Spark Plasma Sintering of SiAlON Ceramics Synthesized via Various Cations Charge Stabilizers and Their Effect on Thermal and Mechanical Characteristics
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Phase Evolution and Microstructure Analysis
3.2. Densification, Mechanical, and Thermal Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jack, K.H. Nitrogen Ceramics for Engine Applications. Mater. Sci. Forum 2000, 325, 255–264. [Google Scholar] [CrossRef]
- Jack, K.H. Prospects for Nitrogen Ceramics. Key Eng. Mater. 1994, 89–91, 345–350. [Google Scholar] [CrossRef]
- Jack, K.H. Sialons and related nitrogen ceramics. J. Mater. Sci. 1976, 11, 1135–1158. [Google Scholar] [CrossRef]
- Lewis, M.H. Sialons and silicon nitrides; microstructural design and performance. MRS Proc. 1993, 287, 159–172. [Google Scholar] [CrossRef]
- Esmaeilzadeh, S.; Grins, J.; Shen, Z.; Edén, M.; Thiaux, M. Study of Sialon S-phases M2AlXSi12-XN16-XO2+X, M = Ba and Ba0.9Eu0.1, by x-ray single crystal diffraction, X-ray powder diffraction, and solid-state nuclear magnetic resonance. Chem. Mater. 2004, 16, 2113–2120. [Google Scholar] [CrossRef]
- Santos, C.; Strecker, K.; Ribeiro, S.; Souza, J.V.; Silva, O.; Silva, C. α-SiAlON ceramics with elongated grain morphology using an alternative sintering additive. Mater. Lett. 2004, 58, 1792–1796. [Google Scholar] [CrossRef]
- Becher, P.F.; Waters, S.B.; Westmoreland, C.G.; Riester, L. Compositional Effects on the Properties of Si-Al-RE-Based Oxynitride Glasses (RE = La, Nd, Gd, Y, or Lu). J. Am. Ceram. Soc. 2002, 85, 897–902. [Google Scholar] [CrossRef]
- Cao, G.Z.; Metselaar, R. .alpha.’-Sialon ceramics: A review. Chem. Mater. 1991, 3, 242–252. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, B.A.; Laoui, T.; Hakeem, A.S. Development of calcium stabilized nitrogen rich α-sialon ceramics along the Si3N4:1/2Ca3N2:3AlN line using spark plasma sintering. J. Adv. Ceram. 2020, 9, 606–616. [Google Scholar] [CrossRef]
- Hampshire, S. Oxynitride glasses, their properties and crystallization—A review. J. Non Cryst. Solids 2003, 316, 64–73. [Google Scholar] [CrossRef]
- Al Malki, M.M.; Khan, R.M.A.; Hakeem, A.S.; Hampshire, S.; Laoui, T. Effect of Al metal precursor on the phase formation and mechanical properties of fine-grained SiAlON ceramics prepared by spark plasma sintering. J. Eur. Ceram. Soc. 2017, 37, 1975–1983. [Google Scholar] [CrossRef]
- Ahmed, B.A.; Hakeem, A.; Laoui, T. Effect of nano-size oxy-nitride starting precursors on spark plasma sintering of calcium sialons along the alpha/(alpha + beta) phase boundary. Ceram. Int. 2019, 45, 9638–9645. [Google Scholar] [CrossRef]
- Ahmed, B.A.; Hakeem, A.S.; Laoui, T.; Al Malki, M.; Ehsan, M.A.; Ali, S. Low-temperature spark plasma sintering of calcium stabilized alpha sialon using nano-size aluminum nitride precursor. Int. J. Refract. Met. Hard Mater. 2018, 71, 301–306. [Google Scholar] [CrossRef]
