2Ni1 alloy, and at 540 °C for 100 h, the LPSO grains grow without phase dissolution or structural transformation of their 18R-type configuration. These findings provide valuable insights into the role of alloying transition metal elements in controlling the stability and morphology of LPSO phases, offering pathways for tailoring the morphology of the LPSO phase in the Mg-based alloys. Full article
Show Figures

Figure 1

12 pages, 5525 KiB  
Article
Investigation of an Ethanol Electroreforming Cell Based on a Pt1Ru1/C Catalyst at the Anode
by Carmelo Lo Vecchio, Erminia Mosca, Stefano Trocino and Vincenzo Baglio
Catalysts 2024, 14(7), 415; https://doi.org/10.3390/catal14070415 - 29 Jun 2024
Cited by 4 | Viewed by 1803
Abstract
The production of H2 from renewable sources represents a crucial challenge for the planet’s future to achieve net zero emissions and store renewable energy. A possible alternative to water electrolysis (WE), which requires high potential (E > 1.48 V) to trigger the [...] Read more.
The production of H2 from renewable sources represents a crucial challenge for the planet’s future to achieve net zero emissions and store renewable energy. A possible alternative to water electrolysis (WE), which requires high potential (E > 1.48 V) to trigger the oxygen evolution reaction (OER), would be alcohol electrochemical reforming (ER), which implies the oxidation of short organic molecules such as methanol or ethanol. In ER, energy must be supplied to the system, but from a thermodynamic point of view, the energy request for the methanol or ethanol oxidation reaction is much lower than that of the OER. To study this process, an in-house 50 wt.% Pt1Ru1/C anodic catalyst was easily synthesized according to the Pt sulphite complex route and the impregnation of a carbon support (Ketjenblack, KB) and a Ru precursor. X-ray diffraction (XRD), X-ray fluorescence (XRF) spectroscopy, and Transmission Electron Microscopy (TEM) were used to characterize the structure, composition, and morphology of the catalyst. It appears that two distinct crystallographic phases of the Pt and Ru nanoparticles were encountered after the synthesis conducted by Ru impregnation. For the electrochemical measurements, ethanol electrooxidation (2 M CH3CH2OH) was studied first in a half cell with a rotating disc electrode (RDE) configuration under acid conditions and then in a direct ethanol electroreforming (or electrolysis) cell, equipped with a proton exchange membrane (PEM) as the electrolyte. The output current density was 0.93 A cm−2 at 1 V and 90 °C in 2 M ethanol. The remarkable current densities obtained in the alcohol electrolyzer at a low voltage are better than the actual state of the art for PEM ethanol ER. Full article
Show Figures

Figure 1

10 pages, 2227 KiB  
Article
Rare-Earth Ion Loss of Er- or Yb-Doped LiNbO3 Crystals Due to Mechanical Destructive Effect of High-Energy Ball Milling
by Gabriella Dravecz, Laura Kocsor, László Péter, László Temleitner, Dávid Gál and Krisztián Lengyel
Crystals 2024, 14(3), 223; https://doi.org/10.3390/cryst14030223 - 26 Feb 2024
Cited by 1 | Viewed by 1595
Abstract
Structural changes of Er- or Yb-ion doped LiNbO3 (LN) nanocrystals were studied in relation to the high-energy ball milling process. The evolution of the size of the particles and the formation of different phases were followed by dynamic light scattering and X-ray [...] Read more.
Structural changes of Er- or Yb-ion doped LiNbO3 (LN) nanocrystals were studied in relation to the high-energy ball milling process. The evolution of the size of the particles and the formation of different phases were followed by dynamic light scattering and X-ray diffraction measurements, while the electronic transitions of rare-earth (RE) ions were investigated by absorption spectroscopy in the infrared spectral range. During the milling process, RE ions left the crystal lattice and an RE2O3 phase appeared to an increasing extent next to the LN. The change in the absorption spectra and the phases formed during the grinding process were found to be very similar for both investigated RE ions and were independent of their original concentration in the starting crystal samples. The extent of the RE loss was found to be 90% after 100 min of wet grinding. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

