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Abstract: The sonotriboluminescence of suspensions of terbium(III) and europium(III) sulfates in
decane without and in the presence of benzene, toluene and p-xylene was studied. The choice of
crystals of these lanthanides is due to the fact that they have intense luminescence during mechanical
action, and also do not dissolve in hydrocarbon solvents. During ultrasonic exposure to suspensions in
pure alkanes, bands of Ln3+ ions and N2 in the UV region are recorded in the luminescence spectrum.
When aromatic hydrocarbon molecules are added, bands of benzene, toluene and p-xylene molecules,
coinciding with their photoluminescence spectra, are recorded in the sonotriboluminescence spectra
in the UV region. The high sensitivity of the luminescence of suspensions to arene additives made
it possible to obtain the dependence of the characteristic fluorescence of arene molecules in the
sonotriboluminescence spectra on their concentration in suspensions. The limits of detection of
benzene, toluene and p-xylene in the composition of this suspension were established. The lower
limits of detection from the sonotriboluminescence spectra for xylene, toluene and benzene are
0.1, 3 and 50 ppmv, respectively. Fluorescence bands of these molecules were also recorded in the
sonotriboluminescence spectra of suspensions in commercial dodecane and heptane with additives
of commercial gasoline (up to 1%). The results obtained can be used for luminescent detection of
aromatic compounds in saturated hydrocarbons.

Keywords: ultrasound; aromatic molecules; lanthanide salts; triboluminescence

1. Introduction

Sonotriboluminescence (STL), a sonogenerated emission that occurs during the de-
struction of crystals in suspensions, is of not only fundamental (study of the mechanisms of
conversion of mechanical energy into light) but also of practical interest for the development
of new luminescent applications, especially in the field of analytical chemistry. Today, one
of the most promising classes of sono- and triboluminophores are lanthanide compounds
with intense luminescence in the near-UV (Ce3+, Dy3+), blue (Eu2+), green (Tb3+), red (Eu3+,
Sm3+) and IR (Yb3+) regions of the electromagnetic spectrum. Previously, we reported
the registration of multiemitter sonotriboluminescence that occurs during sonication of
suspensions of terbium sulfate in certain hydrocarbons [1–3]. It has been established that
the intensity of STL of suspensions containing Tb2(SO4)3 crystals significantly exceeds the
intensity of sonoluminescence (SL) of a homogeneous solution of Tb2(SO4)3. Moreover, the
STL spectra, in addition to narrow emission of Tb3+, contain intense fluorescence bands of
aromatic hydrocarbons (benzene, toluene, p-xylene) in the region of 280–290 nm [1]. The
multibubble SL spectrum of benzene, toluene and xylene is recorded only in the form of a
wide structureless continuum [2]. Such differences in the spectral brightness characteristics
of STL and SL are due to different mechanisms for excitation of luminescence during
ultrasonic treatment of liquids and suspensions. SL occurs due to the collapse of cavitation
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bubbles as a result of their thermal heating reaching several thousand Kelvin [4–7]. STL
is mainly caused by the occurrence of electrical discharges [8–13] during the collision
and subsequent destruction of suspension crystals moving under the action of cavitation
shock waves. In this regard, during ultrasonic treatment of suspensions, the STL spectrum
contains more clearly defined emission bands than during SL of true solutions [2,8]. The
mechanism of the phenomena described above still remains poorly understood despite
numerous studies in the field of ultrasound technology. Therefore, the development of
research in the field of ultrasound-initiated mechanochemical transformations and lumines-
cence of molecules and ions in suspensions can become the basis for the subsequent creation
of chemical–technological processes of sonotribolysis with the possibility of luminescent
control over them.

Here, for the first time, we present the results of a comparative study of ultrasonic
influence on suspensions of Eu2(SO4)3·8H2O and Tb2(SO4)3·8H2O crystals in alkanes with
the addition of different concentrations of arene molecules and commercial hydrocarbons
to these liquids to identify patterns of acoustic influence, concentration dependences of
luminescence intensities of arenes and the composition of sonotriboluminescence emitters.