- Khan, R.M.A.; Ahmed, B.A.; Al Malki, M.M.; Hakeem, A.S.; Laoui, T. Synthesis of hard and tough calcium stabilized α-sialon/SiC ceramic composites using nano-sized precursors and spark plasma sintering. J. Alloys Compd. 2018, 757, 200–208. [Google Scholar] [CrossRef]
- Angerer, P.; Yu, L.; Khor, K.; Korb, G.; Zalite, I. Spark-plasma-sintering (SPS) of nanostructured titanium carbonitride powders. J. Eur. Ceram. Soc. 2005, 25, 1919–1927. [Google Scholar] [CrossRef]
- Hakeem, A.S.; Laoui, T.; Ehsan, M.A.; Ahmed, B.A. Spark Plasma Method for Making cBN/SiAlON Ceramics. U.S. Patent 10,550,042,B2, 4 February 2020. [Google Scholar]
- Ye, F.; Iwasa, M.; Su, C.; Chen, S. Self-reinforced Y-α-sialon ceramics with barium.aluminosilicate as an additive. J. Mater. Res. 2003, 18, 2446–2450. [Google Scholar] [CrossRef]
- Hakeem, A.S.; Laoui, T.; Irshad, H.M.; Ahmed, B.A.; Ehsan, M.A. Method for Making an Al2O3-cBN Composite. U.S. Patent 10,858,292,B2, 8 December 2020. [Google Scholar]
- Hakeem, A.S.; Laoui, T.; Almaliki, M.M.; Khan, A.M.R.; Patel, F. Method for Forming Sintered Ceramic Material. U.S. Patent 10,364,192B2, 30 July 2019. [Google Scholar]
- Wood, C.A.; Zhao, H.; Cheng, Y.-B. Microstructural Development of Calcium alpha-SiAlON Ceramics with Elongated Grains. J. Am. Ceram. Soc. 1999, 82, 421–428. [Google Scholar] [CrossRef]
- Shin, I.; Kim, D.J. Growth of elongated grains in α-SiAlON ceramics. Mater. Lett. 2001, 47, 329–333. [Google Scholar] [CrossRef]
- Nguyen, T.P.; Kakroudi, M.G.; Asl, M.S.; Ahmadi, Z.; Namini, A.S.; Delbari, S.A.; Van Le, Q.; Shokouhimehr, M. Influence of SiAlON addition on the microstructure development of hot-pressed ZrB2–SiC composites. Ceram. Int. 2020, 46, 19209–19216. [Google Scholar] [CrossRef]
- Asl, M.S.; Nayebi, B.; Ahmadi, Z.; Pirmohammadi, P.; Kakroudi, M.G. Fractographical characterization of hot pressed and pressureless sintered SiAlON-doped ZrB2–SiC composites. Mater. Charact. 2015, 102, 137–145. [Google Scholar] [CrossRef]
- Guillon, O.; Gonzalez-Julian, J.; Dargatz, B.; Kessel, T.; Schierning, G.; Räthel, J.; Herrmann, M. Field-Assisted Sintering Technology/Spark Plasma Sintering: Mechanisms, Materials, and Technology Developments. Adv. Eng. Mater. 2014, 16, 830–849. [Google Scholar] [CrossRef]
- Guo, Z.; Blugan, G.; Kirchner, R.; Reece, M.; Graule, T.; Kuebler, J. Microstructure and electrical properties of Si3N4–TiN composites sintered by hot pressing and spark plasma sintering. Ceram. Int. 2007, 33, 1223–1229. [Google Scholar] [CrossRef]
- Saheb, N.; Iqbal, Z.; Khalil, A.; Hakeem, A.S.; Al-Aqeeli, N.; Laoui, T.; Al-Qutub, A.; Kirchner, R. Spark Plasma Sintering of Metals and Metal Matrix Nanocomposites: A Review. J. Nanomater. 2012, 2012, 983470. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, B.A.; Ahmed, F.; Hakeem, A.S. Joule Heating in Two-dimensional Materials Based Transistors. Res. Dev. Mater. Sci. 2019, 10. [Google Scholar] [CrossRef]
