Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = ethosuximide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3140 KiB  
Article
Human Stem Cell-Derived Neural Organoids for the Discovery of Antiseizure Agents
by Hamed Salmanzadeh and Robert F. Halliwell
Receptors 2025, 4(3), 12; https://doi.org/10.3390/receptors4030012 - 20 Jun 2025
Viewed by 655
Abstract
Background: The development of cerebral organoids created from human pluripotent stem cells in 3D culture may greatly improve the discovery of neuropsychiatric medicines. Methods: In the current study we differentiated neural organoids from a human pluripotent stem cell line in vitro, [...] Read more.
Background: The development of cerebral organoids created from human pluripotent stem cells in 3D culture may greatly improve the discovery of neuropsychiatric medicines. Methods: In the current study we differentiated neural organoids from a human pluripotent stem cell line in vitro, recorded the development of neurophysiological activity using multielectrode arrays (MEAs) and characterized the neuropharmacology of synaptic signaling over 8 months in vitro. In addition, we investigated the ability of these organoids to display epileptiform activity in response to a convulsant agent and the effects of antiseizure medicines to inhibit this abnormal activity. Results: Single and bursts of action potentials from individual neurons and network bursts were recorded on the MEA plates and significantly increased and became more complex from week 7 to week 30, consistent with neural network formation. Neural spiking was reduced by the Na channel blocker tetrodotoxin but increased by the inhibitor of KV7 potassium channels XE991, confirming the involvement of voltage-gated sodium and potassium channels in action potential activity. The GABA antagonists bicuculline and picrotoxin each increased the spike rate, consistent with inhibitory synaptic signaling. In contrast, the glutamate receptor antagonist kynurenic acid inhibited the spike rate, consistent with excitatory synaptic transmission in the organoids. The convulsant 4-aminopyridine increased spiking, bursts and synchronized firing, consistent with epileptiform activity in vitro. The anticonvulsants carbamazepine, ethosuximide and diazepam each inhibited this epileptiform neural activity. Conclusions: Together, our data demonstrate that neural organoids form inhibitory and excitatory synaptic circuits, generate epileptiform activity in response to a convulsant agent and detect the antiseizure properties of diverse antiepileptic drugs, supporting their value in drug discovery. Full article
Show Figures