11 pages, 9210 KiB  
Article
Optimized Strain Response in (Co0.5Nb0.5)4+-Doped 76Bi0.5Na0.5TiO3-24SrTiO3 Relaxors
by Hui Li, Jingxia Gao, Mingyang Li, Qingfeng Zhang and Yangyang Zhang
Coatings 2023, 13(8), 1331; https://doi.org/10.3390/coatings13081331 - 28 Jul 2023
Cited by 2 | Viewed by 1382
Abstract
High strain with low hysteresis is crucial for commercial applications in high precision actuators. However, the clear conflict between the high strain and low hysteresis in BNT-based ceramics has long been an obstacle to actual precise actuating or positioning applications. To obtain piezoceramics [...] Read more.
High strain with low hysteresis is crucial for commercial applications in high precision actuators. However, the clear conflict between the high strain and low hysteresis in BNT-based ceramics has long been an obstacle to actual precise actuating or positioning applications. To obtain piezoceramics with high strain and low hysteresis, it is necessary to enhance the electrostrictive effect and develop an ergodic relaxor (ER) and nonergodic relaxor (NR) phase boundary under ambient conditions. In this work, (Co0.5Nb0.5)4+ doped 76Bi0.5Na0.5TiO3-24SrTiO3 (BNST24) relaxors were fabricated using the conventional solid state reaction route. X-ray diffraction patterns revealed the B-site substitution in BNST24 ceramics. By adjusting the (Co0.5Nb0.5)4+ doping in BNST24, we effectively tuned the TNR-ER and Td close to ambient temperature, which contributed to the development of the ergodic relaxor phase and enhanced the electrostrictive effect at ambient temperature. The I-P-E loops and bipolar strain curves verified the gradual evolution from NR to ER states, while the enhanced electrostrictive effect was verified by the nearly linear S-P2 curves and improved electrostrictive coefficient of the BNST24-xCN relaxors. An enhanced strain of 0.34% (d*33 = 483 pm/V) with low hysteresis of 8.9% was simultaneously achieved in the BNST24-0.02CN relaxors. The enhanced strain was mainly attributed to the proximity effect at the ER and NR phase boundary of BNST24-0.02CN, while the improved electrostrictive effect contributed to the reduced strain hysteresis. Our work demonstrates an effective strategy for balancing the paradox of high strain and low hysteresis in piezoceramics. Full article
Show Figures

Figure 1

16 pages, 3797 KiB  
Article
Western Mediterranean Precipitation Extremes, the Result of Quasi-Resonant Sea–Atmosphere Feedbacks
by Jean-Louis Pinault
Remote Sens. 2023, 15(11), 2711; https://doi.org/10.3390/rs15112711 - 23 May 2023
Cited by 1 | Viewed by 1631
Abstract
The Mediterranean region has been identified as a climate change hotspot, and 13 case studies of extreme rainfall events (EREs) make it possible to categorize convective systems according to whether they are tropical-like or extratropical cyclones. This study, which focuses on the western [...] Read more.
The Mediterranean region has been identified as a climate change hotspot, and 13 case studies of extreme rainfall events (EREs) make it possible to categorize convective systems according to whether they are tropical-like or extratropical cyclones. This study, which focuses on the western Mediterranean basin from 2000 to 2021, is based on the cross-wavelet analysis in the period range of 11.4 to 45.7 days of (1) the height of precipitation at a particular place representative of the deep convective system used as the temporal reference and (2) the amount of precipitation in the western Mediterranean basin, as well as the sea surface temperature (SST) in the Mediterranean, the Adriatic, the Aegean Sea, the Black Sea, the Baltic, the North Sea and the Atlantic Ocean. Extratropical cyclones result from quasi-resonant atmospheric water and SST feedbacks, reflecting the co-evolution of the clustering of lows and the harmonization of thermocline depths and a relative stability of the atmospheric blocking circulation. When the SST anomaly in the western Mediterranean is greater than 0.5 °C, in its paroxysmal phase, the deep convective system is centered both over the southeast of France and the Mediterranean off the French coast. However, when the SST anomaly is weaker, deep convective systems can develop in different patterns, depending on SST anomalies in the peripheral seas. They can produce a low-pressure system extending from the Pyrenees to southern Italy or Sicily when the SST anomaly in the western Mediterranean is in phase opposition with EREs. In some cases, partial clustering of Atlantic and Mediterranean low-pressure systems occurs, producing a large cyclonic system. Tropical-like cyclones develop in the absence of any significant SST anomalies. Like extratropical cyclones, they occur in autumn or even winter, when the thermal gradient between the sea surface and the upper atmosphere is greatest but, this way, non-resonantly. Their return period is around 2 to 3 years. However, due to the gradual increase in the SST of the western Mediterranean in summer resulting from global warming, they can now lead to an ERE as happened on 21 January 2020. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