- Adeniyi, A.S.; Ahmed, B.A.; Hakeem, A.S.; Patel, F.; Bakare, A.I.; Ul-Hamid, A.; Khan, A.A.; Ehsan, M.A.; Khan, T.I. The Property Characterization of α-Sialon/Ni Composites Synthesized by Spark Plasma Sintering. Nanomaterials 2019, 9, 1682. [Google Scholar] [CrossRef] [Green Version]
- Peng, G.-H.; Li, X.-G.; Liang, M.; Liang, Z.-H.; Liu, Q.; Li, W.-L. Spark plasma sintered high hardness α/β Si3N4 composites with MgSiN2 as additives. Scr. Mater. 2009, 61, 347–350. [Google Scholar] [CrossRef]
- Belmonte, M.; Gonzalez-Julian, J.; Miranzo, P.; Osendi, M.I. Spark plasma sintering: A powerful tool to develop new silicon nitride-based materials. J. Eur. Ceram. Soc. 2010, 30, 2937–2946. [Google Scholar] [CrossRef]
- Cai, Y.; Shen, Z.; Höche, T.; Grins, J.; Esmaeilzadeh, S. Superplastic deformation of nitrogen-rich Ca-α-sialon ceramics. Mater. Sci. Eng. A 2008, 475, 81–86. [Google Scholar] [CrossRef]
- Al Wohaibi, S.; Mohammed, A.S.; Laoui, T.; Hakeem, A.S.; Adesina, A.Y.; Patel, F. Tribological Characterization of Micron-/Nano-Sized WC-9%Co Cemented Carbides Prepared by Spark Plasma Sintering at Elevated Temperatures. Materials 2019, 12, 920. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, Z.; Zakeri, M.; Farvizi, M.; Habibi-Yangjeh, A.; Asadzadeh-Khaneghah, S.; Asl, M.S. Synergistic influence of SiC and C3N4 reinforcements on the characteristics of ZrB2-based composites. J. Asian Ceram. Soc. 2021, 9, 53–62. [Google Scholar] [CrossRef]
- Pazhouhanfar, Y.; Delbari, S.A.; Asl, M.S.; Shaddel, S.; Pazhouhanfar, M.; Van Le, Q.; Shokouhimehr, M.; Mohammadi, M.; Namini, A.S. Characterization of spark plasma sintered TiC–Si3N4 ceramics. Int. J. Refract. Met. Hard Mater. 2020, 95, 105444. [Google Scholar] [CrossRef]
- Nguyen, V.-H.; Delbari, S.A.; Asl, M.S.; Van Le, Q.; Jang, H.W.; Shokouhimehr, M.; Mohammadi, M.; Namini, A.S. A novel spark plasma sintered TiC–ZrN–C composite with enhanced flexural strength. Ceram. Int. 2020, 46, 29022–29032. [Google Scholar] [CrossRef]
- Nguyen, T.P.; Mahaseni, Z.H.; Germi, M.D.; Delbari, S.A.; Van Le, Q.; Ahmadi, Z.; Shokouhimehr, M.; Asl, M.S.; Namini, A.S. Densification behavior and microstructure development in TiB2 ceramics doped with h-BN. Ceram. Int. 2020, 46, 18970–18975. [Google Scholar] [CrossRef]
- Fattahi, M.; Asl, M.S.; Delbari, S.A.; Namini, A.S.; Ahmadi, Z.; Mohammadi, M. Role of nano-WC addition on microstructural, mechanical and thermal characteristics of TiC–SiCw composites. Int. J. Refract. Met. Hard Mater. 2020, 90, 105248. [Google Scholar] [CrossRef]
- Hussein, M.A.; Shahzad, H.K.; Patel, F.; Atieh, M.A.; Al-Aqeeli, N.; Baroud, T.N.; Laoui, T. Porous Al2O3-CNT Nanocomposite Membrane Produced by Spark Plasma Sintering with Tailored Microstructure and Properties for Water Treatment. Nanomaterials 2020, 10, 845. [Google Scholar] [CrossRef]
- Mohamedkhair, A.; Hakeem, A.; Drmosh, Q.; Mohammed, A.; Baig, M.; Ul-Hamid, A.; Gondal, M.; Yamani, Z. Fabrication and Characterization of Transparent and Scratch-Proof Yttrium/Sialon Thin Films. Nanomaterials 2020, 10, 2283. [Google Scholar] [CrossRef]
