Microstructural Evolution and Thermal Stability of Long Period Stacking Ordered Phases in Mg97Er2Ni1 and Mg97Er2Zn1 Alloys
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
3.1. Dual-Phase Microstructure in As-Cast Alloys
3.2. Thermal Stability of Involved LPSO Phases
3.3. Microstructure Evolution During Heat Treatment
3.4. High Thermal Stability of LPSO Phase in a Mg97Er2Ni1 Alloy
4. Conclusions
- (1)
- In the as-cast state, both Mg97Er2Ni1 and Mg97Er2Zn1 alloys are composed of α-Mg and LPSO phases. Heat treatment at 540 °C for 20 h leads to the dissolution of both block-like and lamellar LPSO phases into the α-Mg matrix in the Mg97Er2Zn1 alloy. During subsequent cooling from 540 °C to 400 °C, lamellar LPSO phases precipitate within the α-Mg grains.
- (2)
- The LPSO phase in the Mg97Er2Ni1 alloy exhibits an exceptionally high melting temperature of 605 °C, indicating superior thermal stability. After heat treatment at 500 °C for 100 h, the area fraction of the LPSO phase remains unchanged, underscoring its stability at 500 °C. At 540 °C, heat treatment promotes the growth of LPSO grains rather than dissolving the LPSO phase or altering its 18R-type structure. This indicates that elevated-temperature heat treatments can effectively modify the morphology of the LPSO phase without reducing its area fraction.
- (3)
- Comparative heat treatment results demonstrate that Ni is more effective than Zn in enhancing the thermal stability of the LPSO phase. Ni promotes the formation of block-shaped LPSO phases, while Zn facilitates the precipitation of lamella-shaped LPSO phases within the α-Mg matrix, suggesting a way to tailor the morphology of the LPSO phase by adjusting the Ni or Zn elements.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tan, J.; Ramakrishna, S. Applications of magnesium and its alloys: A review. Appl. Sci. 2021, 11, 6861. [Google Scholar] [CrossRef]
- Kumar, L.G.S.; Thirumalaikumarasamy, D.; Karthikeyan, K.; Mathanbabu, M.; Ashokkumar, M.; Ramachandran, C.S. An overview of recent trends and challenges of post treatments on magnesium alloys. Mater. Today Proc. 2023, 78, 700–707. [Google Scholar] [CrossRef]
- Wu, G.; Wang, C.; Sun, M.; Ding, W. Recent developments and applications on high-performance cast magnesium rare-earth alloys. J. Magnes. Alloys 2021, 9, 1–20. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, S.; Wu, R.; Hou, L.; Zhang, M. Recent developments in high-strength Mg-RE-based alloys: Focusing on Mg-Gd and Mg-Y systems. J. Magnes. Alloys 2018, 6, 277–291. [Google Scholar] [CrossRef]
- Jayasathyakawin, S.; Ravichandran, M.; Baskar, N.; Chairman, C.A.; Balasundaram, R. Mechanical properties and applications of Magnesium alloy—Review. Mater. Today Proc. 2020, 27, 909–913. [Google Scholar] [CrossRef]
- Geshani, M.S.; Kalayeh, P.M.; Asadi, A.H.; Mirzadeh, H.; Malekan, M.; Emamy, M. A review of Mg alloys containing long-period stacking ordered (LPSO) structures with insight into the application of friction stir processing. J. Mater. Res. Technol. 2023, 24, 4945–4966. [Google Scholar] [CrossRef]
