Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (91)

Search Parameters:
Keywords = europium(III)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 7214 KB  
Article
Influence of the Monodentate Coordination of Biphenyl Carboxylic Acid Isomers on the Luminescent Properties of Mononuclear Europium Complexes
by Carlos Felipe Hernández-Fuentes, Ángel de Jesús Morales-Ramírez, Luis Sergio Cuevas-Cadena, María Luz Carrera-Jota, Ciro Falcony-Guajardo, José Ortíz-Landeros, Adán Ramírez-López and Juan Alberto Alcántara Cárdenas
Crystals 2025, 15(12), 1028; https://doi.org/10.3390/cryst15121028 - 29 Nov 2025
Viewed by 350
Abstract
This study presents the synthesis, crystal structure determination and luminescence properties of three novel mononuclear europium (III) complexes constructed from sodium benzoate and the three different isomers of biphenylcarboxylic acid (2-, 3-, and 4-). All complexes share a common structural core; consisting of [...] Read more.
This study presents the synthesis, crystal structure determination and luminescence properties of three novel mononuclear europium (III) complexes constructed from sodium benzoate and the three different isomers of biphenylcarboxylic acid (2-, 3-, and 4-). All complexes share a common structural core; consisting of a single europium (III) ion coordinated by three bidentate benzoate ligands and two monodentate biphenylcarboxylate ligands. The synthesis followed a two-step strategy: first, a benzoate-based precursor complex was prepared by displacing the chloride and water molecules from europium (III) chloride hexahydrate with sodium benzoate by chelating process. The remaining water ligands were substituted with each biphenylcarboxylic acid isomer yielding solvent-free luminescent complexes. The structural characterization involved thermogravimetric analysis (TGA) to confirm the complete elimination of water molecules. The crystal structures of the europium (III) complexes were solved from X-ray powder diffraction data using the EXPO2014 software; and were deposited in the Cambridge Crystallographic Data Centre (CCDC) under deposition numbers 2477668, 2477667 and 2476992. The photoluminescence properties, including excitation, emission, decay time, and color purity, were studied. The influence of each biphenylcarboxylate isomer on the symmetry of the europium coordination sphere was assessed by calculating the asymmetry ratio, R = (I5D07F2/I5D07F1), revealing clear differences in emission intensity and symmetry distortion, directly correlated to the ligand isomer used. These findings demonstrate the antenna effect and tunable luminescence enabled by ligand design, offering potential applications in optoelectronics, bio-imaging and others. Full article
(This article belongs to the Section Hybrid and Composite Crystalline Materials)
Show Figures

Figure 1

12 pages, 1752 KB  
Article
Bimetallic 2,4-Dichlorophenoxyacetates EU(III) and GD(III): Composition, Structure, and Luminescent Properties
by Oleg Konnik, Alexey Gusev, Elena Braga, Igor Nauhatsky, Maxim Shpak, Natalia Gogoleva, Mikhail Kiskin and Wolfgang Linert
Inorganics 2025, 13(12), 397; https://doi.org/10.3390/inorganics13120397 - 29 Nov 2025
Viewed by 440
Abstract
The possibility of obtaining different structural types for gadolinium–europium heterometallic complexes by implementing the “structural type memory” effect is described. A series of seven Eu(III)/Gd(III) compounds with 2,4-dichlorophenoxyacetate, having the same composition but belonging to different structural types, was synthesized and structurally characterized. [...] Read more.
The possibility of obtaining different structural types for gadolinium–europium heterometallic complexes by implementing the “structural type memory” effect is described. A series of seven Eu(III)/Gd(III) compounds with 2,4-dichlorophenoxyacetate, having the same composition but belonging to different structural types, was synthesized and structurally characterized. The photoluminescent properties of the obtained compounds were studied. It was shown that compounds crystallizing in the triclinic phase in the P-1 space group exhibit more effective photoluminescence than similar compounds in the monoclinic symmetry with the P21/n space group. Full article
(This article belongs to the Section Coordination Chemistry)
Show Figures

