Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (139)

Search Parameters:
Keywords = ethics of metrics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 3754 KiB  
Review
Artificial Gametogenesis and In Vitro Spermatogenesis: Emerging Strategies for the Treatment of Male Infertility
by Aris Kaltsas, Maria-Anna Kyrgiafini, Eleftheria Markou, Andreas Koumenis, Zissis Mamuris, Fotios Dimitriadis, Athanasios Zachariou, Michael Chrisofos and Nikolaos Sofikitis
Int. J. Mol. Sci. 2025, 26(15), 7383; https://doi.org/10.3390/ijms26157383 - 30 Jul 2025
Viewed by 324
Abstract
Male-factor infertility accounts for approxiamately half of all infertility cases globally, yet therapeutic options remain limited for individuals with no retrievable spermatozoa, such as those with non-obstructive azoospermia (NOA). In recent years, artificial gametogenesis has emerged as a promising avenue for fertility restoration, [...] Read more.
Male-factor infertility accounts for approxiamately half of all infertility cases globally, yet therapeutic options remain limited for individuals with no retrievable spermatozoa, such as those with non-obstructive azoospermia (NOA). In recent years, artificial gametogenesis has emerged as a promising avenue for fertility restoration, driven by advances in two complementary strategies: organotypic in vitro spermatogenesis (IVS), which aims to complete spermatogenesis ex vivo using native testicular tissue, and in vitro gametogenesis (IVG), which seeks to generate male gametes de novo from pluripotent or reprogrammed somatic stem cells. To evaluate the current landscape and future potential of these approaches, a narrative, semi-systematic literature search was conducted in PubMed and Scopus for the period January 2010 to February 2025. Additionally, landmark studies published prior to 2010 that contributed foundational knowledge in spermatogenesis and testicular tissue modeling were reviewed to provide historical context. This narrative review synthesizes multidisciplinary evidence from cell biology, tissue engineering, and translational medicine to benchmark IVS and IVG technologies against species-specific developmental milestones, ranging from rodent models to non-human primates and emerging human systems. Key challenges—such as the reconstitution of the blood–testis barrier, stage-specific endocrine signaling, and epigenetic reprogramming—are discussed alongside critical performance metrics of various platforms, including air–liquid interface slice cultures, three-dimensional organoids, microfluidic “testis-on-chip” devices, and stem cell-derived gametogenic protocols. Particular attention is given to clinical applicability in contexts such as NOA, oncofertility preservation in prepubertal patients, genetic syndromes, and reprocutive scenarios involving same-sex or unpartnered individuals. Safety, regulatory, and ethical considerations are critically appraised, and a translational framework is outlined that emphasizes biomimetic scaffold design, multi-omics-guided media optimization, and rigorous genomic and epigenomic quality control. While the generation of functionally mature sperm in vitro remains unachieved, converging progress in animal models and early human systems suggests that clinically revelant IVS and IVG applications are approaching feasibility, offering a paradigm shift in reproductive medicine. Full article
Show Figures

Figure 1

16 pages, 1145 KiB  
Review
Beyond Global Metrics: The U-Smile Method for Explainable, Interpretable, and Transparent Variable Selection in Risk Prediction Models
by Katarzyna B. Kubiak, Agata Konieczna, Anna Tyranska-Fobke and Barbara Więckowska
Appl. Sci. 2025, 15(15), 8303; https://doi.org/10.3390/app15158303 - 25 Jul 2025
Viewed by 118
Abstract
Variable selection (VS) is a critical step in developing predictive binary classification (BC) models. Many traditional methods for assessing the added value of a candidate variable provide global performance summaries and lack an interpretable graphical summary of results. To address this limitation, we [...] Read more.
Variable selection (VS) is a critical step in developing predictive binary classification (BC) models. Many traditional methods for assessing the added value of a candidate variable provide global performance summaries and lack an interpretable graphical summary of results. To address this limitation, we developed the U-smile method, a residual-based, post hoc evaluation approach for assessing prediction improvements and worsening separately for events and non-events. The U-smile method produces three families of interpretable BA-RB-I coefficients at three levels of generality and a standardized graphical summary through U-smile and prediction improvement–worsening (PIW) plots, enabling transparent, interpretable, and explainable VS. Validated in balanced and imbalanced BC scenarios, the method proved robust to class imbalance and collinearity, and more sensitive than traditional metrics in detecting subtle but meaningful effects. Moreover, the method’s intuitive visual output (U-smile plot) facilitates the rapid communication of results to non-technical stakeholders, bridging the gap between data science and applied decision-making. The U-smile method supports both local and global evaluations and complements existing explainable machine learning (XML) and artificial intelligence (XAI) tools without overlapping in their functions. The U-smile method offers a transparency-enhancing and human-oriented approach for ethical and fair VS, making it highly suited for high-stakes domains, e.g., healthcare and public health. Full article
Show Figures