- Oeckler, O.; Kechele, J.A.; Koss, H.; Schmidt, P.J.; Schnick, W. Sr5Al5+XSi21−XN35−XO2+X:Eu2+(x≈0)-A Novel Green Phosphor for White-Light pcLEDs with Disordered Intergrowth Structure. Chem. Eur. J. 2009, 15, 5311–5319. [Google Scholar] [CrossRef] [PubMed]
- Garrett, J.; Sigalas, I.; Wolfrum, A.; Herrmann, M. Effect of cubic boron nitride grain size in the reinforcing of α-Sialon ceramics sintered via SPS. J. Eur. Ceram. Soc. 2015, 35, 451–462. [Google Scholar] [CrossRef]
- Li, J.; Yin, R. Advanced Functional Materials; Springer: Singapore, 2018. [Google Scholar]
- Zhong, J.; Gao, H.; Yuan, Y.; Chen, L.; Chen, D.; Ji, Z. Eu3+-doped double perovskite-based phosphor-in-glass color converter for high-power warm w-LEDs. J. Alloys Compd. 2018, 735, 2303–2310. [Google Scholar] [CrossRef]
- Hakeem, A.S.; Ali, S.; Jonson, B. Preparation and properties of mixed La–Pr silicate oxynitride glasses. J. Non Cryst. Solids 2013, 368, 93–97. [Google Scholar] [CrossRef]
- Hakeem, A.S.; Daucé, R.; Leonova, E.; Edén, M.; Shen, Z.; Grins, J.; Esmaeilzadeh, S. Silicate Glasses with Unprecedented High Nitrogen and Electropositive Metal Contents Obtained by Using Metals as Precursors. Adv. Mater. 2005, 17, 2214–2216. [Google Scholar] [CrossRef]
- Santos, C.; Strecker, K.; Baldacim, S.; Silva, O.; Silva, C. Properties of hot-pressed, partially stabilized CRE-α-SiAlONs as a function of the additive content. Int. J. Refract. Met. Hard Mater. 2004, 22, 79–85. [Google Scholar] [CrossRef]
- Tanaka, I.; Kleebe, H.-J.; Cinibulk, M.K.; Bruley, J.; Clarke, D.R.; Ruhle, M. Calcium Concentration Dependence of the Intergranular Film Thickness in Silicon Nitride. J. Am. Ceram. Soc. 1994, 77, 911–914. [Google Scholar] [CrossRef]
- Huang, Z.-K.; Tien, T.-Y. Solid-Liquid Reaction in the Si3N4-AlN-Y2O3 System under 1 MPa of Nitrogen. J. Am. Ceram. Soc. 1996, 79, 1717–1719. [Google Scholar] [CrossRef] [Green Version]
- Joshi, B.; Gyawali, G.; Wang, H.; Sekino, T.; Lee, S.W. Thermal and mechanical properties of hot pressed translucent Y2O3 doped Mg–α/β-Sialon ceramics. J. Alloys Compd. 2013, 557, 112–119. [Google Scholar] [CrossRef]
- Çalışkan, F.; Tatli, Z.; Genson, A.; Hampshire, S. Pressureless sintering of β-SiAlON ceramic compositions using fluorine and oxide additive system. J. Eur. Ceram. Soc. 2012, 32, 1337–1342. [Google Scholar] [CrossRef]
- Yin, L.; Xu, Y.; Huang, Z.; Liu, Y.-G.; Fang, M.; Liu, B. Synthesis of ZrN–Si3N4 composite powders from zircon and quartz by carbothermal reduction and nitridation. Powder Technol. 2013, 246, 677–681. [Google Scholar] [CrossRef]
- Santos, C.; Kelly, C.; Ribeiro, S.; Strecker, K.; Souza, J.; Silva, O. α-SiAlON–SiC composites obtained by gas-pressure sintering and hot-pressing. J. Mater. Process. Technol. 2007, 189, 138–142. [Google Scholar] [CrossRef]
- Cai, Y.; Shen, Z.; Grins, J.; Esmaeilzadeh, S. Sialon Ceramics Prepared by Using CaH2 as a Sintering Additive. J. Am. Ceram. Soc. 2008, 91, 2997–3004. [Google Scholar] [CrossRef]