Figure 1

12 pages, 1487 KB  
Article
Ratio Fluorescence Determination of Tetracycline with Europium(III)-Doped Boron Nitride
by Shang-Qing Zhang, Xiao-Yan Sun, Kai-Xin Liu and Ming-Li Chen
Sensors 2025, 25(22), 7056; https://doi.org/10.3390/s25227056 - 19 Nov 2025
Viewed by 515
Abstract
It is important to develop a tetracycline (TC) detection method with a simple synthesis method, high sensitivity, and fast detection speed. Herein, a novel sensor was designed using europium-doped boron nitride (BN-Eu) for evaluation on tetracycline (TC). BN-Eu was synthesized by a simple [...] Read more.
It is important to develop a tetracycline (TC) detection method with a simple synthesis method, high sensitivity, and fast detection speed. Herein, a novel sensor was designed using europium-doped boron nitride (BN-Eu) for evaluation on tetracycline (TC). BN-Eu was synthesized by a simple one-step hydrothermal method. Based on the dual-emission fluorescence signal characteristics of BN-Eu, the content of tetracycline was detected by ratio fluorescence sensing. When the TC concentration increased, the fluorescence emission of BN at 449 nm remained nearly constant, the characteristic emission peak of Eu3+ at 618 nm was enhanced due to the antenna effect(AE). The ratiometric fluorescence detection of TC in the range of 0.010–1.0 μmol L−1 was achieved with a detection limit of 4.0 nmol L−1. In addition, the detection system underwent a color shift from blue to red under an irradiation of 365 nm as the TC concentration increased. Based on this, TC visual detection was achieved. The colorimetric signal versus the concentration of TC in the range from 0 to 50 μmol L−1 had a good linear relationship with a detection limit of 1.4 μmol L−1. The probe showed good detection performance through the determination of tetracycline content in tetracycline ointment. The prepared BN-Eu probe has fast response, good sensitivity to TC, and has good potential in detecting tetracycline content in complex samples. Full article
(This article belongs to the Collection Recent Advances in Fluorescent Sensors)
Show Figures

Figure 1

32 pages, 5875 KB  
Systematic Review
Thermally Conductive Biopolymers in Regenerative Medicine and Oncology: A Systematic Review
by Ivett Poma-Paredes, Oscar Vivanco-Galván, Darwin Castillo-Malla and Yuliana Jiménez-Gaona
Pharmaceuticals 2025, 18(11), 1708; https://doi.org/10.3390/ph18111708 - 11 Nov 2025
Viewed by 667
Abstract
Background: Minimally invasive hyperthermia and regenerative therapies require materials that deliver precise, localized heat without compromising biocompatibility. Most conventional polymers are thermally insulating and challenging to control in vivo, motivating this review. Objectives: We aimed to (i) examine the use of thermally enhanced [...] Read more.
Background: Minimally invasive hyperthermia and regenerative therapies require materials that deliver precise, localized heat without compromising biocompatibility. Most conventional polymers are thermally insulating and challenging to control in vivo, motivating this review. Objectives: We aimed to (i) examine the use of thermally enhanced biopolymers in hyperthermia-based therapies, (ii) appraise evidence from clinical and preclinical studies, (iii) identify and classify principal applications in regenerative medicine. Methods: A PRISMA-guided systematic review (2020–2025) with predefined inclusion/exclusion criteria was conducted and complemented by a bibliometric analysis using VOSviewer for mapping and visualization. Results: Modifying biopolymers—via functionalization with photothermal or magnetic nanoagents (Au; Fe2O3/Fe3O4/CoFe2O4; CuS; Ag; MXenes, e.g., Nb2C), crosslinking strategies, and hybrid formulations—significantly increased thermal conductivity, enabling localized hyperthermia and controlled drug release. In vitro and in vivo studies showed that europium-doped iron oxide nanoparticles embedded in chitosan generated heat efficiently while sparing healthy tissues, underscoring the need to balance biocompatibility and thermal performance. Hydrogel systems enriched with carbon nanomaterials (graphene, carbon nanotubes) and matrices such as GelMA, PNIPAM, hyaluronic acid, and PLA/PLGA demonstrated tissue compatibility and effective thermal behavior; graphene was compatible with neural tissue without inducing inflammation. Conclusions: Thermally conductive biopolymers show growing potential for oncology and regenerative medicine. The evidence supports further academic and interdisciplinary research to optimize safety, performance, and translational pathways. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