Figure 1

27 pages, 3238 KiB  
Article
Synthesis and Neurotropic Activity of New 5-Piperazinopyrazolo[3,4-c]-2,7-naphthyridines and Isoxazolo[5,4-c]-2,7-naphthyridines
by Samvel N. Sirakanyan, Elmira K. Hakobyan, Athina Geronikaki, Domenico Spinelli, Anthi Petrou, Victor G. Kartsev, Hasmik A. Yegoryan, Hasmik V. Jughetsyan, Mariam E. Manukyan, Ruzanna G. Paronikyan, Tatevik A. Araqelyan and Anush A. Hovakimyan
Pharmaceuticals 2025, 18(4), 597; https://doi.org/10.3390/ph18040597 - 19 Apr 2025
Viewed by 1265
Abstract
Background/Objectives: Approximately 1% of people worldwide suffer from epilepsy. The development of safer and more effective antiepileptic medications (AEDs) is still urgently needed because all AEDs have some unwanted side effects and roughly 30% of epileptic patients cannot stop having seizures when [...] Read more.
Background/Objectives: Approximately 1% of people worldwide suffer from epilepsy. The development of safer and more effective antiepileptic medications (AEDs) is still urgently needed because all AEDs have some unwanted side effects and roughly 30% of epileptic patients cannot stop having seizures when taking current AEDs. It should be noted that the derivatives of pyrazolo[3,4-b]pyridine are important core structures in many drug substances. The aim of this study is to synthesize new derivatives of piperazino-substituted pyrazolo[3,4-c]-2,7-naphthyridines and 9,11-dimethylpyrimido[1′,2′:1,5]pyrazolo[3,4-c]-2,7-naphthyridines for the evaluation of their neurotropic activity. Methods: The synthesis of the target compounds was performed starting from 1-amino-3-chloro-2,7-naphthyridines and using well-known methods. The structures of all the synthesized compounds were confirmed by spectroscopic data. Compounds were studied for their potential neurotropic activities (anticonvulsant, sedative, anti-anxiety, and antidepressive), as well as side effects, in 450 white mice of both sexes and 50 male Wistar rats. The anticonvulsant effect of the newly synthesized compounds was investigated by using the following tests: pentylenetetrazole, thiosemicarbazide-induced convulsions, and maximal electroshock. The psychotropic properties of the selected compounds were evaluated by using the following tests: the Open Field test, the Elevated Plus Maze (EPM), the Forced Swimming test, and Rotating Rod Test to study muscle relaxation. For the docking studies, AutoDock 4 (version 4.2.6) was used, as well as the structures of the GABAA receptor (PDB ID: 4COF), the SERT transporter (PDB ID: 3F3A), and the 5-HT1A receptor (PDB ID: 3NYA) obtained from the Protein Data Bank. Results: A series of piperazino-substituted pyrazolo[3,4-c]-2,7-naphthyridines (3aj) and 9,11-dimethylpyrimido[1′,2′:1,5]pyrazolo[3,4-c]-2,7-naphthyridines (4aj), as well as new heterocyclic systems, i.e., isoxazolo[5,4-c]-2,7-naphthyridines 6ad, were synthesized and evaluated for their neurotropic activity. The investigation showed that some of these compounds (3a,b,d,fi and 4a,d,f,i) display high anticonvulsant activity, especially in the test of antagonism with pentylenetetrazol, surpassing the well-known antiepileptic drug ethosuximide. Thus, the most active compounds in the pentylenpotetrazole test are 3h, 3i, and 4i; the ED50 of compound 4i is 23.8, and the therapeutic index is more than 33.6, which is the highest among these three active compounds. On the other hand, they simultaneously exhibit psychotropic (anxiolytic, antidepressant, or sedative) or behavioral depressant) effects. The effective compounds do not cause myorelaxation at the tested doses and have high therapeutic indices. Docking on the most active compounds, i.e., 3h, 3i, and 4i, is in agreement with the experimental results. Conclusions: The studies reveled that some of these compounds (3i, 4a, and 4i) display high anticonvulsant and psychotropic activities. The most active compounds contained methyl and diphenylmethyl groups in the piperazine ring. The docking studies identified compounds 3i, 4i, and 4a as the most potent anticonvulsants, showing strong affinity for GABAA, 5-HT1A receptors, and the SERT transporter. Notably, compound 4i formed two hydrogen bonds with Thr176 and Arg180 on GABAA and exhibited a binding energy (−8.81 kcal/mol) comparable to that of diazepam (−8.90 kcal/mol). It also showed the strongest binding to SERT (−7.28 kcal/mol), stabilized by interactions with Gly439, Ile441, and Arg11. Furthermore, 4i displayed the best docking score with 5-HT1A (−9.10 kcal/mol) due to multiple hydrogen bonds and hydrophobic interactions, supporting its potential as a dual-acting agent targeting both SERT and 5-HT1A. Full article
(This article belongs to the Special Issue Pyrazole and Thiazole Derivatives in Medicinal Chemistry)
Show Figures

