Microstructure and Mechanical Properties of Ti-TiH2 Based Matrix Composites Reinforced with xTiB2 Particles Processed by Powder Metallurgy
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brunette, D.M.; Tengvall, P.; Textor, M.; Thomsen, P. Titanium in Medicine; Engineering Materials; Springer: Berlin/Heidelberg, Germany, 2001; ISBN 978-3-642-63119-1. [Google Scholar]
- Hiromoto, S.; Mischler, S. The Influence of Proteins on the Fretting–Corrosion Behaviour of a Ti6Al4V Alloy. Wear 2006, 261, 1002–1011. [Google Scholar] [CrossRef]
- Hao, Y.L.; Li, S.J.; Sun, S.Y.; Zheng, C.Y.; Yang, R. Elastic Deformation Behaviour of Ti-24Nb-4Zr-7.9Sn for Biomedical Applications. Acta Biomater. 2007, 3, 277–286. [Google Scholar] [CrossRef]
- Leyens, C.; Peters, M. Titanium and Titanium Alloys; Leyens, C., Peters, M., Eds.; Wiley: Hoboken, NJ, USA, 2003; ISBN 9783527305346. [Google Scholar]
- Niinomi, M. Mechanical Properties of Biomedical Titanium Alloys. Mater. Sci. Eng. A 1998, 243, 231–236. [Google Scholar] [CrossRef]
- Froes, F.H. Powder Metallurgy of Titanium Alloys. In Advances in Powder Metallurgy; Elsevier: Amsterdam, The Netherlands, 2013; pp. 202–240. [Google Scholar]
- Ivasishin, O.M.; Eylon, D.; Bondarchuk, V.I.; Savvakin, D.G. Diffusion during Powder Metallurgy Synthesis of Titanium Alloys. Defect Diffus. Forum 2008, 277, 177–185. [Google Scholar] [CrossRef]
- Sharma, B.; Vajpai, S.K.; Ameyama, K. Preparation of Strong and Ductile Pure Titanium via Two-Step Rapid Sintering of TiH2 Powder. J. Alloys Compd. 2016, 683, 51–55. [Google Scholar] [CrossRef]
- Amherd Hidalgo, A.; Frykholm, R.; Ebel, T.; Pyczak, F. Powder Metallurgy Strategies to Improve Properties and Processing of Titanium Alloys: A Review. Adv. Eng. Mater. 2017, 19, 1600743. [Google Scholar] [CrossRef]
- Wysocki, B.; Maj, P.; Krawczyńska, A.; Rożniatowski, K.; Zdunek, J.; Kurzydłowski, K.J.; Święszkowski, W. Microstructure and Mechanical Properties Investigation of CP Titanium Processed by Selective Laser Melting (SLM). J. Mater. Process. Technol. 2017, 241, 13–23. [Google Scholar] [CrossRef]
- Shon, J.; Park, J.; Cho, K.; Hong, J.; Park, N.; Oh, M. Effects of Various Sintering Methods on Microstructure and Mechanical Properties of CP-Ti Powder Consolidations. Trans. Nonferrous Met. Soc. China 2014, 24, s59–s67. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, C.; Liu, Y.; Liu, S.; Xiao, S.; Chen, Y. Surface Characterizations of TiH2 Powders before and after Dehydrogenation. Appl. Surf. Sci. 2017, 410, 177–185. [Google Scholar] [CrossRef]
- Lee, D.-W.; Lee, H.-S.; Park, J.-H.; Shin, S.-M.; Wang, J.-P. Sintering of Titanium Hydride Powder Compaction. Procedia Manuf. 2015, 2, 550–557. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Liss, K.D.; Auchterlonie, G.; Tang, H.; Cao, P. Dehydrogenation and Sintering of TiH2: An In Situ Study. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2017, 48, 2949–2959. [Google Scholar] [CrossRef]