25 pages, 1253 KB  
Article
In Vitro Bioaccessibility and Speciation of Toxic and Nutritional Trace Elements in Brazil Nuts
by Astrid Barkleit, Jiyoung Eum, Diana Walther, Daniel Butscher, Sebastian Friedrich, Katharina Müller and Jerome Kretzschmar
Int. J. Mol. Sci. 2025, 26(17), 8312; https://doi.org/10.3390/ijms26178312 - 27 Aug 2025
Cited by 1 | Viewed by 2019
Abstract
Brazil nuts (Bertholletia excelsa), mainly from the Amazon, are notable for their exceptionally high selenium (Se) content and are widely consumed as a natural dietary supplement. They also contain potentially harmful elements, including barium (Ba), and exhibit an unusual capacity to [...] Read more.
Brazil nuts (Bertholletia excelsa), mainly from the Amazon, are notable for their exceptionally high selenium (Se) content and are widely consumed as a natural dietary supplement. They also contain potentially harmful elements, including barium (Ba), and exhibit an unusual capacity to accumulate radioactive radium (Ra). In this study, we quantified the concentrations of Se, Ba, strontium (Sr), lanthanum (La), europium (Eu), and the radionuclides 226Ra and 228Ra, and assessed their in vitro bioaccessibility—data largely unavailable for these elements to date. Se was highly bioaccessible (≈85%), whereas Ba and Ra, both chemo- and/or radiotoxic, exhibited low bioaccessibility (≈2% each). Nuclear magnetic resonance (NMR) spectroscopy revealed Se to occur predominantly as selenomethionine (SeMet), alongside phytate, amino acids, peptides, and other polar low-molecular-weight compounds. The influence of Brazil nut flour (BNF) on Eu(III) speciation in simulated gastrointestinal fluids, and the effect of chelating agents such as ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), and the hydroxypyridinone 3,4,3-LI(1,2-HOPO) were investigated using time-resolved laser-induced fluorescence spectroscopy (TRLFS). Results indicate that the food matrix has only a minor impact on the decorporation efficacy of these chelators. These findings provide novel insights into the bioaccessibility and chemical speciation of nutritionally and toxicologically relevant elements in Brazil nuts. Full article
(This article belongs to the Special Issue Macro- and Micronutrients in Health and Diseases)
Show Figures

Graphical abstract

23 pages, 4192 KB  
Article
Efficacy of Various Complexing Agents for Displacing Biologically Important Ligands from Eu(III) and Cm(III) Complexes in Artificial Body Fluids—An In Vitro Decorporation Study
by Sebastian Friedrich, Antoine Barberon, Ahmadabdurahman Shamoun, Björn Drobot, Katharina Müller, Thorsten Stumpf, Jerome Kretzschmar and Astrid Barkleit
Int. J. Mol. Sci. 2025, 26(15), 7112; https://doi.org/10.3390/ijms26157112 - 23 Jul 2025
Cited by 5 | Viewed by 1845
Abstract
Incorporation of lanthanide (Ln) and actinide (An) ions into the human body poses significant chemotoxic and radiotoxic risks, necessitating effective decorporation strategies. This study investigates the displacement of biologically relevant ligands from trivalent ions of europium, Eu(III), and curium, Cm(III), in artificial biofluids [...] Read more.
Incorporation of lanthanide (Ln) and actinide (An) ions into the human body poses significant chemotoxic and radiotoxic risks, necessitating effective decorporation strategies. This study investigates the displacement of biologically relevant ligands from trivalent ions of europium, Eu(III), and curium, Cm(III), in artificial biofluids by various complexing agents, i.e., ethylenediaminetetraacetic acid (EDTA), ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA), diethylenetriaminepentaacetic acid (DTPA), and spermine-based hydroxypyridonate chelator 3,4,3-LI(1,2-HOPO) (HOPO). Utilizing a modified unified bioaccessibility method (UBM) to simulate gastrointestinal conditions, we conducted concentration-dependent displacement experiments at both room and body temperatures. Time-resolved laser-induced fluorescence spectroscopy (TRLFS) supported by 2H nuclear magnetic resonance (NMR) spectroscopy and thermodynamic modelling revealed the complexation efficacy of the agents under physiological conditions. Results demonstrate that high affinity, governed by complex stability constants and ligand pKa values, is critical to overcome cation and anion competition and leads to effective decorporation. Additionally, there is evidence that cyclic ligands are inferior to linear ligands for this application. HOPO and DTPA exhibited superior displacement efficacy, particularly in the complete gastrointestinal tract simulation. This study highlights the utility of in vitro workflows for evaluating decorporation agents and emphasizes the need for ligands with optimal binding characteristics for enhanced chelation therapies. Full article
(This article belongs to the Special Issue Toxicity of Heavy Metal Compounds)
Show Figures