Figure 1

15 pages, 1478 KiB  
Article
Simple HPLC-UV Method for Therapeutic Drug Monitoring of 12 Antiepileptic Drugs and Their Main Metabolites in Human Plasma
by Daniela Milosheska and Robert Roškar
Molecules 2023, 28(23), 7830; https://doi.org/10.3390/molecules28237830 - 28 Nov 2023
Cited by 4 | Viewed by 3812
Abstract
The objective of the present report was to develop and validate a simple, selective, and reproducible high-performance liquid chromatography method with UV detection suitable for routine therapeutic drug monitoring of the most commonly used antiepileptic drugs and some of their metabolites. Simple precipitation [...] Read more.
The objective of the present report was to develop and validate a simple, selective, and reproducible high-performance liquid chromatography method with UV detection suitable for routine therapeutic drug monitoring of the most commonly used antiepileptic drugs and some of their metabolites. Simple precipitation of plasma proteins with acetonitrile was used for sample preparation. 10,11-dihydrocarbamazepine was used as an internal standard. Chromatographic separation of the analytes was achieved by gradient elution on a Phenyl–Hexyl column at 40 °C, using methanol and potassium phosphate buffer (25 mM; pH 5.1) as a mobile phase. The method was validated according to the FDA guidelines for bioanalytical method validation. It showed to be selective, accurate, precise, and linear over the concentration ranges of 1–50 mg/L for phenobarbital, phenytoin, levetiracetam, rufinamide, zonisamide, and lacosamide; 0.5–50 mg/L for lamotrigine, primidone, carbamazepine and 10-monohydroxycarbazepine; 0.2–10 mg/L for carbamazepine metabolites: 10,11-trans-dihydroxy-10,11-dihydrocarbamazepine and carbamazepine-10,11-epoxide; 0.1–10 mg/L for oxcarbazepine; 2–100 mg/L for felbamate and 3–150 mg/L for ethosuximide. The suitability of the validated method for routine therapeutic drug monitoring was confirmed by quantification of the analytes in plasma samples from patients with epilepsy on combination antiepileptic therapy. Full article
(This article belongs to the Special Issue Applications of Chromatography in Biological Sample Analysis)
Show Figures

Graphical abstract

17 pages, 2406 KiB  
Article
A 5-Year Study of Antiseizure Medications (ASMs) Monitoring in Patients with Neuropsychiatric Disorders in an Italian Clinical Center
by Letizia Biso, Marco Carli, Shivakumar Kolachalam, Giorgio Monticelli, Pasquale Fabio Calabrò, Antonello di Paolo, Filippo Sean Giorgi, Guido Bocci and Marco Scarselli
Pharmaceuticals 2023, 16(7), 945; https://doi.org/10.3390/ph16070945 - 29 Jun 2023
Cited by 5 | Viewed by 2378
Abstract
Despite receiving appropriate antiseizure medications (ASMs), a relevant percentage of neuropsychiatric patients do not benefit from this approach, and one reason is subtherapeutic ASMs plasma concentration (C(p)) due to improper drug adherence, interindividual pharmacokinetic differences, or metabolic interactions among different drugs. For these [...] Read more.
Despite receiving appropriate antiseizure medications (ASMs), a relevant percentage of neuropsychiatric patients do not benefit from this approach, and one reason is subtherapeutic ASMs plasma concentration (C(p)) due to improper drug adherence, interindividual pharmacokinetic differences, or metabolic interactions among different drugs. For these reasons, therapeutic drug monitoring (TDM) by measuring ASMs C(p) is an effective tool that improves pharmacological therapies in clinical practice. Based on these premises, in the present real-world study, we analyzed the C(p) of the most used ASMs in diverse medical conditions, which were assayed during the years 2018–2022 at the University Hospital of Pisa, including about 24,000 samples. This population was largely heterogeneous, and our database did not contain clinical information about the patients. The most used ASMs were Valproate (VPA: 54.5%) and Levetiracetam (LEV: 18.6%), followed by Oxcarbazepine (OxCBZ: 8.3%) and Carbamazepine (CBZ: 7.2%), whereas the associations LEV/VPA, Ethosuximide (ESM)/VPA, and CBZ/VPA were the most frequently proposed. In about 2/3 of assays, ASMs C(p) was in range, except for VPA, which was underdosed in almost half of the samples. Importantly, toxic levels of ASMs C(p) were found very rarely. For VPA, there was a decrease of mean C(p) across ages, from adolescents to older patients, while the C(p) of LEV, CBZ, OxCBZ, and Topiramate (TPM) showed a slight tendency to increase. When we compared females and males, we found that for VPA, the average age was higher for females, whereas women taking Lamotrigine (LTG) and OxCBZ were younger than men. Then, comparing ASMs used in neurologic and psychiatric disorders, based on the request form, it emerged that the mean C(p) of CBZ, OxCBZ, and LTG on samples collected in the Psychiatric Unit was lower compared to the Neurology and Child Neuropsychiatry Units. Finally, the ASMs subjected to multiple dosing starting from an initial subtherapeutic C(p) increased their level at different time points within a year, reaching the reference range for some of them. In conclusion, the present study suggests that TDM is widely applied to monitor ASMs C(p), finding many of them within the reference range, as a demonstration of its utility in clinical practice. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