- Yi, X.; Niu, J.; Akiyama, T.; Harada, K.; Nakatsugawa, I. Spark plasma sintering behavior of combustion-synthesized (Y, Ca)-α-SiAlON. Ceram. Int. 2016, 42, 15687–15693. [Google Scholar] [CrossRef]
- Xiong, Y.; Fu, Z.; Wang, H.; Wang, Y.; Zhang, J.; Zhang, Q. Microstructure and properties of translucent Mg–sialon ceramics prepared by spark plasma sintering. Mater. Sci. Eng. A 2008, 488, 475–481. [Google Scholar] [CrossRef]
- Jojo, N.; Shongwe, M.B.; Tshabalala, L.C.; Olubambi, P.A. Effect of Sintering Temperature and Yttrium Composition on the Densification, Microstructure and Mechanical Properties of Spark Plasma Sintered Silicon Nitride Ceramics with Al2O3 and Y2O3 Additives. Silicon 2019, 11, 2689–2699. [Google Scholar] [CrossRef]
- Ye, F.; Zhang, L.; Zhang, H.; Liu, L.; Liu, C.; Zhou, Y. Rapid densification and reaction sequences in self-reinforced Y-α-SiAlON ceramics with barium aluminosilicate as an additive. Mater. Sci. Eng. A 2009, 527, 287–291. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, C.; Sun, W.; Yan, D. Formation behavior of multi-cation α-sialons containing calcium and magnesium. Mater. Lett. 1999, 38, 178–185. [Google Scholar] [CrossRef]
- Nino, A.; Sasago, A.; Sugiyama, S.; Taimatsu, H. Preparation of Si3N4-TaC and Si3N4-ZrC composite ceramics and their mechanical properties. Int. J. Refract. Met. Hard Mater. 2016, 61, 192–200. [Google Scholar] [CrossRef]
- Ekström, T.; Nygren, M. SiAION Ceramics. J. Am. Ceram. Soc. 1992, 75, 259–276. [Google Scholar] [CrossRef]
- Hakeem, A.S.; Khan, M.; Ahmed, B.A.; Al Ghanim, A.; Patel, F.; Ehsan, M.A.; Ali, S.; Laoui, T.; Ali, S. Synthesis and characterization of alkaline earth and rare earth doped sialon Ceramics by spark plasma sintering. Int. J. Refract. Met. Hard Mater. 2021, 97, 105500. [Google Scholar] [CrossRef]
- Lee, C.-H.; Liu, H.-C.; Lu, H.-H.; Goto, T.; Tu, R.; Wang, C.-A.; Pavol, S.; Ruan, J.-L.; Nayak, P.K.; Chen, J.-H.; et al. Indentation Deformation and Microcracking in β-Si3N4-Based Nanoceramic. J. Am. Ceram. Soc. 2012, 95, 1421–1428. [Google Scholar] [CrossRef]
- Souza, J.V.C.; Santos, C.; Kelly, C.; Silva, O. Development of α-SiAlON-SiC ceramic composites by liquid phase sintering. Int. J. Refract. Met. Hard Mater. 2007, 25, 77–81. [Google Scholar] [CrossRef]
- Khan, R.M.A.; Al Malki, M.M.; Hakeem, A.S.; Ehsan, M.A.; Laoui, T. Development of a single-phase Ca-α-SiAlON ceramic from nanosized precursors using spark plasma sintering. Mater. Sci. Eng. A 2016, 673, 243–249. [Google Scholar] [CrossRef]
- Evans, A.G.; Charles, E.A. Fracture Toughness Determinations by Indentation. J. Am. Ceram. Soc. 1976, 59, 371–372. [Google Scholar] [CrossRef]
- Hakeem, A.S.; Grins, J.; Esmaeilzadeh, S. La–Si–O–N glasses: Part I. Extension of the glass forming region. J. Eur. Ceram. Soc. 2007, 27, 4773–4781. [Google Scholar] [CrossRef]