Figure 1

28 pages, 3280 KB  
Article
Structural, Computational, and Biomolecular Interaction Study of Europium(III) and Iron(III) Complexes with Pyridoxal-Semicarbazone Ligand
by Violeta Jevtovic, Stefan Perendija, Aljazi Abdullah Alrashidi, Maha Awjan Alreshidi, Elham A. Alzahrani, Odeh A. O. Alshammari, Mostafa Aly Hussien, Jasmina Dimitrić Marković and Dušan Dimić
Int. J. Mol. Sci. 2025, 26(11), 5289; https://doi.org/10.3390/ijms26115289 - 30 May 2025
Cited by 1 | Viewed by 1437
Abstract
The coordination chemistry, structural characterization, and biomolecular interactions of europium(III) and iron(III) complexes with the pyridoxal-semicarbazone (PLSC) ligand were thoroughly examined using experimental and computational approaches. Single-crystal X-ray diffraction revealed that the europium complex exhibits a nine-coordinate geometry with one protonated and one [...] Read more.
The coordination chemistry, structural characterization, and biomolecular interactions of europium(III) and iron(III) complexes with the pyridoxal-semicarbazone (PLSC) ligand were thoroughly examined using experimental and computational approaches. Single-crystal X-ray diffraction revealed that the europium complex exhibits a nine-coordinate geometry with one protonated and one deprotonated PLSC ligand and nitrato and aqua ligands. In contrast, the iron complex adopts a six-coordinate structure featuring a monoprotonated PLSC, two chlorido, and an aqua ligand. Hirshfeld surface analysis confirmed the significance of intermolecular contacts in stabilizing the crystal lattice. Theoretical geometry optimizations using DFT methods demonstrated excellent agreement with experimental bond lengths and angles, thereby validating the reliability of the chosen computational levels for subsequent quantum chemical analyses. Quantum Theory of Atoms in Molecules (QTAIM) analysis was employed to investigate the nature of metal–ligand interactions, with variations based on the identity of the donor atom and the ligand’s protonation state. The biological potential of the complexes was evaluated through spectrofluorimetric titration and molecular docking. Eu-PLSC displayed stronger binding to human serum albumin (HSA), while Fe-PLSC showed higher affinity for calf thymus DNA (CT-DNA), driven by intercalation. Thermodynamic data confirmed spontaneous and enthalpy-driven interactions. These findings support using PLSC-based metal complexes as promising candidates for future biomedical applications, particularly in drug delivery and DNA targeting. Full article
Show Figures