9 pages, 533 KiB  
Article
Antiepileptic Drugs and Their Dual Mechanism of Action on Carbonic Anhydrase
by Calin Magheru, Sorina Magheru, Marcela Coltau, Anica Hoza, Corina Moldovan, Liliana Sachelarie, Irina Gradinaru, Loredana Liliana Hurjui, Felicia Marc and Dorina Maria Farcas
J. Clin. Med. 2022, 11(9), 2614; https://doi.org/10.3390/jcm11092614 - 6 May 2022
Cited by 12 | Viewed by 3432
Abstract
(1) Background: The benefit of using inhibitors of carbonic anhydrase (CA), such as acetazolamide, in the treatment of epilepsy has previously been described. (2) Methods: In this paper, the effect on CA of the most well-known antiepileptic drugs was studied in vitro and [...] Read more.
(1) Background: The benefit of using inhibitors of carbonic anhydrase (CA), such as acetazolamide, in the treatment of epilepsy has previously been described. (2) Methods: In this paper, the effect on CA of the most well-known antiepileptic drugs was studied in vitro and in vivo. The effects, after chronic treatment, of carbamazepine, phenytoin, valproate, primidone, clonazepam, and ethosuximide were studied in vitro on purified CA, isozyme I (CA I) and CA, and isozyme II (CA II) activity and in vivo on epileptic erythrocyte CA I and CA II activity. (3) Results: In vitro results showed that all antiepileptic drugs reduced purified CA II activity according to dose–response relationships and slightly inhibited CA I activity. In vivo results showed that the chronic administration of antiseizure drugs induced a progressive reduction in erythrocyte CA II activity in all the groups studied. This study shows that CA II inhibition can be induced both in vitro and in vivo by major antiepileptic agents as it might be one of the effective mechanisms of these anticonvulsant drugs. (4) Conclusions: The decrease in CA II activity in epileptic patients after antiseizure treatment suggests the involvement of CA II in the pathogenesis of epilepsy. Full article
(This article belongs to the Special Issue Current Challenges and Advances in the Treatment of Epilepsy)
Show Figures

Figure 1

10 pages, 3792 KiB  
Case Report
Drug-Induced Lupus Secondary to Ethosuximide in Association with Acute Tubulointerstitial Nephritis and Nephrotic Syndrome
by Rasha Aly, Xu Zeng and Kiran Upadhyay
Pediatr. Rep. 2022, 14(2), 190-199; https://doi.org/10.3390/pediatric14020026 - 14 Apr 2022
Cited by 4 | Viewed by 3726
Abstract
Background. Drug-induced lupus (DIL) is an autoimmune phenomenon where the patient develops lupus-like symptoms after exposure to a long-term medication. Case Summary. Here we describe a 10-year-old female with absence seizures who developed a lupus-like syndrome after being on ethosuximide for [...] Read more.
Background. Drug-induced lupus (DIL) is an autoimmune phenomenon where the patient develops lupus-like symptoms after exposure to a long-term medication. Case Summary. Here we describe a 10-year-old female with absence seizures who developed a lupus-like syndrome after being on ethosuximide for three months. She presented with nephrotic syndrome (NS) and acute kidney injury. Four weeks prior to presentation, she had been prescribed a seven-day course of oral amoxicillin for submental swelling after dental extraction. Investigations showed high titer of antinuclear antibody (ANA) and anti-double stranded DNA, elevated serum IgE level, and positive Coombs’ test, along with positive anti-histone antibodies. Renal biopsy showed features of acute tubulointerstitial nephritis (TIN) and partial podocyte foot process effacement without evidence of lupus nephritis. The patient had an excellent response to the steroid therapy with remission within two weeks. The patient remained in remission for two months as evaluated during the most recent follow-up; the autoimmune antibodies and immunoglobulin E trended down. Ethosuximide has been reported to cause DIL, however its possible association with TIN has not been reported. Although amoxicillin could have caused the TIN and NS in this patient, a possible novel association of ethosuximide with this nephrotic-nephritic presentation (NNP) cannot be ruled out. Conclusions. A renal histology is important to determine the accurate etiology of NNP in patients with DIL. Further studies are necessary to determine any possible causal effect of ethosuximide with NNP. Full article
Show Figures