15 pages, 7234 KiB  
Article
Microstructure and Mechanical Properties of Ti-TiH2 Based Matrix Composites Reinforced with xTiB2 Particles Processed by Powder Metallurgy
by David Israel Bravo Barcenas, Jorge Manuel Chávez Aguilar, Omar Jiménez Alemán, Luis Olmos Navarrete, Max Fernando Flores Jiménez, Marco Aurelio González Albarrán and Iván Gerardo Farias Velázquez
Coatings 2023, 13(3), 587; https://doi.org/10.3390/coatings13030587 - 9 Mar 2023
Cited by 5 | Viewed by 2306
Abstract
The structure changes, microstructure evolution, and mechanical properties during Powder Metallurgy (PM) through High Vacuum Sintering of a Ti-TiH2 matrix reinforced with Titanium Diboride (TiB2) particles were investigated. Composites were fabricated at 850, 1100, and 1300 °C. The strategy [...] Read more.
The structure changes, microstructure evolution, and mechanical properties during Powder Metallurgy (PM) through High Vacuum Sintering of a Ti-TiH2 matrix reinforced with Titanium Diboride (TiB2) particles were investigated. Composites were fabricated at 850, 1100, and 1300 °C. The strategy for the fabrication process was to use the PM route employing titanium hydride (TiH2) to reduce the consumption of Commercially Pure Titanium (CP-Ti). The structure of the composites was analyzed using X-Ray Diffraction (XRD), while Optical Microscopy (OM), and Field-Emission Scanning Electron Microscopy (FE-SEM) analysis were used to study the microstructure. Vickers microhardness and nanoindentation were performed to evaluate the elastoplastic and mechanical properties. According to the results, the unreinforced Ti-TiH2 sample presented higher sinter-ability, attaining relative density values of 93% with the higher sintering temperature. Composite samples showed TiB and TiB2 phases without the presence of any TiH2 residual phase. The highest mechanical properties were measured for reinforced samples with 30 vol.% of TiB2, sintered at 1300 °C, showing values of 509.29 HV and 4.94 GPa for microindentation Vickers and nanoindentation essays, respectively, which resulted in 8.5% higher than the values for the unreinforced sample. In addition, their H/Er and H3/Er2 ratios are higher than those of CP-Ti suggesting a better wear resistance of the Ti-TiH2 matrix-reinforced samples, combined with its mechanical properties makes it more suitable than CP-Ti for its potential in biomedical applications. Full article
(This article belongs to the Special Issue Surface Engineering, Coatings and Tribology)
Show Figures

Figure 1

10 pages, 1972 KiB  
Article
Local Probing ErCrO3
by Gonçalo N. P. Oliveira, Pedro R. Rodrigues, João G. Correia, João P. E. Araújo and Armandina M. L. Lopes
Crystals 2023, 13(1), 54; https://doi.org/10.3390/cryst13010054 - 28 Dec 2022
Cited by 5 | Viewed by 2398
Abstract
Local distortions in perovskite-like orthochromites are of extreme importance for the properties they exhibit. Here, we present the results of structural and DC magnetisation measurements combined with local probe studies in polycrystalline ErCrO3. The electric field gradient (EFG) parameters’ evolution with [...] Read more.
Local distortions in perovskite-like orthochromites are of extreme importance for the properties they exhibit. Here, we present the results of structural and DC magnetisation measurements combined with local probe studies in polycrystalline ErCrO3. The electric field gradient (EFG) parameters’ evolution with temperature shows two clear signals of local environment changes, one at the ferroelectric phase transition (TFE) and the other below 250 K. At the claimed TFE, the EFG changed from a slightly distorted axial symmetric to an EFG with axial symmetry (evidence that the local point-symmetry of the crystal might have changed). At a temperature around 250 K, we observed the development of a magnetic hyperfine field (MHF) and a change in the EFG to an axial slightly distorted one. These observations are rather in line with our magnetisation measurements, as a relatively strong coercive field was observed well above the Cr sub-lattice ordering temperature. Full article
(This article belongs to the Special Issue Radioactive Isotopes Based Materials Characterization)
Show Figures