Figure 1

34 pages, 10137 KB  
Review
Progress in Luminescent Materials Based on Europium(III) Complexes of β-Diketones and Organic Carboxylic Acids
by Qianting Chen, Jie Zhang, Quanfeng Ye, Shanqi Qin, Lingyi Li, Mingyu Teng and Wai-Yeung Wong
Molecules 2025, 30(6), 1342; https://doi.org/10.3390/molecules30061342 - 17 Mar 2025
Cited by 10 | Viewed by 3608
Abstract
Europium(III) β-diketone and organic carboxylic acid complexes are designable, easy to prepare, and easy to modify and have excellent fluorescence properties (narrow emission spectral band, high colour purity, long fluorescence lifetime, high quantum yield, and a spectral emission range covering both the visible [...] Read more.
Europium(III) β-diketone and organic carboxylic acid complexes are designable, easy to prepare, and easy to modify and have excellent fluorescence properties (narrow emission spectral band, high colour purity, long fluorescence lifetime, high quantum yield, and a spectral emission range covering both the visible and near-infrared regions). These complexes play important roles in popular fields such as laser and fibre-optic communications, medical diagnostics, immunoassays, fluorescent lasers, sensors, anticounterfeiting, and organic light-emitting diodes (OLEDs). In the field of light-emitting materials, europium complexes are especially widely used in OLED lamps, especially because of their high-efficiency emission of red (among the three primary colours); accordingly, these complexes can be mixed with blue and green phosphors to obtain high-efficiency white phosphors that can be excited by near-ultraviolet light. This paper reviews the red-light-emitting europium complexes with β-diketone and organic carboxylic acid as ligands that have been studied over the last five years, describes the current problems, and discusses their future application prospects. Full article
Show Figures

Figure 1

13 pages, 4399 KB  
Article
Photo-Oxidation of Various Organic Compounds, Including Pollutants, by Europium (III) in Fuel Cell Systems
by Felix Blind and Stefan Fränzle
ChemEngineering 2024, 8(6), 121; https://doi.org/10.3390/chemengineering8060121 - 1 Dec 2024
Viewed by 1647
Abstract
The ongoing anthropogenic climate crisis necessitates a reassessment of numerous technical domains, including the energy sector. An alternative to conventional fuel cells is provided by photo fuel cells, which possess at least one photoactive electrode (e.g., TiO2). However, it should be [...] Read more.
The ongoing anthropogenic climate crisis necessitates a reassessment of numerous technical domains, including the energy sector. An alternative to conventional fuel cells is provided by photo fuel cells, which possess at least one photoactive electrode (e.g., TiO2). However, it should be noted that such fuel cells are often constrained in terms of the range of potential fuels that can be utilized. Considering prior research on the distinctive photochemistry of europium, it was hypothesized hypothesis that a photocell based on the photo-oxidation of diverse organic compounds by trivalent europium might be theoretically feasible. As demonstrated in multiple experiments, it is feasible to construct and operate a fuel cell utilizing these diverse, straightforward substrates. In this context, peak powers of up to 14 μW have already been observed with the fuel cell described. It is noteworthy that an average electrical power of up to 6.28 μW was observed over a period of 168 h (7 days). Furthermore, it was demonstrated that simple alcohols (ethanol) could be completely oxidized with trivalent europium under suitable conditions. From various studies with different ethanol concentrations, it could be seen that a certain amount of water was needed to break down simple alcohols and organic compounds in general. Full article
(This article belongs to the Collection New Advances in Chemical Engineering)
Show Figures

Figure 1

20 pages, 3768 KB  
Article
A Novel Immunochromatographic Test Strip Using Lanthanide-Labeled Fluorescent Nanoparticles for the Serological Detection of Toxoplasma gondii in Dogs and Cats
by Manyu Zhang, Qi Liu, Ruifang Li, Wei Jiang, Hongjin Zhao, Wenwei Sheng, Luming Xia, Zengqiang Li, Qing Sun, Jingying Du, Lei Lei and Quan Wang
Pathogens 2024, 13(11), 931; https://doi.org/10.3390/pathogens13110931 - 25 Oct 2024
Viewed by 1731
Abstract
Toxoplasma gondii (T. gondii) is an important zoonotic pathogen which induces both acute and chronic toxoplasmosis. Timely diagnosis of T. gondii is crucial for effective disease management. Here, we present a pioneering approach using europium (III)-chelated nanoparticles (EuNPs) in a rapid [...] Read more.
Toxoplasma gondii (T. gondii) is an important zoonotic pathogen which induces both acute and chronic toxoplasmosis. Timely diagnosis of T. gondii is crucial for effective disease management. Here, we present a pioneering approach using europium (III)-chelated nanoparticles (EuNPs) in a rapid lateral flow immunochromatographic test strip (ICTS) for detecting T. gondii antibodies in serum samples. By conjugating EuNPs with Staphylococcus aureus protein A, we efficiently captured T. gondii-specific antibodies, which bound to T. gondii antigens on the test line (T-line), generating a distinct fluorescent signal. Employing this novel method, we conducted an extensive epidemiological investigation of T. gondii infections among dogs and cats in Shanghai, China. This innovative ICTS allows for rapid results within 25 min, which include a qualitative result through naked-eye observation under an ultraviolet lamp and a quantitative one derived using a strip reader. With a detection limit of 1:6400 for dog positive serum and no cross-reactivity with other canine and feline pathogens, the EuNPs-ICTS demonstrated excellent consistency with standard enzyme-linked immunosorbent assay results for dogs (κ = 0.91) and cats (κ = 0.92). In addition, 20.38% of 996 dog serum samples and 14.18% of 416 cat serum samples revealed T. gondii antibodies, highlighting the efficacy of this approach. Our study presents a rapid, sensitive, specific, and reproducible EuNPs-ICTS, serving as a promising tool for on-the-spot diagnosis of T. gondii infections in dogs and cats. Full article
(This article belongs to the Section Epidemiology of Infectious Diseases)
Show Figures