Figure 1

14 pages, 381 KiB  
Article
A Cross-Sectional Analysis of Oil Pulling on YouTube Shorts
by Jun Yaung, Sun Ha Park and Shahed Al Khalifah
Dent. J. 2025, 13(7), 330; https://doi.org/10.3390/dj13070330 - 21 Jul 2025
Viewed by 483
Abstract
Objective: This cross-sectional content analysis aimed to investigate how oil pulling is portrayed on YouTube Shorts, focusing on the types of speakers, claims made, and alignment with scientific evidence. The study further explored how the content may influence viewer perception, health behaviors, [...] Read more.
Objective: This cross-sectional content analysis aimed to investigate how oil pulling is portrayed on YouTube Shorts, focusing on the types of speakers, claims made, and alignment with scientific evidence. The study further explored how the content may influence viewer perception, health behaviors, and the potential spread of misinformation. Methods: On 28 January 2025, a systematic search of YouTube Shorts was performed using the term “oil pulling” in incognito mode to reduce algorithmic bias. English language videos with at least 1000 views were included through purposive sampling. A total of 47 Shorts met the inclusion criteria. Data were extracted using a structured coding framework that recorded speaker type (e.g., dentist, hygienist, influencer), engagement metrics, stated benefits, oil type and regimen, the use of disclaimers or citations, and stance toward oil pulling rated on a 5-point Likert scale. Speaker background and nationality were determined through publicly available channel descriptions or linked websites, with user identities anonymized and ethical approval deemed unnecessary due to the use of publicly available content. In total, 47 videos met the inclusion criteria. Results: Of the 47 YouTube Shorts that met the inclusion criteria, most were posted by influencers rather than dental professionals. These videos predominantly encouraged oil pulling, often recommending coconut oil for 10–15 min daily and citing benefits such as reduced halitosis and improved gum health. However, a smaller subset advanced more extreme claims, including reversing cavities and remineralizing enamel. Notably, US-licensed dentists and dental hygienists tended to discourage or express skepticism toward oil pulling, assigning lower Likert scores (1 or 2) to influencers and alternative health practitioners (often 4 or 5). Conclusions: YouTube Shorts largely promote oil pulling through anecdotal and testimonial-driven content, often diverging from evidence-based dental recommendations. The findings reveal a disconnect between professional dental guidance and popular social media narratives. While some benefits like halitosis reduction may have limited support, exaggerated or misleading claims may result in improper oral hygiene practices. Greater engagement from dental professionals and improved health communication strategies are needed to counteract misinformation and reinforce oil pulling’s role, if any, as an adjunct—not a replacement—for standard oral care. Future studies should explore viewer interpretation, behavioral influence, and cross-platform content patterns to better understand the impact of short-form health videos. Full article
(This article belongs to the Topic Preventive Dentistry and Public Health)
Show Figures