- Zhu, Y.M.; Morton, A.J.; Nie, J.F. The 18R and 14H long-period stacking ordered structures in Mg–Y–Zn alloys. Acta Mater. 2010, 58, 2936–2947. [Google Scholar] [CrossRef]
- Liu, H.; Xue, F.; Bai, J.; Zhou, J.; Liu, X. Effect of substitution of 1 at% Ni for Zn on the microstructure and mechanical properties of Mg94Y4Zn2 alloy. Mater. Sci. Eng. A 2013, 585, 387–395. [Google Scholar] [CrossRef]
- Kawamura, Y.; Yamasaki, M. Formation and mechanical properties of Mg97Zn1RE2 alloys with long-period stacking ordered structure. Mater. Trans. 2007, 48, 2986–2992. [Google Scholar] [CrossRef]
- Yin, J.; Lu, C.; Ma, X.; Dai, B.; Chen, H.-L. Investigation of two-phase Mg-Gd-Ni alloys with highly stable long period stacking ordered phases. Intermetallics 2016, 68, 63–70. [Google Scholar] [CrossRef]
- Liu, Y.; Yin, J.; Zhu, G. Solving Ambiguity in EBSD Indexing of Long-Period Stacking Ordered (LPSO) Phase in Mg with Template Matching Approach. Crystals 2024, 14, 932. [Google Scholar] [CrossRef]
- Xu, H.; Jiang, J.; Bi, G.; Meng, S.; Zhang, X.; Li, Y.; Chen, T. Microstructure and mechanical properties of extruded and rolled Mg–Y–Zn–Ni–Co alloy. J. Mater. Res. Technol. 2023, 27, 8323–8333. [Google Scholar] [CrossRef]
- Liu, H.; Huang, H.; Wang, C.; Sun, J.; Bai, J.; Xue, F.; Ma, A.; Chen, X.-B. Recent advances in LPSO-containing wrought magnesium alloys: Relationships between processing, microstructure, and mechanical properties. JOM 2019, 71, 3314–3327. [Google Scholar] [CrossRef]
- Li, Y.; Yang, C.; Zeng, X.; Jin, P.; Qiu, D.; Ding, W. Microstructure evolution and mechanical properties of magnesium alloys containing long period stacking ordered phase. Mater. Charact. 2018, 141, 286–295. [Google Scholar] [CrossRef]
- Xu, D.; Han, E.; Xu, Y. Effect of long-period stacking ordered phase on microstructure, mechanical property and corrosion resistance of Mg alloys: A review. Prog. Nat. Sci. Mater. Int. 2016, 26, 117–128. [Google Scholar] [CrossRef]
- Zhu, Q.; Li, Y.; Zhang, H.; Wang, J.; Jiang, H.; Zhao, J. Revealing the Interaction between Dislocations and LPSO–Precipitates Structure in a Mg-Y-Al Alloy at Different Temperatures. Crystals 2024, 14, 1018. [Google Scholar] [CrossRef]
- Kishida, K.; Yokobayashi, H.; Inui, H.; Yamasaki, M.; Kawamura, Y. The crystal structure of the LPSO phase of the 14H-type in the Mg–Al–Gd alloy system. Intermetallics 2012, 31, 55–64. [Google Scholar] [CrossRef]
- Wang, Z.; Shen, Z.; Liu, Y.; Zhao, Y.; Zhu, Q.; Chen, Y.; Wang, J.; Li, Y.; Lozano-Perez, S.; Zeng, X. The effect of LPSO phase on the high-temperature oxidation of a stainless Mg-Y-Al alloy. J. Magnes. Alloys 2024, 12, 4045–4052. [Google Scholar] [CrossRef]
- Wang, J.; Song, P.; Huang, S.; Pan, F. Effects of heat treatment on the morphology of long-period stacking ordered phase and the corresponding mechanical properties of Mg–9Gd–xEr–1.6 Zn–0.6 Zr magnesium alloys. Mater. Sci. Eng. A 2013, 563, 36–45. [Google Scholar] [CrossRef]
- Wu, S.Z.; Qiao, X.G.; Qin, S.H.; Chi, Y.; Zheng, M. Improved strength in wrought Mg–Y–Ni alloys by adjusting the block-shaped LPSO phase and plate-shaped γ′ phase. Mater. Sci. Eng. A 2022, 831, 142198. [Google Scholar] [CrossRef]