Figure 1

10 pages, 558 KiB  
Review
Therapeutic Options for Childhood Absence Epilepsy
by Victoria Elisa Rinaldi, Giuseppe Di Cara, Elisabetta Mencaroni and Alberto Verrotti
Pediatr. Rep. 2021, 13(4), 658-667; https://doi.org/10.3390/pediatric13040078 - 16 Dec 2021
Cited by 25 | Viewed by 8945
Abstract
Childhood absence epilepsy (CAE) is a common pediatric generalized epileptic syndrome. Although it is traditionally considered as a benign self-limited condition, the apparent benign nature of this syndrome has been revaluated in recent years. This is mainly due to the increasing evidence that [...] Read more.
Childhood absence epilepsy (CAE) is a common pediatric generalized epileptic syndrome. Although it is traditionally considered as a benign self-limited condition, the apparent benign nature of this syndrome has been revaluated in recent years. This is mainly due to the increasing evidence that children with CAE can present invalidating neuropsychological comorbidities that will affect them up to adulthood. Moreover, a percentage of affected children can develop drug-resistant forms of CAE. The purpose of this review is to summarize the most recent studies and new concepts concerning CAE treatment, in particular concerning drug-resistant forms of CAE. A Pubmed search was undertaken to identify all articles concerning management and treatment of CAE, including articles written between 1979 and 2021. Traditional anticonvulsant therapy of CAE that is still in use is based on three antiepileptic drugs: ethosuximide which is the drug of choice, followed by valproic acid and lamotrigine. In the case of first line treatment failure, after two monotherapies it is usual to start a bi-therapy. In the case of absence seizures that are refractory to traditional treatment, other antiepileptic drugs may be introduced such as levetiracetam, topiramate and zonisamide. Full article
Show Figures

Figure 1

13 pages, 1921 KiB  
Article
Effect of Lacosamide and Ethosuximide Chronic Treatment on Neural Precursor Cells and Cognitive Functions after Pilocarpine Induced Status Epilepticus in Mice
by Aleksandra Szewczyk, Mirosław Zagaja, Joanna Szala-Rycaj, Maciej Maj and Marta Andres-Mach
Brain Sci. 2021, 11(8), 1014; https://doi.org/10.3390/brainsci11081014 - 30 Jul 2021
Cited by 4 | Viewed by 3087
Abstract
Seizures in about 40% of patients with epilepsy fail to respond to anti-seizure medication (ASM) and may lead to uncontrolled and prolonged seizures often inducing status epilepticus (SE). The aim of the study was to evaluate the impact of a long-term treatment with [...] Read more.
Seizures in about 40% of patients with epilepsy fail to respond to anti-seizure medication (ASM) and may lead to uncontrolled and prolonged seizures often inducing status epilepticus (SE). The aim of the study was to evaluate the impact of a long-term treatment with two different generation ASMs: ethosuximide (ETS, a classic ASM) and lacosamide (LCM, a 3rd generation ASM) on neural stem cells’ (NSCs’) proliferation and learning and memory functions after pilocarpine (PILO)-induced SE in mice. The following drugs were used: LCM (10 mg/kg), ETS (20 mg/kg), and PILO (300 mg/kg). Cell counting was done using confocal microscope and ImageJ software. Cognitive functions were evaluated with the Morris water maze (MWM) test. The level of several selected neurometabolites was measured with magnetic resonance spectroscopy (MRS). Obtained results indicated no significant impact of ETS treatment on the neurogenesis process in PILO mice. Interestingly, LCM significantly decreased the total amount of newborn neurons. The MWM test indicated no significant changes in the time and distance traveled by the ETS and LCM groups compared to PILO control mice, although all measured parameters were more favorable for the PILO mice treated with ASM. Conclusions: The presented results show that long term treatment with LCM and ETS seems to be safe for the cognitive functions and the proper course of neurogenesis in the mouse PILO-induced SE model, although one should remember that LCM administered chronically may act to reduce new neurons’ formation. Full article
(This article belongs to the Section Neuropharmacology and Neuropathology)
Show Figures