Graphical abstract

12 pages, 3267 KB  
Article
Enhancing Europium Adsorption Effect of Fe on Several Geological Materials by Applying XANES, EXAFS, and Wavelet Transform Techniques
by Chi-Wen Hsieh, Zih-Shiuan Chiou, Chuan-Pin Lee, Shih-Chin Tsai, Wei-Hsiang Tseng, Yu-Hung Wang, Yi-Ting Chen, Chein-Hsieng Kuo and Hui-Min Chiu
Toxics 2024, 12(10), 706; https://doi.org/10.3390/toxics12100706 - 28 Sep 2024
Viewed by 1822
Abstract
This study conducted adsorption experiments using Europium (Eu(III)) on geological materials collected from Taiwan. Batch tests on argillite, basalt, granite, and biotite showed that argillite and basalt exhibited strong adsorption reactions with Eu. X-ray diffraction (XRD) analysis also clearly indicated differences before and [...] Read more.
This study conducted adsorption experiments using Europium (Eu(III)) on geological materials collected from Taiwan. Batch tests on argillite, basalt, granite, and biotite showed that argillite and basalt exhibited strong adsorption reactions with Eu. X-ray diffraction (XRD) analysis also clearly indicated differences before and after adsorption. By combining X-ray absorption near-edge structure (XANES), extended X-ray absorption fine structure (EXAFS), and wavelet transform (WT) analyses, we observed that the Fe2O3 content significantly affects the Eu-Fe distance in the inner-sphere layer during the Eu adsorption process. The wavelet transform analysis for two-dimensional information helps differentiate two distances of Eu-O, which are difficult to analyze, with hydrated outer-sphere Eu-O distances ranging from 2.42 to 2.52 Å and inner-sphere Eu-O distances from 2.27 to 2.32 Å. The EXAFS results for Fe2O3 and SiO2 in argillite and basalt reveal different adsorption mechanisms. Fe2O3 exhibits inner-sphere surface complexation in the order of basalt, argillite, and granite, while SiO2 forms outer-sphere ion exchange with basalt and argillite. Wavelet transform analysis also highlights the differences among these materials. Full article
(This article belongs to the Special Issue Radioactive Contamination and Radionuclide Removal)
Show Figures