- Yamasaki, M.; Hashimoto, K.; Hagihara, K.; Kawamura, Y. Effect of multimodal microstructure evolution on mechanical properties of Mg–Zn–Y extruded alloy. Acta Mater. 2011, 59, 3646–3658. [Google Scholar] [CrossRef]
- Dang, C.; Wang, J.; Wang, J.; Yu, D.; Zheng, W.; Xu, C.; Lu, R. Effect of lamellar LPSO phase on mechanical properties and damping capacity in cast magnesium alloys. J. Mater. Res. Technol. 2023, 22, 2589–2599. [Google Scholar] [CrossRef]
- Garces, G.; Barea, R.; Stark, A.; Schell, N. Anisotropic Plastic Behavior in an Extruded Long-Period Ordered Structure Mg90Y6.5Ni3.5 (at.%) Alloy. Crystals 2020, 10, 279. [Google Scholar] [CrossRef]
- Pałgan, D.; Dobkowska, A.; Zielińska, A.; Drozdenko, D.; Máthis, K.; Święszkowski, W. The Role of LPSO Structures in Corrosion Resistance of Mg-Y-Zn Alloys. Crystals 2022, 12, 1723. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, J.; Cheng, W.; Chen, C.; Kang, J. Corrosion behavior of Mg–Zn–Y alloy with long-period stacking ordered structures. J. Mater. Sci. Technol. 2012, 28, 1157–1162. [Google Scholar] [CrossRef]
- Zhang, X.; Ba, Z.; Wang, Q.; Wu, Y.; Wang, Z.; Wang, Q. Uniform corrosion behavior of GZ51K alloy with long period stacking ordered structure for biomedical application. Corros. Sci. 2014, 88, 1–5. [Google Scholar] [CrossRef]
- Ma, K.; Wang, J.; Peng, Y.; Dai, C.; Pan, Y.; Wang, D.; Wang, Y.; Pei, S.; Ma, Y. Enhanced degradation properties of Mg-Gd-Ni alloys by regulating LPSO morphology. J. Phys. Chem. Solids 2022, 171, 110974. [Google Scholar] [CrossRef]
- Ma, K.; Wang, J.; Ren, J.; Dai, C.; Liu, S.; Peng, Y.; Pan, Y. Enhanced degradation properties of Mg-Y-Ni alloys by tailoring the LPSO morphology for fracturing tools applications. Mater. Charact. 2021, 181, 111489. [Google Scholar] [CrossRef]
- Dai, C.; Zhang, S.; Wang, Y.; Wang, J.; Wang, J. Elucidation of the corrosion rate enhancement mechanism in Mg–Er–Gd–Ni alloys with high volume fraction of LPSO phase and different Gd contents after extrusion. J. Mater. Res. Technol. 2023, 27, 522–541. [Google Scholar] [CrossRef]
- Dai, C.; Wang, J.; Pan, Y.; Ma, K.; Peng, Y.; Ren, J.; Wang, Y.; Wang, D.; Wang, J.; Ma, Y. Tailoring the microstructural characteristic and improving the corrosion rate of Mg-Gd-Ni alloy by heat treatment with different volume fraction of LPSO phase. Corros. Sci. 2023, 210, 110806. [Google Scholar] [CrossRef]
- Li, Q.; Jin, L.; Wang, F.; Dong, S.; Zeng, J.; Wang, F.; Dong, J. Crack propagation path deflection induced by α-Mg/LPSO interface and its effect on the fracture toughness of cast Mg-RE-Zn alloys. J. Magnes. Alloys 2024, 88, 1–5. [Google Scholar] [CrossRef]
- Zhang, G.; Niu, X.; Lu, R. Effects of heat treatment routes on microstructure and damping properties of Mg–Zn–Y–Mn alloys. Mater. Res. Express 2023, 10, 036515. [Google Scholar] [CrossRef]
- Maier, P.; Schmahl, M.; Clausius, B.; Joy, C.; Fleck, C. Nanoindentation on the Transformation of LPSO Phases during Different Solution Heat Treatments in an Mg-Dy-Nd-Zn-Zr Alloy. Crystals 2022, 12, 1673. [Google Scholar] [CrossRef]