- Dong, H.; Wen, B.; Melnik, R. Relative importance of grain boundaries and size effects in thermal conductivity of nanocrystalline materials. Sci. Rep. 2014, 4, 7037. [Google Scholar] [CrossRef]
- Irshad, H.M.; Ahmed, B.A.; Ehsan, M.A.; Khan, T.I.; Laoui, T.; Yousaf, M.R.; Ibrahim, A.; Hakeem, A.S. Investigation of the structural and mechanical properties of micro-/nano-sized Al2O3 and cBN composites prepared by spark plasma sintering. Ceram. Int. 2017, 43, 10645–10653. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.; Ahmed, B.A.; Irshad, H.M.; Bakare, A.I.; Hakeem, A.S.; Qamaruddin, M.; Ehsan, M.A.; Ali, S.; Azam, M.U. Evaluation of alumina reinforced oil fly ash composites prepared by spark plasma sintering. Int. J. Appl. Ceram. Technol. 2020, 17, 1948–1958. [Google Scholar] [CrossRef]
- Azam, M.U.; Ahmed, B.A.; Hakeem, A.S.; Irshad, H.M.; Laoui, T.; Ehsan, M.A.; Patel, F.; Khalid, F.A. Tribological behaviour of alumina-based nanocomposites reinforced with uncoated and Ni-coated cubic boron nitride. J. Mater. Res. Technol. 2019, 8, 5066–5079. [Google Scholar] [CrossRef]
- Biswas, M.; Bandyopadhyay, S. 27R-SiAlON Reinforced AlN Composite: Synthesis, Sintering and Characterization. Met. Mater. Int. 2021, 27, 1779–1789. [Google Scholar] [CrossRef]
- Anstis, G.; Chantikul, P.; Lawn, B.; Marshall, D. A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I, Direct Crack Measurements. J. Am. Ceram. Soc. 1981, 64, 533–538. [Google Scholar] [CrossRef]
- Quinn, G.D.; Salem, J.; Baron, I.; Cho, K.; Foley, M.; Fang, H. Fracture toughness of advanced ceramics at room temperature. J. Res. Natl. Inst. Stand. Technol. 1992, 97, 579–607. [Google Scholar] [CrossRef]
- Gong, J.; Wu, J.; Guan, Z. Examination of the indentation size effect in low-load vickers hardness testing of ceramics. J. Eur. Ceram. Soc. 1999, 19, 2625–2631. [Google Scholar] [CrossRef]
S/No | Sample Name | Temperature (°C) | Holding Time | Pressure/Synthesis Method | Hv (GPa) | KIC (MPa·m1/2) | Ref |
---|---|---|---|---|---|---|---|
1 | Beta-SiAlON | * NA | * NA | * NA | 19.9 | 2.9 | [60] |
2 | Alpha-SiAlON | * NA | * NA | * NA | 15.9 | 5.9 | [60] |
3 | Ytterbium-alpha-SiAlON | 1500 | 30 min | SPS 50 MPa | 20.6 | 6.3 | [61] |
4 | Calcium-alpha-SiAlON | 1750 | 60 min | HP 20 MPa | 19.4 | 6.1 | [58] |
5 | 50 wt.% TiN-alpha-SiAlON | 1600 | * NA | SPS 100 MPa | 15.7 | 7.9 | [25] |
6 | 3 wt.% MgO-beta-SiAlON+ 7 wt.% Y2O3 | 1750 | 150 min | HP 30 MPa | 20.9 | 6.1 | [62] |
7 | 30 wt.% Silicon carbide-calcium-Alpha-SiAlON | 1500 | 30 min | SPS MPa | 21.1 | 7.3 | [14] |
8 | 5 wt.% BAS-alpha-SiAlON | 1800 | 5min | SPS 25 MPa | 19.2 | 6.8 | [57] |
9 | Magnisium-alpha-SiAlON | 1850 | 60 min | SPS 30 MPa | 21.4 | 6.1 | [55] |
10 | Calcium-magnisium-alpha-SiAlON | 1750 | 60 min | HP 20 MPa | 19.7 | 5.8 | [58] |
11 | Rare earth-Silicon carbide-beta-SiAlON | 1950 | NA* | Cold pressed | 19.5 | 4.2 | [63] |
12 | Calcium-alpha-SiAlON | 1400 | 10 min | SPS 40 MPa | 19.9 | - | [54] |