Figure 1

13 pages, 2376 KiB  
Article
Laser Er:YAG-Assisted Debonding May Be a Viable Alternative to the Conventional Method for Monocrystalline Ceramic Brackets
by Daliana-Emanuela Mocuta, Mariana I. Miron, Diana Lungeanu, Marius Mateas, Emilia Ogodescu and Carmen D. Todea
Int. J. Environ. Res. Public Health 2022, 19(21), 14564; https://doi.org/10.3390/ijerph192114564 - 6 Nov 2022
Cited by 7 | Viewed by 3293
Abstract
In orthodontic practice, due to the increased interest among patients in smile aesthetics, different types of brackets are now being used, with those most frequently applied being ones made of polycrystalline and monocrystalline ceramic. The aim of this study was to evaluate the [...] Read more.
In orthodontic practice, due to the increased interest among patients in smile aesthetics, different types of brackets are now being used, with those most frequently applied being ones made of polycrystalline and monocrystalline ceramic. The aim of this study was to evaluate the laser Er:YAG-assisted debonding technique compared to conventional methods for removing monocrystalline ceramic brackets from human teeth. The study sample included 60 vital teeth (frontals of the upper jaw) from 10 patients who had monocrystalline ceramic brackets and were in the final phase of orthodontic treatment. The debonding procedure was carried out following a split-mouth study design, using either the conventional technique or laser Er:YAG 2940 nm radiation. For each tooth, three variables were evaluated: the patient’s sujective tooth sensitivity associated with the debonding, the time required for debonding, and pulp blood flow microdynamics after the debonding. Three evaluation instruments were used to assess and quantify the treatment effects: (i) the Wong–Baker FACES Pain Rating Scale for pain assessment; (ii) a digital stopwatch/timer to measure the time required to remove the bracket; and (iii) laser Doppler flowmetry (LDF) for recording the pulp blood flow evolution. The statistical analysis of the recorded data showed a statistically significant difference between the two debonding methods regarding the tooth sensitivity during the debonding and the time required for the procedure. The subjective tooth sensitivity was reduced from a mean ± standard deviation of 3.07 ± 1.46 to 0.47 ± 0.86 on the Wong–Baker FACES scale (Wilcoxon signed rank, p < 0.001). The necessary time for debonding was reduced by 0.697 ± 0.703 s per tooth (paired t-test, p < 0.001). There was no difference in the blood microdynamics between the two debonding techniques. According to the results of this study, the laser Er:YAG-assisted debonding technique may be a viable alternative to the conventional method for monocrystalline ceramic brackets. Full article
(This article belongs to the Special Issue Dental Public Health: Issues, Challenges and Opportunities)
Show Figures

Figure 1

13 pages, 3438 KiB  
Article
Enhanced Photoelectrochemical Activity of TiO2 Nanotubes Decorated with Lanthanide Ions for Hydrogen Production
by Hyekyung Cho, Hyunku Joo, Hansung Kim, Ji-Eun Kim, Kyoung-Soo Kang, Hyeonmin Jung and Jaekyung Yoon
Catalysts 2022, 12(8), 866; https://doi.org/10.3390/catal12080866 - 5 Aug 2022
Cited by 10 | Viewed by 2754
Abstract
Highly ordered TiO2 nanotubes (TNTs) decorated with a series of lanthanide ions (Ln3+ = Ho3+, Tb3+, Eu3+, Yb3+, and Er3+) were prepared through an electrochemical process and anodization. The composition, structure, [...] Read more.
Highly ordered TiO2 nanotubes (TNTs) decorated with a series of lanthanide ions (Ln3+ = Ho3+, Tb3+, Eu3+, Yb3+, and Er3+) were prepared through an electrochemical process and anodization. The composition, structure, and chemical bond of the as-prepared photocatalysts were characterized through scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and ultraviolet diffuse reflectance spectroscopy. Furthermore, the electrochemical characteristics of the catalysts were analyzed and photoelectrochemical properties were investigated through water splitting. All samples were prepared in the anatase phase without changing the crystal structure. The holmium-doped TNT photocatalyst exhibited the best performance with a hydrogen evolution rate of 90.13 μmol cm−2h−1 and photoconversion efficiency of 2.68% (0 V vs. RHE). Photocatalytic efficiency increased because of the expansion of the absorption wavelength range attributed to the appropriate positioning of the band structure and reduced electron/hole pair recombination resulting from the unhindered electron movement. This study demonstrated the preparation of high-potential solar-active photocatalysts through the synergetic effects of the work function, band edge, and bandgap changes caused by the series of lanthanide combinations with TNTs. Full article
(This article belongs to the Special Issue State-of-the-Art Catalytical Technology in South Korea II)
Show Figures