Figure 1

13 pages, 1566 KiB  
Article
Turkish Chest X-Ray Report Generation Model Using the Swin Enhanced Yield Transformer (Model-SEY) Framework
by Murat Ucan, Buket Kaya and Mehmet Kaya
Diagnostics 2025, 15(14), 1805; https://doi.org/10.3390/diagnostics15141805 - 17 Jul 2025
Viewed by 288
Abstract
Background/Objectives: Extracting meaningful medical information from chest X-ray images and transcribing it into text is a complex task that requires a high level of expertise and directly affects clinical decision-making processes. Automatic reporting systems for this field in Turkish represent an important [...] Read more.
Background/Objectives: Extracting meaningful medical information from chest X-ray images and transcribing it into text is a complex task that requires a high level of expertise and directly affects clinical decision-making processes. Automatic reporting systems for this field in Turkish represent an important gap in scientific research, as they have not been sufficiently addressed in the existing literature. Methods: A deep learning-based approach called Model-SEY was developed with the aim of automatically generating Turkish medical reports from chest X-ray images. The Swin Transformer structure was used in the encoder part of the model to extract image features, while the text generation process was carried out using the cosmosGPT architecture, which was adapted specifically for the Turkish language. Results: With the permission of the ethics committee, a new dataset was created using image–report pairs obtained from Elazıg Fethi Sekin City Hospital and Indiana University Chest X-Ray dataset and experiments were conducted on this new dataset. In the tests conducted within the scope of the study, scores of 0.6412, 0.5335, 0.4395, 0.4395, 0.3716, and 0.2240 were obtained in BLEU-1, BLEU-2, BLEU-3, BLEU-4, and ROUGE word overlap evaluation metrics, respectively. Conclusions: Quantitative and qualitative analyses of medical reports autonomously generated by the proposed model have shown that they are meaningful and consistent. The proposed model is one of the first studies in the field of autonomous reporting using deep learning architectures specific to the Turkish language, representing an important step forward in this field. It will also reduce potential human errors during diagnosis by supporting doctors in their decision-making. Full article
(This article belongs to the Special Issue Artificial Intelligence for Health and Medicine)
Show Figures

Figure 1

30 pages, 2023 KiB  
Review
Fusion of Computer Vision and AI in Collaborative Robotics: A Review and Future Prospects
by Yuval Cohen, Amir Biton and Shraga Shoval
Appl. Sci. 2025, 15(14), 7905; https://doi.org/10.3390/app15147905 - 15 Jul 2025
Viewed by 583
Abstract
The integration of advanced computer vision and artificial intelligence (AI) techniques into collaborative robotic systems holds the potential to revolutionize human–robot interaction, productivity, and safety. Despite substantial research activity, a systematic synthesis of how vision and AI are jointly enabling context-aware, adaptive cobot [...] Read more.
The integration of advanced computer vision and artificial intelligence (AI) techniques into collaborative robotic systems holds the potential to revolutionize human–robot interaction, productivity, and safety. Despite substantial research activity, a systematic synthesis of how vision and AI are jointly enabling context-aware, adaptive cobot capabilities across perception, planning, and decision-making remains lacking (especially in recent years). Addressing this gap, our review unifies the latest advances in visual recognition, deep learning, and semantic mapping within a structured taxonomy tailored to collaborative robotics. We examine foundational technologies such as object detection, human pose estimation, and environmental modeling, as well as emerging trends including multimodal sensor fusion, explainable AI, and ethically guided autonomy. Unlike prior surveys that focus narrowly on either vision or AI, this review uniquely analyzes their integrated use for real-world human–robot collaboration. Highlighting industrial and service applications, we distill the best practices, identify critical challenges, and present key performance metrics to guide future research. We conclude by proposing strategic directions—from scalable training methods to interoperability standards—to foster safe, robust, and proactive human–robot partnerships in the years ahead. Full article
Show Figures