Figure 1

21 pages, 1783 KiB  
Article
Synthesis, Anticonvulsant and Antinociceptive Activity of New Hybrid Compounds: Derivatives of 3-(3-Methylthiophen-2-yl)-pyrrolidine-2,5-dione
by Małgorzata Góra, Anna Czopek, Anna Rapacz, Anna Dziubina, Monika Głuch-Lutwin, Barbara Mordyl and Jolanta Obniska
Int. J. Mol. Sci. 2020, 21(16), 5750; https://doi.org/10.3390/ijms21165750 - 11 Aug 2020
Cited by 24 | Viewed by 5030
Abstract
The present study aimed to design and synthesize a new series of hybrid compounds with pyrrolidine-2,5-dione and thiophene rings in the structure as potential anticonvulsant and antinociceptive agents. For this purpose, we obtained a series of new compounds and evaluated their anticonvulsant activity [...] Read more.
The present study aimed to design and synthesize a new series of hybrid compounds with pyrrolidine-2,5-dione and thiophene rings in the structure as potential anticonvulsant and antinociceptive agents. For this purpose, we obtained a series of new compounds and evaluated their anticonvulsant activity in animal models of epilepsy (maximal electroshock (MES), psychomotor (6 Hz), and subcutaneous pentylenetetrazole (scPTZ) seizure tests). To determine the mechanism of action of the most active anticonvulsant compounds (3, 4, 6, 9), their influence on the voltage-gated sodium and calcium channels as well as GABA transporter (GAT) was assessed. The most promising compound 3-(3-methylthiophen-2-yl)-1-(3-morpholinopropyl)pyrrolidine-2,5-dione hydrochloride (4) showed higher ED50 value than those of the reference drugs: valproic acid (VPA) and ethosuximide (ETX) (62.14 mg/kg vs. 252.7 mg/kg (VPA) in the MES test, and 75.59 mg/kg vs. 130.6 mg/kg (VPA) and 221.7 mg/kg (ETX) in the 6 Hz test, respectively). Moreover, in vitro studies of compound 4 showed moderate but balanced inhibition of the neuronal voltage-sensitive sodium (site 2) and L-type calcium channels. Additionally, the antinociceptive activity of the most active compounds (3, 4, 6, 9) was also evaluated in the hot plate test and writhing tests, and their hepatotoxic properties in HepG2 cells were also investigated. To determine the possible mechanism of the analgesic effect of compounds 3, 6, and 9, the affinity for the TRPV1 receptor was investigated. Full article
(This article belongs to the Special Issue Amides)
Show Figures

Graphical abstract

13 pages, 3822 KiB  
Article
Molecular Docking and Anticonvulsant Activity of Newly Synthesized Quinazoline Derivatives
by Hatem A. Abuelizz, Rabab El Dib, Mohamed Marzouk, El-Hassane Anouar, Yousreya A. Maklad, Hanan N. Attia and Rashad Al-Salahi
Molecules 2017, 22(7), 1094; https://doi.org/10.3390/molecules22071094 - 30 Jun 2017
Cited by 68 | Viewed by 12065
Abstract
A new series of quinazoline-4(3H)-ones are evaluated for anticonvulsant activity. After intraperitoneal (ip) injection to albino mice at a dose of 100 mg/kg body weight, synthesized quinazolin-4(3H)-ones (1–24) were examined in the maximal electroshock (MES) induced seizures and subcutaneous pentylenetetrazole (scPTZ) induced seizure [...] Read more.
A new series of quinazoline-4(3H)-ones are evaluated for anticonvulsant activity. After intraperitoneal (ip) injection to albino mice at a dose of 100 mg/kg body weight, synthesized quinazolin-4(3H)-ones (1–24) were examined in the maximal electroshock (MES) induced seizures and subcutaneous pentylenetetrazole (scPTZ) induced seizure models in mice. The Rotarod method was applied to determine the neurotoxicity. Most of the compounds displayed anticonvulsant activity in the scPTZ screen at a dose range of 0.204–0.376 mmol/mL. Out of twenty-four, compounds 8, 13 and 19 proved to be the most active with a remarkable protection (100%) against PTZ induced convulsions and four times more potent activity than ethosuximide. The structure-activity relationship concluded valuable pharmacophoric information, which was confirmed by the molecular docking studies using the target enzyme human carbon anhydrase II (HCA II). The studied quinazoline analogues suggested that the butyl substitution at position 3 has a significant effect on preventing the spread of seizure discharge and on raising the seizure threshold. However, benzyl substitution at position 3 has shown a strong anticonvulsant activity but with less seizure prevention compared to the butyl substitution. Full article
(This article belongs to the Special Issue Polypharmacology and Multitarget Drug Discovery)
Show Figures