Graphical abstract

19 pages, 1730 KiB  
Review
Application of the QuEChERS Strategy as a Useful Sample Preparation Tool for the Multiresidue Determination of Pyrrolizidine Alkaloids in Food and Feed Samples: A Critical Overview
by Natalia Casado, Sonia Morante-Zarcero and Isabel Sierra
Appl. Sci. 2022, 12(9), 4325; https://doi.org/10.3390/app12094325 - 25 Apr 2022
Cited by 26 | Viewed by 9520
Abstract
The identification of concerning high levels of pyrrolizidine alkaloids (PAs) in a wide variety of food products has raised the occurrence of these natural toxins as one of the main current issues of the food safety field. Consequently, a regulation with maximum concentration [...] Read more.
The identification of concerning high levels of pyrrolizidine alkaloids (PAs) in a wide variety of food products has raised the occurrence of these natural toxins as one of the main current issues of the food safety field. Consequently, a regulation with maximum concentration levels of these alkaloids has recently been published to monitor their occurrence in several foodstuffs. According to legislation, the analytical methodologies developed for their determination must include multiresidue extractions with high selectivity and sensitivity, as a set of 21 + 14 PAs should be simultaneously monitored. However, the multiresidue extraction of these alkaloids is a difficult task due to the high complexity of food and feed samples. Accordingly, although solid-phase extraction is still the technique most widely used for sample preparation, the QuEChERS method can be a suitable alternative for the simultaneous determination of multiple analytes, providing green extraction and clean-up of samples in a quick and cost-effective way. Hence, this review proposes an overview about the QuEChERS concept and its evolution through different modifications that have broadened its applicability over time, focusing mainly on its application regarding the determination of PAs in food and feed, including the revision of published works within the last 11 years. Full article
(This article belongs to the Special Issue Novel Research on Safety Detection and Quality Control of Food)
Show Figures

Figure 1

17 pages, 7185 KiB  
Article
Effect of Heat Treatment on Microstructural Evolution and Microhardness Change of Al-5Zn-0.03In-1Er Alloy
by Jin Cui, Zhichao Tang, Muzhi Yu, Jiajin Hu, Xiaoyang Chen, Zhengbing Xu and Jianmin Zeng
Metals 2022, 12(3), 370; https://doi.org/10.3390/met12030370 - 22 Feb 2022
Cited by 6 | Viewed by 2130
Abstract
Adding an appropriate amount of Er element to Al-Zn-In alloys can improve the electrochemical performance of Al alloys; it is convenient to study the electrochemical behavior of the alloy in the rest of our work. However, Er segregation in solid solutions which reduced [...] Read more.
Adding an appropriate amount of Er element to Al-Zn-In alloys can improve the electrochemical performance of Al alloys; it is convenient to study the electrochemical behavior of the alloy in the rest of our work. However, Er segregation in solid solutions which reduced the comprehensive properties of alloys was difficult to reduce and there was no report on the homogenization of Al-Zn-In alloys. We found that the ultra-high temperature treatment (UHTT) can obviously reduce Er segregation. To explore the better homogenization treatment and the microstructure evolution of Al-5Zn-0.03In-1Er alloy after UHTT, we carried out a series of heat treatments on the alloy and characterized the microstructure of the alloy by optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy spectrum analysis (EDS) and transmission electron microscopy (TEM). The results showed that the main element Er of the Al-Zn-In-Er was largely enriched in grain boundaries after UHTT; the distribution Zn and In was almost unchanged. The as-cast Al-Zn-In-Er alloy consisted mainly of α(Al) solid solution and Al3Er phase. As the temperature of UHTT increased and the treatment time prolonged, the precipitated phase dissolved into the matrix, and there were dispersed Al3Er particles in the crystal. The proper UHTT for reducing the interdendritic segregation of the alloy was 615 °C × 32 h, which was properly consistent with the results of the evolution of the statistical amount of interdendritic phase, the line scanning analysis and the microhardness. Moreover, the microhardness of the alloy after treatment of 615 °C × 32 h was obviously higher than that of the as-cast alloy because of the anchoring effect of Al3Er nanoparticles on the movement of dislocations. Full article
Show Figures