Figure 1

32 pages, 2302 KiB  
Review
Early Detection of Alzheimer’s Disease Using Generative Models: A Review of GANs and Diffusion Models in Medical Imaging
by Md Minul Alam and Shahram Latifi
Algorithms 2025, 18(7), 434; https://doi.org/10.3390/a18070434 - 15 Jul 2025
Viewed by 562
Abstract
Alzheimer’s disease (AD) is a progressive, non-curable neurodegenerative disorder that poses persistent challenges for early diagnosis due to its gradual onset and the difficulty in distinguishing pathological changes from normal aging. Neuroimaging, particularly MRI and PET, plays a key role in detection; however, [...] Read more.
Alzheimer’s disease (AD) is a progressive, non-curable neurodegenerative disorder that poses persistent challenges for early diagnosis due to its gradual onset and the difficulty in distinguishing pathological changes from normal aging. Neuroimaging, particularly MRI and PET, plays a key role in detection; however, limitations in data availability and the complexity of early structural biomarkers constrain traditional diagnostic approaches. This review investigates the use of generative models, specifically Generative Adversarial Networks (GANs) and Diffusion Models, as emerging tools to address these challenges. These models are capable of generating high-fidelity synthetic brain images, augmenting datasets, and enhancing machine learning performance in classification tasks. The review synthesizes findings across multiple studies, revealing that GAN-based models achieved diagnostic accuracies up to 99.70%, with image quality metrics such as SSIM reaching 0.943 and PSNR up to 33.35 dB. Diffusion Models, though relatively new, demonstrated strong performance with up to 92.3% accuracy and FID scores as low as 11.43. Integrating generative models with convolutional neural networks (CNNs) and multimodal inputs further improved diagnostic reliability. Despite these advancements, challenges remain, including high computational demands, limited interpretability, and ethical concerns regarding synthetic data. This review offers a comprehensive perspective to inform future AI-driven research in early AD detection. Full article
(This article belongs to the Special Issue Advancements in Signal Processing and Machine Learning for Healthcare)
Show Figures

Graphical abstract

28 pages, 2371 KiB  
Review
From Metrics to Meaning: Research Trends and AHP-Driven Insights into Financial Performance in Sustainability Transitions
by Ionela Munteanu, Liliana Ionescu-Feleagă, Bogdan Ștefan Ionescu, Elena Condrea and Mauro Romanelli
Sustainability 2025, 17(14), 6437; https://doi.org/10.3390/su17146437 - 14 Jul 2025
Viewed by 390
Abstract
Evaluating performance is a necessary and specific process across all sectors and organizational levels, shaped by context, indicators, and purpose. Considering global sustainability transitions, understanding financial performance entails a deeper perspective on technical accuracy, conceptual clarity, and systemic integration. This study investigates how [...] Read more.
Evaluating performance is a necessary and specific process across all sectors and organizational levels, shaped by context, indicators, and purpose. Considering global sustainability transitions, understanding financial performance entails a deeper perspective on technical accuracy, conceptual clarity, and systemic integration. This study investigates how financial performance is assessed and interpreted in sustainability-focused research, drawing on a bibliometric analysis of 490 articles indexed in the Web of Science from 2007 to 2023. Using SciMAT, we traced thematic evolutions and revealed a fragmented research landscape marked by competing theoretical, methodological, and practical orientations. To address this conceptual dispersion, we applied the Analytic Hierarchy Process (AHP) to evaluate five key alternatives to financial-performance assessment (quantitative measurement, definition-oriented reasoning, theoretical frameworks, experiential comparison, and integration with sustainability and ethics) against three conceptual criteria (philosophical depth, holistic scope, and multidisciplinary relevance). The results highlight a strong preference for holistic and integrative models of financial performance, with quantitative measurement ranking highest in practical terms, followed by experiential and sustainability-driven approaches. These results underscore the need to align financial evaluation more closely with sustainability values, bridging short-term metrics with long-term societal impact. By combining diachronic thematic mapping with structured decision analysis, this study advances a more reflective and forward-looking framework for performance research. It contributes to sustainability research by identifying underexplored epistemological pathways and supporting the development of financial evaluation models that are inclusive, ethically grounded, and aligned with sustainable development goals. Full article
(This article belongs to the Special Issue Recent Advances in Environmental Economics Toward Sustainability)
Show Figures