2. Results and Discussion

During ultrasonic exposure of suspensions of terbium and europium sulfate crystals
in higher n-alkanes (from decane to hexadecane [8,14–16]), in addition to the emission
of the Eu3+ and Tb3+ ions, N2 lines are also recorded in the STL spectra (Figure 1). The
molecular nitrogen lines are observed mainly in the UV region [17,18]. The fluorescence
bands of some polyaromatic hydrocarbons (PAHs) are also located in this region, and
N2 luminescence may interfere with the detection of PAHs at low concentrations with
unambiguous identification of the fluorescence bands of these hydrocarbons. Therefore,
when using the sonotriboluminescent method for detecting PAHs, it is advisable to use, for
example, heptane, octane and nonane, in which the N2 lines do not appear so effectively.
As shown earlier [1,16], this is due to the high saturated vapor pressure in these liquids.
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Figure 1. Sonotriboluminescence spectra of suspensions of europium (A) and terbium (B) sulfate in
octane and decane, respectively, in an air atmosphere. ∆λ = 5 nm.

In this work, alkanes are considered when benzene, toluene and p-xylene were added
to them. In the STL spectra of suspensions containing aromatic hydrocarbons, the lumines-
cence bands of arenas are located below 300 nm. N2 lines are not observed in this region
and do not create difficulties for recording the luminescence of simple arene molecules. In
addition, to displace residual or dissolved nitrogen, the suspension is additionally saturated
with argon. Figure 2 shows the STL spectra of suspensions of terbium(III) sulfate in decane
at different concentrations of benzene, toluene and p-xylene. Intense fluorescence bands
of these molecules with main maxima at 285 nm (benzene), 288 nm (toluene) and 292 nm
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(p-xylene), caused by singlet–singlet transitions, are recorded in the spectrum [19,20]. As
can be seen from Figure 2, the luminescence of arene molecules in the STL spectrum is
easily recorded even at low concentrations in the system.
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Figure 2. Sonotriboluminescence spectra of suspensions of terbium sulfate in decane (7 mL) in the
region of 265–420 nm with different additions of benzene (A), toluene (B) and p-xylene (C) in an
argon atmosphere (D). Sonotriboluminescence spectra of suspensions of terbium sulfate in decane in
the region of 265–850 nm in an air (dot line) and argon (solid line) atmosphere. ∆λ = 5 nm.

Recall that, in contrast to sonoluminescence (collisional excitation of emitters inside
cavitation bubbles), the mechanism of STL excitation of crystal suspensions is close to
the mechanism of triboluminescence, namely, it is associated with electrification and the
occurrence of discharges during friction and destruction of crystals [10,11,21–23]. Obviously,
the acoustic impact and the resulting cavitation shock waves in suspensions lead to high-
speed collisions of crystals in the reactor with their subsequent destruction/grinding. This
leads to an increase in the active surface and the number of defects in crystals, accompanied
by electrification and generation of low-energy electrons. In addition to excitation of the
main emitters of the STL spectrum (Ln3+ and N2), the generated electrons enter the volume
of the liquid base of the suspension, and produce radiolysis, exciting the luminescence of
aromatic compounds when they are present in alkanes.

It should be noted that in a mixture of arenes, it is quite difficult to determine the
individual content of benzene, toluene or p-xylene from fluorescence spectra. The main
maxima of these aromatic hydrocarbons are located very close together, and the bands
also have a vibrational structure. When these spectra are superimposed on each other, it is
difficult to deconvolute and assign fluorescence bands to one or another arena. However,
based on the results obtained individually for each arena on the STL spectra, curves of
the dependence of the luminescence intensity of aromatic hydrocarbon molecules on their
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content in decane were constructed (Figure 3). The detection limit of benzene, toluene and
p-xylene from the STL spectrum of the suspension in decane is 50 µL·L−1, 3 µL·L−1 and
~0.1 µL·L−1, respectively.
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the area with low values.

The noticeable influence of the studied arenes on the STL spectra of suspensions can
make it possible to use this type of luminescence to determine the molecules of aromatic
hydrocarbons in the composition of various n-alkanes and petroleum products. For exam-
ple, STL of a suspension in commercial gasoline was previously reported [3], caused by the
emission of PAHs included in gasoline, the concentration of which is not high (<1%), and
according to the literature, some of them (pyrene, anthracene, fluorene, benzo(a)pyrene)
can reach up to 6 mg·L−1 [24,25]. Note that the content of simple aromatic hydrocarbons in
commercial gasoline can reach 35% [26]. However, as shown in [3], at such concentrations
(>5%) of gasoline in heptane, the emission bands of benzene, toluene and xylene are almost
completely suppressed, and then in the STL spectra, mainly emission bands of PAHs with
high luminescence quantum yields are observed. The increase in the emission intensity
of PAHs with the subsequent suppression of the emission of simple arenes is explained
by the highly efficient transfer of excitation energy from benzene, toluene and p-xylene
molecules to PAHs [3]. In this regard, to record the luminescence of molecules of simple
arenes, STL experiments were carried out on suspensions containing a small amount of
gasoline in heptane. Figure 4A shows the STL spectra of suspensions containing from 0.1
to 0.7% commercial gasoline. As can be seen, the most effective bands of benzene, toluene
and p-xylene molecules with a maximum of ~290 nm are recorded at concentrations less
than 1%. Increasing the concentration of gasoline increases the intensity of PAHs in the
emission spectrum.