Figure 1

12 pages, 5489 KiB  
Article
Effect of Er on Microstructure and Corrosion Behavior of Al–Zn–Mg–Cu–Sc–Zr Aluminum Alloys
by Qingyuan Xing, Xiaohui Wu, Jinxin Zang, Linggang Meng and Xingguo Zhang
Materials 2022, 15(3), 1040; https://doi.org/10.3390/ma15031040 - 28 Jan 2022
Cited by 8 | Viewed by 2627
Abstract
In this study, the influence of Er addition on the microstructure, type transformation of second phases, and corrosion resistance of an Al–Zn–Mg–Cu alloy were explored. The results revealed that the added Er element could significantly refine the alloy grains and change the second-phase [...] Read more.
In this study, the influence of Er addition on the microstructure, type transformation of second phases, and corrosion resistance of an Al–Zn–Mg–Cu alloy were explored. The results revealed that the added Er element could significantly refine the alloy grains and change the second-phase composition at the grain boundary of the alloy. In the as-cast state, the Er element significantly enhanced the corrosion resistance of the alloy due to its refining effect on the grains and second phases at the grain boundary. The addition of the alloying element Er to the investigated alloy changed the type of corrosion attack on the alloy’s surface. In the presence of Er, the dominant type of corrosion attack is pitting corrosion, while the alloy without Er is prone to intergranular corrosion attack. After a solution treatment, the Al8Cu4Er phase was formed, in which the interaction with the Cu element and the competitive growth relation to the Al3Er phase were the key factors influencing the corrosion resistance of the alloy. The anodic corrosion mechanism of the Al8Cu4Er and Al3Er phases evidently lowered the alloy corrosion rate, and the depth of the corrosion pit declined from 197 μm to 155 μm; however, further improvement of corrosion resistance was restricted by the morphology and size of the Al8Cu4Er phase after its formation and growth; therefore, adjusting the matching design of the Cu and Er elements can allow Er to improve the corrosion resistance of the Al–Zn–Mg–Cu aluminum alloy to the greatest extent. Full article
Show Figures