Figure 1

44 pages, 2807 KiB  
Review
Artificial Intelligence in Dermatology: A Review of Methods, Clinical Applications, and Perspectives
by Agnieszka M. Zbrzezny and Tomasz Krzywicki
Appl. Sci. 2025, 15(14), 7856; https://doi.org/10.3390/app15147856 - 14 Jul 2025
Viewed by 1001
Abstract
The use of artificial intelligence (AI) in dermatology is skyrocketing, but a comprehensive overview integrating regulatory, ethical, validation, and clinical issues is lacking. This work aims to review current research, map applicable legal regulations, identify ethical challenges and methods of verifying AI models [...] Read more.
The use of artificial intelligence (AI) in dermatology is skyrocketing, but a comprehensive overview integrating regulatory, ethical, validation, and clinical issues is lacking. This work aims to review current research, map applicable legal regulations, identify ethical challenges and methods of verifying AI models in dermatology, assess publication trends, compare the most popular neural network architectures and datasets, and identify good practices in creating AI-based applications for dermatological use. A systematic literature review is conducted in accordance with the PRISMA guidelines, utilising Google Scholar, PubMed, Scopus, and Web of Science and employing bibliometric analysis. Since 2016, there has been exponential growth in deep learning research in dermatology, revealing gaps in EU and US regulations and significant differences in model performance across different datasets. The decision-making process in clinical dermatology is analysed, focusing on how AI is augmenting skin imaging techniques such as dermatoscopy and histology. Further demonstration is provided regarding how AI is a valuable tool that supports dermatologists by automatically analysing skin images, enabling faster diagnosis and the more accurate identification of skin lesions. These advances enhance the precision and efficiency of dermatological care, showcasing the potential of AI to revolutionise the speed of diagnosis in modern dermatology, sparking excitement and curiosity. Then, we discuss the regulatory framework for AI in medicine, as well as the ethical issues that may arise. Additionally, this article addresses the critical challenge of ensuring the safety and trustworthiness of AI in dermatology, presenting classic examples of safety issues that can arise during its implementation. The review provides recommendations for regulatory harmonisation, the standardisation of validation metrics, and further research on data explainability and representativeness, which can accelerate the safe implementation of AI in dermatological practice. Full article
(This article belongs to the Special Issue Machine Learning in Biomedical Sciences)
Show Figures

Figure 1

22 pages, 291 KiB  
Article
Circular Economy for Strategic Management in the Copper Mining Industry
by Angélica Patricia Muñoz-Lagos, Luis Seguí-Amórtegui and Juan Pablo Vargas-Norambuena
Sustainability 2025, 17(14), 6364; https://doi.org/10.3390/su17146364 - 11 Jul 2025
Viewed by 289
Abstract
This study examines the awareness and implementation of Circular Economy (CE) principles within Chile’s mining sector, which represents the world’s leading copper producer. We employed a mixed-methods approach, combining quantitative surveys with qualitative semi-structured interviews, to evaluate perceptions and implementation levels of CE [...] Read more.
This study examines the awareness and implementation of Circular Economy (CE) principles within Chile’s mining sector, which represents the world’s leading copper producer. We employed a mixed-methods approach, combining quantitative surveys with qualitative semi-structured interviews, to evaluate perceptions and implementation levels of CE practices across diverse organizational contexts. Our findings reveal a pronounced knowledge gap: while 73.3% of mining professionals reported familiarity with CE concepts, only 57.3% could provide accurate definitions. State-owned mining companies demonstrated substantially higher CE implementation rates, with 36.5% participating in eco-industrial collaborations and 51% conducting environmental audits, compared to their private counterparts. Small enterprises (1–100 employees) exhibited particularly limited engagement, as demonstrated by 71.8% lacking established sustainability reporting mechanisms. A considerable implementation gap was also identified; although 94.8% of respondents considered CE principles integral to business ethics and 89.6% recognized CE as essential for securing a social license to operate, only 20.8% reported that their organizations maintained dedicated CE units. The research presents actionable recommendations for policymakers, including targeted financial incentives and training programs for small- and medium-sized enterprises (SMEs) in mining services, the establishment of standardized CE performance metrics for the sector, and the integration of CE principles into strategic management education to accelerate sustainable transformation within Chile’s critical mining industry. Full article
17 pages, 1258 KiB  
Article
Operationalising Organisational Performance in the Scope of Industry 4.0 and Industry 5.0 in Manufacturing Companies
by Irina Serbinenko and Iveta Ludviga
Sustainability 2025, 17(14), 6314; https://doi.org/10.3390/su17146314 - 9 Jul 2025
Viewed by 461
Abstract
Industry 4.0 and Industry 5.0 are reshaping business models and scientific concepts, bringing challenges and opportunities. Stakeholders require a performance measurement system that enables them to address challenges and effectively capture opportunities. However, the current literature lacks consistency in utilising appropriate performance measurement [...] Read more.
Industry 4.0 and Industry 5.0 are reshaping business models and scientific concepts, bringing challenges and opportunities. Stakeholders require a performance measurement system that enables them to address challenges and effectively capture opportunities. However, the current literature lacks consistency in utilising appropriate performance measurement systems, and the authors aim to identify current trends in measuring organisational performance within the context of Industry 4.0 and Industry 5.0 in manufacturing companies. A systematic literature review, based on the PRISMA model, was conducted to identify which performance measurement systems for manufacturing companies are utilised in the context of Industry 4.0 and Industry 5.0. Findings indicate that the current literature lacks consistency regarding performance measurement systems for manufacturing companies, which encompass elements of Industry 5.0, including human-centrism and sustainability. We recommend a human-centric and sustainability-oriented approach to measuring performance in Industry 5.0, prioritising metrics that value employees as co-creators of success, integrate well-being and ethical dimensions, and focus on human-technology collaboration. Such an approach should ensure that technology supports, rather than replaces, humans, aligning organisational goals with societal and environmental values. Full article
Show Figures