Figure 1

11 pages, 2752 KB  
Article
Determination of Dipicolinic Acid through the Antenna Effect of Eu(III) Coordination Polymer
by Jing Li, Yu Liang, Chun Tian, Hongyan Zou, Lei Zhan, Lijuan Wang, Chengzhi Huang and Chunmei Li
Molecules 2024, 29(17), 4259; https://doi.org/10.3390/molecules29174259 - 8 Sep 2024
Cited by 4 | Viewed by 2071
Abstract
Bacillus anthracis is a Gram-positive bacterium that can cause acute infection and anthracnose, which is a serious concern for human health. Determining Bacillus anthracis through its spore biomarker dipicolinic acid (DPA) is crucial, and there is a strong need for a method that [...] Read more.
Bacillus anthracis is a Gram-positive bacterium that can cause acute infection and anthracnose, which is a serious concern for human health. Determining Bacillus anthracis through its spore biomarker dipicolinic acid (DPA) is crucial, and there is a strong need for a method that is rapid, sensitive, and selective. Here, we created Eu(III)-coordination polymers (Eu-CPs) with surfaces that have abundant carboxyl and hydroxyl groups. This was achieved by using citric acid and europium nitrate hexahydrate as precursors in a straightforward one-pot hydrothermal process. These Eu-CPs were then successfully utilized for highly sensitive DPA determination. The fluorescence (FL) emission of Eu-CPs, which is typically weak due to the coordination of Eu(III) with water molecules, was significantly enhanced in the presence of DPA. This enhancement is attributed to the competitive binding between DPA’s carboxyl or hydroxyl groups and water molecules. As a result, the absorbed energy of DPA, when excited by 280 nm ultraviolet light, is transferred to Eu-CPs through an antenna effect. This leads to the emission of the characteristic red fluorescence of Eu3+ at 618 nm. A strong linear relationship was observed between the enhanced FL intensity and DPA concentration in the range of 0.5–80 μM. This relationship allowed for a limit of detection (LOD) of 15.23 nM. Furthermore, the Eu-CPs we constructed can effectively monitor the release of DPA from Bacillus subtilis spores, thereby further demonstrating the potential significance of this strategy in the monitoring and management of anthrax risk. This highlights the novelty of this approach in practical applications, provides a valuable determination technique for Bacillus anthracis, and offers insights into the development cycle of microorganisms. Full article
(This article belongs to the Special Issue Advances in Coordination Chemistry 2.0)
Show Figures

Figure 1

21 pages, 10505 KB  
Article
Cellular Response of Adapted and Non-Adapted Tetrahymena thermophila Strains to Europium Eu(III) Compounds
by Patricia Alonso, Javier Blas, Francisco Amaro, Patricia de Francisco, Ana Martín-González and Juan Carlos Gutiérrez
Biology 2024, 13(5), 285; https://doi.org/10.3390/biology13050285 - 23 Apr 2024
Cited by 5 | Viewed by 2617
Abstract
Europium is one of the most reactive lanthanides and humans use it in many different applications, but we still know little about its potential toxicity and cellular response to its exposure. Two strains of the eukaryotic microorganism model Tetrahymena thermophila were adapted to [...] Read more.
Europium is one of the most reactive lanthanides and humans use it in many different applications, but we still know little about its potential toxicity and cellular response to its exposure. Two strains of the eukaryotic microorganism model Tetrahymena thermophila were adapted to high concentrations of two Eu(III) compounds (EuCl3 or Eu2O3) and compared to a control strain and cultures treated with both compounds. In this ciliate, EuCl3 is more toxic than Eu2O3. LC50 values show that this microorganism is more resistant to these Eu(III) compounds than other microorganisms. Oxidative stress originated mainly by Eu2O3 is minimized by overexpression of genes encoding important antioxidant enzymes. The overexpression of metallothionein genes under treatment with Eu(III) compounds supports the possibility that this lanthanide may interact with the -SH groups of the cysteine residues from metallothioneins and/or displace essential cations of these proteins during their homeostatic function. Both lipid metabolism (lipid droplets fusing with europium-containing vacuoles) and autophagy are involved in the cellular response to europium stress. Bioaccumulation, together with a possible biomineralization to europium phosphate, seems to be the main mechanism of Eu(III) detoxification in these cells. Full article
(This article belongs to the Collection Feature Papers in Microbial Biology)
Show Figures