Sample No | Chemical Formula | Charge Stabilizer | Metal Oxide (MO) | Melting Temp of MO (°C) | MO Size (nm) | Si3N4 (wt.%) | AlN (wt.%) | MO (wt.%) | SiO2 (wt.%) | Al2O3 (wt.%) |
---|---|---|---|---|---|---|---|---|---|---|
1 | Mg0.55Si9.3Al2.7O1.6N14.4 | Mg | MgO | 2852 | 50 | 3.86 | 73.92 | 16.29 | 3.73 | 2.20 |
2 | Ba0.55Si9.3Al2.7O1.6N14.4 | Ba | BaO | 1923 | 200 | 13.26 | 66.70 | 14.70 | 3.37 | 1.98 |
3 | Y0.367Si9.3Al2.7O1.6N14.4 | Y | Y2O3 | 2425 | 50 | 6.98 | 71.52 | 15.76 | 3.61 | 2.12 |
4 | La0.367Si9.3Al2.7O1.6N14.4 | La | La2O3 | 2315 | 30 | 9.77 | 69.38 | 15.29 | 3.50 | 2.06 |
5 | Nd0.367Si9.3Al2.7O1.6N14.4 | Nd | Nd2O3 | 2233 | 80 | 10.09 | 69.38 | 15.29 | 3.50 | 2.06 |
6 | Eu0.367Si9.3Al2.7O1.6N14.4 | Eu | Eu2O3 | 2350 | 60 | 10.55 | 69.38 | 15.29 | 3.50 | 2.06 |
7 | Dy0.367Si9.3Al2.7O1.6N14.4 | Dy | Dy2O3 | 2408 | 55 | 11.18 | 69.38 | 15.29 | 3.50 | 2.06 |
8 | Er0.367Si9.3Al2.7O1.6N14.4 | Er | Er2O3 | 2344 | 40 | 11.47 | 69.38 | 15.29 | 3.50 | 2.06 |
9 | Yb0.367Si9.3Al2.7O1.6N14.4 | Yb | Yb2O3 | 2355 | 100 | 11.82 | 69.38 | 15.29 | 3.50 | 2.06 |
Alkaline Earth Stabilizers | Rare Earth Stabilizers | ||||||||
---|---|---|---|---|---|---|---|---|---|
Sample Id’s | Ba | Mg | Y | La | Nd | Eu | Dy | Er | Yb |
Density (g/cm3) | 3.42 | 3.17 | 3.23 | 3.47 | 3.53 | 3.59 | 3.67 | 3.78 | 3.92 |
Relative Density (%) | 95 | 96 | 92 | 93 | 91 | 92 | 92 | 92 | 93 |
Thermal Conductivity (W/mK) | 6.04 | 6.80 | 6.49 | 6.13 | 6.09 | 6.04 | 5.79 | 6.91 | 6.67 |
Hardness Hv10 (GPa) | 12.4 (5) | 16.9 (4) | 15.5 (4) | 16.6 (5) | 16.2 (6) | 16.3 (4) | 17.0 (6) | 15.1 (4) | 15.6 (5) |
Fracture Toughness KIc (MPa.m1/2) | 4.1 (4) | 4.4 (6) | 5.1 (5) | 4.5 (7) | 4.3 (2) | 4.5 (2) | 4.2 (2) | 5.7 (7) | 6.2 (6) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falak, M.Z.; Ahmed, B.A.; Saeed, H.A.; Butt, S.U.; Hakeem, A.S.; Akbar, U.A. Spark Plasma Sintering of SiAlON Ceramics Synthesized via Various Cations Charge Stabilizers and Their Effect on Thermal and Mechanical Characteristics. Crystals 2021, 11, 1378. https://doi.org/10.3390/cryst11111378
Falak MZ, Ahmed BA, Saeed HA, Butt SU, Hakeem AS, Akbar UA. Spark Plasma Sintering of SiAlON Ceramics Synthesized via Various Cations Charge Stabilizers and Their Effect on Thermal and Mechanical Characteristics. Crystals. 2021; 11(11):1378. https://doi.org/10.3390/cryst11111378
Chicago/Turabian StyleFalak, Muhammad Zulqarnain, Bilal Anjum Ahmed, Hasan Aftab Saeed, Sajid Ullah Butt, Abbas Saeed Hakeem, and Usman Ali Akbar. 2021. "Spark Plasma Sintering of SiAlON Ceramics Synthesized via Various Cations Charge Stabilizers and Their Effect on Thermal and Mechanical Characteristics" Crystals 11, no. 11: 1378. https://doi.org/10.3390/cryst11111378
APA StyleFalak, M. Z., Ahmed, B. A., Saeed, H. A., Butt, S. U., Hakeem, A. S., & Akbar, U. A. (2021). Spark Plasma Sintering of SiAlON Ceramics Synthesized via Various Cations Charge Stabilizers and Their Effect on Thermal and Mechanical Characteristics. Crystals, 11(11), 1378. https://doi.org/10.3390/cryst11111378