Figure 1

49 pages, 1388 KiB  
Review
Evaluating Trustworthiness in AI: Risks, Metrics, and Applications Across Industries
by Aleksandra Nastoska, Bojana Jancheska, Maryan Rizinski and Dimitar Trajanov
Electronics 2025, 14(13), 2717; https://doi.org/10.3390/electronics14132717 - 4 Jul 2025
Viewed by 1055
Abstract
Ensuring the trustworthiness of artificial intelligence (AI) systems is critical as they become increasingly integrated into domains like healthcare, finance, and public administration. This paper explores frameworks and metrics for evaluating AI trustworthiness, focusing on key principles such as fairness, transparency, privacy, and [...] Read more.
Ensuring the trustworthiness of artificial intelligence (AI) systems is critical as they become increasingly integrated into domains like healthcare, finance, and public administration. This paper explores frameworks and metrics for evaluating AI trustworthiness, focusing on key principles such as fairness, transparency, privacy, and security. This study is guided by two central questions: how can trust in AI systems be systematically measured across the AI lifecycle, and what are the trade-offs involved when optimizing for different trustworthiness dimensions? By examining frameworks such as the NIST AI Risk Management Framework (AI RMF), the AI Trust Framework and Maturity Model (AI-TMM), and ISO/IEC standards, this study bridges theoretical insights with practical applications. We identify major risks across the AI lifecycle stages and outline various metrics to address challenges in system reliability, bias mitigation, and model explainability. This study includes a comparative analysis of existing standards and their application across industries to illustrate their effectiveness. Real-world case studies, including applications in healthcare, financial services, and autonomous systems, demonstrate approaches to applying trust metrics. The findings reveal that achieving trustworthiness involves navigating trade-offs between competing metrics, such as fairness versus efficiency or privacy versus transparency, and emphasizes the importance of interdisciplinary collaboration for robust AI governance. Emerging trends suggest the need for adaptive frameworks for AI trustworthiness that evolve alongside advancements in AI technologies. This paper contributes to the field by proposing a comprehensive review of existing frameworks with guidelines for building resilient, ethical, and transparent AI systems, ensuring their alignment with regulatory requirements and societal expectations. Full article
Show Figures

Figure 1

23 pages, 988 KiB  
Article
The Influence of Spatial Distance and Trade-Off Salience on Ethical Decision-Making: An Eye-Tracking Study Based on Embodied Cognition
by Yu Yang, Yirui Li, Qingsong Lin and Xuejun Bai
Behav. Sci. 2025, 15(7), 911; https://doi.org/10.3390/bs15070911 - 4 Jul 2025
Viewed by 367
Abstract
Research based on the theory of embodied cognition has revealed that the vertical position of target information in space influences individuals’ construal level, which in turn affects their ethical decision-making. However, previous studies have shown inconsistent effects of construal level on ethical decision-making, [...] Read more.
Research based on the theory of embodied cognition has revealed that the vertical position of target information in space influences individuals’ construal level, which in turn affects their ethical decision-making. However, previous studies have shown inconsistent effects of construal level on ethical decision-making, which may be moderated by factors such as the manipulation methods of construal level and the salience of trade-offs. This study examines how manipulating the vertical position (high/low) of target information in space—thereby altering perceived spatial distance—impacts ethical decision-making through the lens of embodied cognition, using eye-tracking technology. Experiment 1 isolated the effect of target verticality, while Experiment 2 introduced trade-off salience as an additional factor. Eye-tracking metrics in Experiment 1 revealed that lower target positions significantly increased late-stage cognitive processing difficulty. Experiment 2 demonstrated an interaction between target position and trade-off salience in ethical decision-making. These findings suggest that spatial positioning influences cognitive processing via construal level, with its effects on ethical decision-making moderated by trade-off cues. In summary, this study reveals the significant influence of trade-off salience as a contextual cue in individuals’ ethical decision-making while also providing an embodied cognition perspective to inform decision behavior in human–computer interaction contexts. Full article
(This article belongs to the Section Cognition)
Show Figures