- Bhosle, V.; Baburaj, E.G.; Miranova, M.; Salama, K. Dehydrogenation of TiH2. Mater. Sci. Eng. A 2003, 356, 190–199. [Google Scholar] [CrossRef]
- Chávez, J.; Olmos, L.; Jiménez, O.; Bouvard, D.; Rodríguez, E.; Flores, M. Sintering Behaviour and Mechanical Characterisation of Ti64/xTiN Composites and Bilayer Components. Powder Metall. 2017, 60, 257–266. [Google Scholar] [CrossRef]
- Gogotsi, Y.G.; Andrievski, R.A. (Eds.) Materials Science of Carbides, Nitrides and Borides, 1st ed.; Springer Science + Business Media Dordrecht: St. Petersburg, Russia, 1999; ISBN 978-0-7923-5707-0. [Google Scholar]
- Zhang, X.; Lü, W.; Zhang, D.; Wu, R.; Bian, Y.; Fang, P. In Situ Technique for Synthesizing (TiB+TiC)/Ti Composites. Scr. Mater. 1999, 41, 39–46. [Google Scholar] [CrossRef]
- Morsi, K.; Patel, V.V. Processing and Properties of Titanium-Titanium Boride (TiBw) Matrix Composites—A Review. J. Mater. Sci. 2007, 42, 2037–2047. [Google Scholar] [CrossRef]
- Feng, H.; Zhou, Y.; Jia, D.; Meng, Q. Microstructure and Mechanical Properties of in Situ TiB Reinforced Titanium Matrix Composites Based on Ti-FeMo-B Prepared by Spark Plasma Sintering. Compos. Sci. Technol. 2004, 64, 2495–2500. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Q.; Han, J.; Kvanin, V.L. Self-Propagating High Temperature Combustion Synthesis of TiB/Ti Composites. Mater. Sci. Eng. A 2003, 348, 41–46. [Google Scholar] [CrossRef]
- Atri, R.R.; Ravichandran, K.S.; Jha, S.K. Elastic Properties of In-Situ Processed Ti-TiB Composites Measured by Impulse Excitation of Vibration. Mater. Sci. Eng. A 1999, 271, 150–159. [Google Scholar] [CrossRef]
- Ma, Z.Y.; Tjong, S.C.; Gen, L. In-Situ Ti-TiB Metal-Matrix Composite Prepared by a Reactive Pressing Process. Scr. Mater. 2000, 42, 367–373. [Google Scholar] [CrossRef]
- Kobayashi, M.; Funami, K.; Suzuki, S.; Ouchi, C. Manufacturing Process and Mechanical Properties of Fine TiB Dispersed Ti-6Al-4V Alloy Composites Obtained by Reaction Sintering. Mater. Sci. Eng. A 1998, 243, 279–284. [Google Scholar] [CrossRef]
- Fan, Z.; Miodownik, A.P.; Chandrasekaran, L.; Ward-Close, M. The Young’s Moduli of in Situ Ti/TiB Composites Obtained by Rapid Solidification Processing. J. Mater. Sci. 1994, 29, 1127–1134. [Google Scholar] [CrossRef]
- Gorsse, S.; Chaminade, J.P.; Le Petitcorps, Y. In Situ Preparation of Titanium Base Composites Reinforced by TiB Single Crystals Using a Powder Metallurgy Technique. Compos. Part A Appl. Sci. Manuf. 1998, 29, 1229–1234. [Google Scholar] [CrossRef]
- Ravi Chandran, K.S.; Panda, K.B.; Sahay, S.S. TiBw-Reinforced Ti Composites: Processing, Properties, Application Prospects, and Research Needs. Jom 2004, 56, 42–48. [Google Scholar] [CrossRef]
- ASM International. Alloy Phase Diagrams; Okamoto, H., Schlesinger, M.E., Mueller, E.M., Eds.; ASM International: Almere, The Netherlands, 2016; Volume 3, ISBN 978-1-62708-163-4. [Google Scholar] [CrossRef]
- Predel, B. B-Ti (Boron-Titanium). In B-Ba–C-Zr; Madelung, O., Ed.; Springer: Berlin/Heidelberg, Germany, 1992; pp. 1–3. [Google Scholar]