- Ding, W.J.; Wu, Y.J.; Peng, L.M.; Zeng, X.; Yuan, G.; Lin, D. Formation of 14H-type long period stacking ordered structure in the as-cast and solid solution treated Mg-Gd-Zn-Zr alloys. J. Mater. Res. 2009, 24, 1842–1854. [Google Scholar] [CrossRef]
- Li, D.; Zeng, X.; Dong, J.; Zhai, C. Influence of heat treatment on microstructure and mechanical properties of Mg-10Gd-3Y-1.2 Zn-0.4 Zr alloy. Trans. Nonferrous Met. Soc. China 2008, 18, s117–s121. [Google Scholar] [CrossRef]
- Wu, X.; Pan, F.; Cheng, R.; Luo, S. Effect of morphology of long period stacking ordered phase on mechanical properties of Mg-10Gd-1Zn-0.5 Zr magnesium alloy. Mater. Sci. Eng. A 2018, 726, 64–68. [Google Scholar] [CrossRef]
- Dai, C.; Wang, J.; Pan, Y.; Ma, K.; Peng, Y.; Wang, Y.; Wang, D.; Ran, C.; Wang, J.; Ma, Y. Achieving exceptionally high strength and rapid degradation rate of Mg-Er-Ni alloy by strengthening with lamellar γ′ and bulk LPSO phases. J. Mater. Sci. Technol. 2024, 168, 88–102. [Google Scholar] [CrossRef]
- Dai, C.; Pei, S.; Ma, K.; Wang, Y.; Wang, D.; Wang, J.; Ma, Y.; Wang, J. Rapid corrosion rates and high mechanical properties of as-extruded Mg–Er–Ni alloys by introducing LPSO and γ′ phases. J. Mater. Res. Technol. 2023, 24, 6246–6263. [Google Scholar] [CrossRef]
- Dai, C.; Pei, S.; Ma, K.; Wang, Y.; Wang, D.; Wang, J.; Ma, Y.; Wang, J. Revealing distinct corrosion mechanisms of soluble as-extruded Mg–Er–Ni alloy with LPSO and Mg2Ni phase in different orientations. J. Mater. Res. Technol. 2023, 26, 1903–1921. [Google Scholar] [CrossRef]
- Zhang, S.; Xie, X.; Ouyang, L.; Dai, C.; Li, H.; Xue, X.; Pei, S.; Wang, K.; Wang, J.; Pan, F. Thermo-mechanical processing characteristics and strain-rate-sensitive degradation properties of Mg-Er-Ni alloys. J. Alloys Compd. 2024, 1004, 175926. [Google Scholar] [CrossRef]
- Chen, B.; Lin, D.; Zeng, X.; Lu, C. Effects of yttrium and zinc addition on the microstructure and mechanical properties of Mg–Y–Zn alloys. J. Mater. Sci. 2010, 45, 2510–2517. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, J.; Liu, Y.; Zhu, G.-Z. Microstructural Evolution and Thermal Stability of Long Period Stacking Ordered Phases in Mg97Er2Ni1 and Mg97Er2Zn1 Alloys. Crystals 2024, 14, 1092. https://doi.org/10.3390/cryst14121092
Yin J, Liu Y, Zhu G-Z. Microstructural Evolution and Thermal Stability of Long Period Stacking Ordered Phases in Mg97Er2Ni1 and Mg97Er2Zn1 Alloys. Crystals. 2024; 14(12):1092. https://doi.org/10.3390/cryst14121092
Chicago/Turabian StyleYin, Jian, Yushun Liu, and Guo-Zhen Zhu. 2024. "Microstructural Evolution and Thermal Stability of Long Period Stacking Ordered Phases in Mg97Er2Ni1 and Mg97Er2Zn1 Alloys" Crystals 14, no. 12: 1092. https://doi.org/10.3390/cryst14121092
APA StyleYin, J., Liu, Y., & Zhu, G.-Z. (2024). Microstructural Evolution and Thermal Stability of Long Period Stacking Ordered Phases in Mg97Er2Ni1 and Mg97Er2Zn1 Alloys. Crystals, 14(12), 1092. https://doi.org/10.3390/cryst14121092