Figure 1

15 pages, 4498 KiB  
Article
Spark Plasma Sintering of SiAlON Ceramics Synthesized via Various Cations Charge Stabilizers and Their Effect on Thermal and Mechanical Characteristics
by Muhammad Zulqarnain Falak, Bilal Anjum Ahmed, Hasan Aftab Saeed, Sajid Ullah Butt, Abbas Saeed Hakeem and Usman Ali Akbar
Crystals 2021, 11(11), 1378; https://doi.org/10.3390/cryst11111378 - 12 Nov 2021
Cited by 8 | Viewed by 2593
Abstract
Oxygen-rich SiAlON ceramics doped with various nanosized metal oxide (MO) stabilizers were synthesized with a view to examine their effect on thermal and mechanical characteristics. The nanosized starting powder precursors comprising Si3N4, AlN, Al2O3, and [...] Read more.
Oxygen-rich SiAlON ceramics doped with various nanosized metal oxide (MO) stabilizers were synthesized with a view to examine their effect on thermal and mechanical characteristics. The nanosized starting powder precursors comprising Si3N4, AlN, Al2O3, and SiO2 along with oxides of Ba, Y, Mg, La, Nd, Eu, Dy, Er, and Yb as the MO charge stabilizer were employed in developing different SiAlON samples. Ultrasonic probe sonication was utilized to develop a homogenous mixture of initial powder precursors followed by spark plasma sintering (SPS) of the samples at the low temperature of 1500 °C coupled with 30 min of isothermal treatment. Sample compositions (according to general formula of alpha SiAlON: Mm/vv+Si12−(m+n)Alm+nOnN16−n) selected in the present study are represented by m value of 1.1 and n value of 1.6. The synthesized samples were evaluated for their physical behavior, microstructural and crystal structure evolution, and thermal and mechanical characteristics. More specifically, the sintered ceramics were examined by X-ray diffraction and electron microscopy to comprehend and relate the structural characteristics with the densification, thermal conductivity, hardness, and fracture toughness. The high reactivity of the nanopowders and the localized heating provided by SPS resulted in densified ceramics with relative densities in the range of 92–96%. Vickers hardness values were found to be in the range of 12.4–17.0 GPa and were seen to be profoundly influenced by the grain size of the alpha SiAlON (primary) phase. The fracture toughness of the samples was measured to be in the range of 4.1–6.2 MPa·m1/2. SiAlON samples synthesized using Er and Yb charge stabilizers were found to have the highest fracture toughness of 5.7 and 6.2 MPa·m1/2, primarily due to the relatively higher content of the elongated beta phase. While there was no obvious relationship between the thermal conductivity and the alpha SiAlON metal charge stabilizers, the values were seen to be influenced by the grain size of alpha phase where Dy-SiAlON had the lowest thermal conductivity of 5.79 W/m⋅K and Er-SiAlON showed the highest value of thermal conductivity (6.91 W/m⋅K). It was concluded that scientifically selected metal oxide charge stabilizers are beneficial in developing SiAlON ceramics with properties tailored according to specific applications. Full article
Show Figures

Figure 1

13 pages, 4606 KiB  
Article
Improved Non-Piezoelectric Electric Properties Based on La Modulated Ferroelectric-Ergodic Relaxor Transition in (Bi0.5Na0.5)TiO3-Ba(Ti, Zr)O3 Ceramics
by Xingru Zhang, Yinan Xiao, Beining Du, Yueming Li, Yuandong Wu, Liyuan Sheng and Wenchang Tan
Materials 2021, 14(21), 6666; https://doi.org/10.3390/ma14216666 - 5 Nov 2021
Cited by 8 | Viewed by 2519
Abstract
The characteristic transition from ferroelectric (FE) to ergodic relaxor (ER) state in (Bi0.5Na0.5)TiO3 (BNT) based lead-free ceramics provides an efficient approach to bring a highly ordered phase back to a disordered one. It would be rational to utilize [...] Read more.
The characteristic transition from ferroelectric (FE) to ergodic relaxor (ER) state in (Bi0.5Na0.5)TiO3 (BNT) based lead-free ceramics provides an efficient approach to bring a highly ordered phase back to a disordered one. It would be rational to utilize this transition to improve relevant non-piezoelectric properties based on domain decomposition. In this work, different La contents were introduced to 0.93(Bi0.5Na0.5)TiO3-0.07Ba(Ti0.945Zr0.055)O3 ceramics (BNT-BZT-xLa) to induce evolution of ergodic degree. The results reveal that with increasing La content, both the FE-ER transition temperature TF-R and depolarization temperature Td shift towards room temperature, implying a deepened ergodic degree. By modulation of ergodic degree, thermally stimulated depolarization current experiment shows a higher current density peak, and corresponding pyroelectric coefficient increases from 2.46 to 2.81 μC/(cm2∙°C) at Td. For refrigeration, the indirect measurement demonstrates the ΔT maximum increases from 1.1 K to 1.4 K, indicating an enhanced electrocaloric effect. Moreover, the optimized energy storage effect is observed after La doping. With appearance of “slimmer” P-E loops, both calculated recoverable energy storage density Wrec and storage efficiency η increase to 0.23 J/cm3 and 22.8%, respectively. These results denote La doping conduces to the improvement of non-piezoelectric properties of BNT-based ceramics in a certain range. Therefore, La doping should be an adopted modification strategy for lead-free ceramics used in areas like refrigerator and pulse capacitors. Full article
(This article belongs to the Special Issue Advances in Ferroelectrics and Piezoelectric Composites)
Show Figures

Figure 1

Back to TopTop