- Cullity, B.D.; Weymouth, J.W. Elements of X-ray Diffraction. Am. J. Phys. 1957, 25, 394–395. [Google Scholar] [CrossRef] [Green Version]
- Langford, J.I.; Wilson, A.J.C. Scherrer after Sixty Years: A Survey and Some New Results in the Determination of Crystallite Size. J. Appl. Cryst. 1978, 11, 102–113. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. An Improved Technique for Determineing Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Falodun, O.E.; Obadele, B.A.; Oke, S.R.; Okoro, A.M.; Olubambi, P.A. Titanium-Based Matrix Composites Reinforced with Particulate, Microstructure, and Mechanical Properties Using Spark Plasma Sintering Technique: A Review. Int. J. Adv. Manuf. Technol. 2019, 102, 1689–1701. [Google Scholar] [CrossRef]
- Izui, H.; Oota, A.; Matsuura, K.; Kamegawa, S. Tensile Behavior of TiB-Reinforced Ti Matrix Composites with Different Titanium Powders. Mech. Eng. J. 2016, 3, 15-00571. [Google Scholar] [CrossRef] [Green Version]
- Arévalo, C.; Montealegre-Melendez, I.; Pérez-Soriano, E.; Ariza, E.; Kitzmantel, M.; Neubauer, E. Study of the Influence of TiB Content and Temperature in the Properties of In Situ Titanium Matrix Composites. Metals 2017, 7, 457. [Google Scholar] [CrossRef] [Green Version]
- Sahay, S.S.; Ravichandran, K.S.; Atri, R.; Chen, B.; Rubin, J. Evolution of Microstructure and Phases in in Situ Processed Ti-TiB Composites Containing High Volume Fractions of TiB Whiskers. J. Mater. Res. 1999, 14, 4214–4223. [Google Scholar] [CrossRef] [Green Version]
- Wood, R.M. The Lattice Constants of High Purity Alpha Titanium. Proc. Phys. Soc. 1962, 80, 783–786. [Google Scholar] [CrossRef]
- Lifshits, I.M.; Slezov, V.V. Kinetics of the Diffusion Decomposition of Supersaturated Solid Solutions. Zhurnal Eksperimental’noi I Teor. Fiz. 1958, 35, 479–492. [Google Scholar]
- Diouf, S.; Durowoju, M.O.; Shongwe, M.B.; Olubambi, P.A. Processing of Pure Titanium Containing Titanium-Based Reinforcing Ceramics Additives Using Spark Plasma Sintering. Leonardo Electron. J. Pract. Technol. 2017, 30, 269–286. [Google Scholar]
- Attar, H.; Ehtemam-Haghighi, S.; Kent, D.; Okulov, I.V.; Wendrock, H.; Bönisch, M.; Volegov, A.S.; Calin, M.; Eckert, J.; Dargusch, M.S. Nanoindentation and Wear Properties of Ti and Ti-TiB Composite Materials Produced by Selective Laser Melting. Mater. Sci. Eng. A 2017, 688, 20–26. [Google Scholar] [CrossRef] [Green Version]
- Atar, E.; Kayali, E.S.; Cimenoglu, H. Characteristics and Wear Performance of Borided Ti6Al4V Alloy. Surf. Coat. Technol. 2008, 202, 4583–4590. [Google Scholar] [CrossRef]
- Munro, R.G. Material Properties of Titanium Diboride. J. Res. Natl. Inst. Stand. Technol. 2000, 105, 709. [Google Scholar] [CrossRef]
- Ehtemam-Haghighi, S.; Cao, G.; Zhang, L.C. Nanoindentation Study of Mechanical Properties of Ti Based Alloys with Fe and Ta Additions. J. Alloys Compd 2017, 692, 892–897. [Google Scholar] [CrossRef]