Also, the capabilities of the sonotriboluminescent method for determining aromatic
hydrocarbon molecules in different solvents have been tested on commercial dodecane
(Figure 4B) of a pure-for-synthesis grade (the content of the main chemical compound is
about 99%). No noticeable peaks are observed in the HPLC chromatogram except for the
peak of dodecane. At the same time, in the STL spectrum of a suspension of europium(III)
sulfate in commercial dodecane, an intense band with a maximum of 290 nm is recorded in
the UV region, which indicates the presence of simple arenes.
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In the future, we plan to continue research in this direction, expand the range of
analyzed aromatic hydrocarbons and determine the possibilities of analyzing arenes in
mixtures, as well as to use sonotribolysis and sonotriboluminescence of suspensions during
the processing of petroleum products for spectral–luminescent monitoring of this process.
In particular, it can be noted that p-xylene, unlike benzene and toluene, has a higher
quantum yield of luminescence and, therefore, sonotriboluminescence is a promising
approach to the development on its basis of analytical methods for the determination of
p-xylene in a mixture of aromatic hydrocarbons.

3. Materials and Methods

Heptane and decane (≥99.99%), benzene, toluene, p-xylene (≥99%) without additional
purification, commercial dodecane (99%) and commercial gasoline (octane number 92)
were used in the work. Suspensions were prepared by adding Eu2(SO4)3·8H2O and
Tb2(SO4)3·8H2O crystals (99.99%, Lanhit) to liquids. Sonotriboluminescence was excited
in 7 mL of a solvent containing 250 mg of crystals in a thermostated stainless steel reactor
with a quartz window at the bottom [1,2]. Ultrasonic exposure was carried out using an
ultrasonic dispersant generator UZDN-2T (22 kHz), with a submersible titanium waveguide
with a flat end (d = 10 mm). The end of the waveguide was installed at a distance of ~1 mm
from the bottom of the cuvette during STL recording. The suspensions were saturated with
argon (99.999%) by bubbling at a rate of up to 10 mL·s−1. The temperature in the cuvette
during recording of STL of suspensions was maintained using a circulation thermostat
LT-105a (LOIP, St. Petersburg, Russia). Sonotriboluminescence spectra were recorded using
a Zolix OmniFluo-900 spectrofluorimeter (Detector TE-cooled PMT).

All measurements were carried out in a series of similar experiments 3–5 times. The
average relative measurement error was no more than 5%.

The identification of dodecane was carried out on a Chromatec-Crystal-5000 gas chro-
matograph with an Agilent DB-1 50 m × 0.25 mm × 0.25 µm capillary column (programmed
heating from 100 to 270 ◦C at a rate of 8 ◦C min, helium carrier gas). The chromatograph
was attached by interface to the computer where the data were acquired with the program
Chromatec Analitic 3.0.0.2.

4. Conclusions

Thus, the sonotriboluminescence of suspensions of lanthanide salts in heptane and
decane with the addition of arene molecules and commercial gasoline, as well as a sus-
pension in commercial dodecane, was studied. The dependences of the intensities of
characteristic fluorescence were obtained and limits of detection of benzene, toluene and
p-xylene molecules in the composition of decane were established. The lower limits of



Molecules 2023, 28, 7932 6 of 7

detection from the sonotriboluminescence spectra for xylene, toluene and benzene are 0.1,
3 and 50 ppmv, respectively. Fluorescence bands of these molecules were also recorded in
the sonotriboluminescence spectra of suspensions in commercial dodecane and heptane
with additives of commercial gasoline (up to 1%). The results obtained can be used for
luminescent detection of aromatic compounds in saturated hydrocarbons.
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