Graphical abstract

11 pages, 1540 KB  
Article
Formation of Complexes of f-Elements with Electron-Withdrawing N-Heterocyclic Diamides: Extraction and Solution Photophysics
by Nataliya E. Borisova, Anastasiia V. Kharcheva, Kirill D. Shmelkov, Mikhail A. Gerasimov, Mariia V. Evsiunina, Petr I. Matveev, Alexey V. Ivanov, Yulia G. Sokolovskaya and Svetlana V. Patsaeva
Metals 2023, 13(12), 2024; https://doi.org/10.3390/met13122024 - 18 Dec 2023
Cited by 2 | Viewed by 1839
Abstract
To examine the scope of the abnormal aryl strengthening effect (an increase in the extraction of metal ions when an aromatic substituent is introduced into the amide group) on f-metal extraction, a series of tetradentate diamide-type extragents bearing electron-withdrawing pyridine rings in [...] Read more.
To examine the scope of the abnormal aryl strengthening effect (an increase in the extraction of metal ions when an aromatic substituent is introduced into the amide group) on f-metal extraction, a series of tetradentate diamide-type extragents bearing electron-withdrawing pyridine rings in amide moieties of the molecules were tested. The solvent extraction of Am(III)/Eu(III) pairs was investigated under various conditions, the solution chemistry of the lanthanide-extragents systems was studied, and the bonding constants were calculated for complexes of Eu(III) and Tb(III) ions with diamides. The photophysical properties of chemically synthesized ligand/metal (LM) complexes with various LM compositions were additionally studied in depth. The replacement of a phenyl ring by a pyridine one led to a critical reduction in metal affinity, showing the major contribution of electronic nature to the abnormal aryl strengthening effect. However, the pyridine group in the amide side chain provided additional coordination positions for metal ion binding; corresponding complexes with LM2 composition were detected in the system and their stability was calculated. Due to the low stability of the corresponding LM2 complexes, chemical synthesis of the complexes led to the formation of only one metal-containing species with LM composition. The luminescence spectra of europium and terbium complexes of the LM composition were studied. Differences were discovered in the luminescence excitation spectra of europium and terbium complexes with the same ligand. The luminescence quantum yields and luminescence lifetimes of solutions of europium and terbium complexes were determined. Full article
(This article belongs to the Section Extractive Metallurgy)
Show Figures

Figure 1

7 pages, 1532 KB  
Communication
Application of Sonotriboluminescence to Determine Arene Molecules in Hydrocarbons
by Adis A. Tukhbatullin, Nadezhda A. Panova, Dim I. Galimov, Bulat M. Gareev, Alina A. Tukhbatullina, Kristina S. Vasilyuk and Glyus L. Sharipov
Molecules 2023, 28(23), 7932; https://doi.org/10.3390/molecules28237932 - 4 Dec 2023
Cited by 2 | Viewed by 1776
Abstract
The sonotriboluminescence of suspensions of terbium(III) and europium(III) sulfates in decane without and in the presence of benzene, toluene and p-xylene was studied. The choice of crystals of these lanthanides is due to the fact that they have intense luminescence during mechanical [...] Read more.
The sonotriboluminescence of suspensions of terbium(III) and europium(III) sulfates in decane without and in the presence of benzene, toluene and p-xylene was studied. The choice of crystals of these lanthanides is due to the fact that they have intense luminescence during mechanical action, and also do not dissolve in hydrocarbon solvents. During ultrasonic exposure to suspensions in pure alkanes, bands of Ln3+ ions and N2 in the UV region are recorded in the luminescence spectrum. When aromatic hydrocarbon molecules are added, bands of benzene, toluene and p-xylene molecules, coinciding with their photoluminescence spectra, are recorded in the sonotriboluminescence spectra in the UV region. The high sensitivity of the luminescence of suspensions to arene additives made it possible to obtain the dependence of the characteristic fluorescence of arene molecules in the sonotriboluminescence spectra on their concentration in suspensions. The limits of detection of benzene, toluene and p-xylene in the composition of this suspension were established. The lower limits of detection from the sonotriboluminescence spectra for xylene, toluene and benzene are 0.1, 3 and 50 ppmv, respectively. Fluorescence bands of these molecules were also recorded in the sonotriboluminescence spectra of suspensions in commercial dodecane and heptane with additives of commercial gasoline (up to 1%). The results obtained can be used for luminescent detection of aromatic compounds in saturated hydrocarbons. Full article
(This article belongs to the Section Ultrasound Chemistry)
Show Figures

Graphical abstract

Back to TopTop