Sample | Designation | TiB2 Particles (vol.%) | Sintering Temperature (°C) |
---|---|---|---|
Unreinforced | U-a | 0 | 850 |
U-b | 1100 | ||
U-c | 1300 | ||
Reinforced | R3-a | 3 | 850 |
R3-b | 1100 | ||
R3-c | 1300 | ||
R10-a | 10 | 850 | |
R10-b | 1100 | ||
R10-c | 1300 | ||
R30-a | 30 | 850 | |
R30-b | 1100 | ||
R30-c | 1300 |
Sample | Depth hc (nm) | H (GPa) | Er (GPa) | H/Er [×10−2] | H3/Er2 [×10−3] (GPa) |
---|---|---|---|---|---|
U-a | 858.05 ± 65.85 | 3.61 ± 0.53 | 101.77± 9.54 | 3.55 ± 0.04 | 4.54 ± 0.23 |
R3-a | 830.12 ± 75.40 | 4.10 ± 0.41 | 101.05 ± 4.87 | 4.06 ± 0.08 | 6.75 ± 0.28 |
R10-a | 798.72 ± 73.98 | 4.48 ± 0.43 | 100.14 ± 7.23 | 4.47 ± 0.04 | 9.97 ± 0.32 |
R30-a | 791.33 ± 14.51 | 4.56 ± 0.51 | 99.38 ± 2.62 | 4.59 ± 0.01 | 9.60 ± 0.35 |
U-b | 757.00 ± 45.99 | 4.48 ± 0.53 | 106.48 ± 10.16 | 4.21 ± 0.04 | 7.93 ± 0.28 |
R3-b | 730.05 ± 58.90 | 4.86 ± 0.48 | 105.57 ± 2.83 | 4.60 ± 0.05 | 10.30 ± 0.30 |
R10-b | 726.37 ± 60.24 | 4.68 ± 0.43 | 102.92 ± 10.12 | 4.55 ± 0.04 | 9.68 ± 0.26 |
R30-b | 721.13 ± 15.05 | 4.74 ± 0.25 | 101.27 ± 9.49 | 4.68 ± 0.02 | 10.38 ± 0.16 |
U-c | 817.10 ± 83.95 | 4.66 ± 0.43 | 108.05 ± 5.39 | 4.31 ± 0.04 | 8.67 ± 0.24 |
R3-c | 718.40 ± 55.93 | 4.72 ± 0.47 | 105.07 ± 0.66 | 4.49 ± 0.05 | 9.53 ± 0.28 |
R10-c | 711.70 ± 16.90 | 4.85 ± 0.23 | 103.39 ± 10.23 | 4.69 ± 0.02 | 10.67 ± 0.15 |
R30-c | 703.65 ± 65.51 | 4.94 ± 0.49 | 104.76 ± 10.12 | 4.72 ± 0.04 | 10.98 ± 0.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bravo Barcenas, D.I.; Chávez Aguilar, J.M.; Jiménez Alemán, O.; Olmos Navarrete, L.; Flores Jiménez, M.F.; González Albarrán, M.A.; Farias Velázquez, I.G. Microstructure and Mechanical Properties of Ti-TiH2 Based Matrix Composites Reinforced with xTiB2 Particles Processed by Powder Metallurgy. Coatings 2023, 13, 587. https://doi.org/10.3390/coatings13030587
Bravo Barcenas DI, Chávez Aguilar JM, Jiménez Alemán O, Olmos Navarrete L, Flores Jiménez MF, González Albarrán MA, Farias Velázquez IG. Microstructure and Mechanical Properties of Ti-TiH2 Based Matrix Composites Reinforced with xTiB2 Particles Processed by Powder Metallurgy. Coatings. 2023; 13(3):587. https://doi.org/10.3390/coatings13030587
Chicago/Turabian StyleBravo Barcenas, David Israel, Jorge Manuel Chávez Aguilar, Omar Jiménez Alemán, Luis Olmos Navarrete, Max Fernando Flores Jiménez, Marco Aurelio González Albarrán, and Iván Gerardo Farias Velázquez. 2023. "Microstructure and Mechanical Properties of Ti-TiH2 Based Matrix Composites Reinforced with xTiB2 Particles Processed by Powder Metallurgy" Coatings 13, no. 3: 587. https://doi.org/10.3390/coatings13030587
APA StyleBravo Barcenas, D. I., Chávez Aguilar, J. M., Jiménez Alemán, O., Olmos Navarrete, L., Flores Jiménez, M. F., González Albarrán, M. A., & Farias Velázquez, I. G. (2023). Microstructure and Mechanical Properties of Ti-TiH2 Based Matrix Composites Reinforced with xTiB2 Particles Processed by Powder Metallurgy. Coatings, 13(3), 587. https://doi.org/10.3390/coatings13030587