Graphical abstract

17 pages, 850 KiB  
Article
Synthesis of 5-Alkoxythieno[2,3-e][1,2,4]triazolo[4,3-c]pyrimidine Derivatives and Evaluation of Their Anticonvulsant Activities
by Shi-Ben Wang, Guang-Chun Piao, Hong-Jian Zhang and Zhe-Shan Quan
Molecules 2015, 20(4), 6827-6843; https://doi.org/10.3390/molecules20046827 - 15 Apr 2015
Cited by 19 | Viewed by 5567
Abstract
This work concerns the design and synthesis of novel, substituted 5-alkoxythieno[2,3-e][1,2,4]triazolo[4,3-c]pyrimidine derivatives 5ap prepared from 3-amino-2-thiophenecarboxylic acid methyl ester. The final compounds were screened for their in vivo anticonvulsant activity using maximal electroshock (MES) and subcutaneous pentylenetetrazole [...] Read more.
This work concerns the design and synthesis of novel, substituted 5-alkoxythieno[2,3-e][1,2,4]triazolo[4,3-c]pyrimidine derivatives 5ap prepared from 3-amino-2-thiophenecarboxylic acid methyl ester. The final compounds were screened for their in vivo anticonvulsant activity using maximal electroshock (MES) and subcutaneous pentylenetetrazole (scPTZ) tests. Neurotoxicity (NT) was tested using a rotarod test. The structure-anticonvulsant activity relationship analysis revealed that the most effective structural motif involves a substituted phenol, especially when substituted with a single chlorine, fluorine or trifluoromethyl group (at the meta-position), or two chlorine atoms. These molecules possessed high activity according to the MES and scPTZ models. Quantitative assessment of the compounds after intraperitoneal administration in mice showed that the most active compound was 5-[3-(trifluoromethyl)phenoxy]thieno[2,3-e] [1,2,4]triazolo[4,3-c]pyrimidine (5o) with ED50 values of 11.5 mg/kg (MES) and 58.9 mg/kg (scPTZ). Furthermore, compound 5o was more effective in the MES and scPTZ tests than the well-known anticonvulsant drugs carbamazepine and ethosuximide. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

25 pages, 745 KiB  
Article
Anticonvulsant Profiles of Certain New 6-Aryl-9-substituted-6,9-diazaspiro-[4.5]decane-8,10-diones and 1-Aryl-4-substituted-1,4-diazaspiro[5.5]undecane-3,5-diones
by Mohamed N. Aboul-Enein, Aida A. El-Azzouny, Mohamed I. Attia, Yousreya A. Maklad, Mona E. Aboutabl, Fatma Ragab and Walaa H. A. Abd El-Hamid
Int. J. Mol. Sci. 2014, 15(9), 16911-16935; https://doi.org/10.3390/ijms150916911 - 23 Sep 2014
Cited by 13 | Viewed by 6336
Abstract
Synthesis and anticonvulsant potential of certain new 6-aryl-9-substituted-6,9-diazaspiro[4.5]decane-8,10-diones (6al) and 1-aryl-4-substituted-1,4-diazaspiro[5.5] undecane-3,5-diones (6mx) are reported. The intermediates 1-[(aryl)(cyanomethyl)amino] cycloalkanecarboxamides (3af) were prepared via adopting Strecker synthesis on the proper cycloalkanone followed [...] Read more.
Synthesis and anticonvulsant potential of certain new 6-aryl-9-substituted-6,9-diazaspiro[4.5]decane-8,10-diones (6al) and 1-aryl-4-substituted-1,4-diazaspiro[5.5] undecane-3,5-diones (6mx) are reported. The intermediates 1-[(aryl)(cyanomethyl)amino] cycloalkanecarboxamides (3af) were prepared via adopting Strecker synthesis on the proper cycloalkanone followed by partial hydrolysis of the obtained nitrile functionality and subsequent N-cyanomethylation. Compounds 3af were subjected to complete nitrile hydrolysis to give the respective carboxylic acid derivatives 4af which were cyclized under mild conditions to give the spiro compounds 5af. Ultimately, compounds 5af were alkylated or aralkylated to give the target compounds 6ai and 6mu. On the other hand, compounds 6jl and 6vx were synthesized from the intermediates 5af through alkylation, dehydration and finally tetrazole ring formation. Anticonvulsant screening of the target compounds 6ax revealed that compound 6g showed an ED50 of 0.0043 mmol/kg in the scPTZ screen, being about 14 and 214 fold more potent than the reference drugs, Phenobarbital (ED50 = 0.06 mmol/kg) and Ethosuximide (ED50 = 0.92 mmol/kg), respectively. Compound 6e exhibited an ED50 of 0.019 mmol/kg, being about 1.8 fold more potent than that of the reference drug, Diphenylhydantoin (ED50 = 0.034 mmol/kg) in the MES screen. Interestingly, all the test compounds 6ax did not show any minimal motor impairment at the maximum administered dose in the neurotoxicity screen. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

10 pages, 939 KiB  
Article
Induction of Neuronal Differentiation of Rat Muscle-Derived Stem Cells in Vitro Using Basic Fibroblast Growth Factor and Ethosuximide
by Mi Lan Kang, Jin Seon Kwon and Moon Suk Kim
Int. J. Mol. Sci. 2013, 14(4), 6614-6623; https://doi.org/10.3390/ijms14046614 - 25 Mar 2013
Cited by 12 | Viewed by 8528
Abstract
Several studies have demonstrated that basic fibroblast growth factor (bFGF) can induce neural differentiation of mesenchymal stem cells. In this study, we investigated the neural differentiation of muscle-derived stem cells (MDSCs) following treatment with bFGF and ethosuximide, a small molecule used as an [...] Read more.
Several studies have demonstrated that basic fibroblast growth factor (bFGF) can induce neural differentiation of mesenchymal stem cells. In this study, we investigated the neural differentiation of muscle-derived stem cells (MDSCs) following treatment with bFGF and ethosuximide, a small molecule used as an anticonvulsant in humans. Stem cells isolated from rat skeletal muscle (rMDSCs) were pre-induced by culturing with 25 ng/mL bFGF for 24 h and then were transferred to a medium supplemented with or without 4 mM ethosuximide. Neuronal differentiation was assessed by immunocytochemical and western blotting analyses of marker expression. Immunocytochemistry of rMDSCs treated with bFGF and ethosuximide identified abundant cells expressing neuronal markers (TuJ1, neuron-specific class III β-tubulin; NeuN, neuronal nuclear antigen; and NF-MH; neurofilament M and H). Olig2 (oligodendrocyte transcription factor 2)-positive cells were also observed, indicating the presence of oligodendrocyte lineage cells. These findings were substantiated by western blotting analysis of marker proteins. In particular, the expression of NeuN and TuJ1 was significantly higher in rMDSCs treated with ethosuximide and bFGF than in cells stimulated with bFGF alone (NeuN, p < 0.05 and TuJ1, p < 0.001). Expression of the astrocyte marker GFAP (glial fibrillary acidic protein) was not detected in this study. Collectively, the results showed that treatment with bFGF and ethosuximide induced effective transdifferentiation of rMDSCs into cells with a neural-like phenotype. Notably, rMDSCs treated with a combination of bFGF plus ethosuximide showed enhanced differentiation compared with cells treated with bFGF alone, implying that ethosuximide may stimulate neuronal differentiation. Full article
(This article belongs to the Special Issue Neuroprotective Strategies 2014)
Show Figures

Back to TopTop