Figure 1

33 pages, 5308 KiB  
Review
A Comprehensive Review of Explainable Artificial Intelligence (XAI) in Computer Vision
by Zhihan Cheng, Yue Wu, Yule Li, Lingfeng Cai and Baha Ihnaini
Sensors 2025, 25(13), 4166; https://doi.org/10.3390/s25134166 - 4 Jul 2025
Viewed by 1321
Abstract
Explainable Artificial Intelligence (XAI) is increasingly important in computer vision, aiming to connect complex model outputs with human understanding. This review provides a focused comparative analysis of representative XAI methods in four main categories, attribution-based, activation-based, perturbation-based, and transformer-based approaches, selected from a [...] Read more.
Explainable Artificial Intelligence (XAI) is increasingly important in computer vision, aiming to connect complex model outputs with human understanding. This review provides a focused comparative analysis of representative XAI methods in four main categories, attribution-based, activation-based, perturbation-based, and transformer-based approaches, selected from a broader literature landscape. Attribution-based methods like Grad-CAM highlight key input regions using gradients and feature activation. Activation-based methods analyze the responses of internal neurons or feature maps to identify which parts of the input activate specific layers or units, helping to reveal hierarchical feature representations. Perturbation-based techniques, such as RISE, assess feature importance through input modifications without accessing internal model details. Transformer-based methods, which use self-attention, offer global interpretability by tracing information flow across layers. We evaluate these methods using metrics such as faithfulness, localization accuracy, efficiency, and overlap with medical annotations. We also propose a hierarchical taxonomy to classify these methods, reflecting the diversity of XAI techniques. Results show that RISE has the highest faithfulness but is computationally expensive, limiting its use in real-time scenarios. Transformer-based methods perform well in medical imaging, with high IoU scores, though interpreting attention maps requires care. These findings emphasize the need for context-aware evaluation and hybrid XAI methods balancing interpretability and efficiency. The review ends by discussing ethical and practical challenges, stressing the need for standard benchmarks and domain-specific tuning. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

23 pages, 943 KiB  
Review
Establishing Best Practices for Clinical GWAS: Tackling Imputation and Data Quality Challenges
by Giorgio Casaburi, Ron McCullough and Valeria D’Argenio
Int. J. Mol. Sci. 2025, 26(13), 6397; https://doi.org/10.3390/ijms26136397 - 3 Jul 2025
Viewed by 503
Abstract
Genome-wide association studies (GWASs) play a central role in precision medicine, powering a range of clinical applications from pharmacogenomics to disease risk prediction. A critical component of GWASs is genotype imputation, a computational method used to infer untyped genetic variants. While imputation increases [...] Read more.
Genome-wide association studies (GWASs) play a central role in precision medicine, powering a range of clinical applications from pharmacogenomics to disease risk prediction. A critical component of GWASs is genotype imputation, a computational method used to infer untyped genetic variants. While imputation increases variant coverage by estimating genotypes at untyped loci, this expanded coverage can enhance the ability to detect genetic associations in some cases. However, imputation also introduces biases, particularly for rare variants and underrepresented populations, which may compromise clinical accuracy. This review examines the challenges and clinical implications of genotype imputation errors, including their impact on therapeutic decisions and predictive models, like polygenic risk scores (PRSs). In particular, the sources of imputation errors have been deeply explored, emphasizing the disparities in performance across ancestral populations and downstream effects on healthcare equity and addressing ethical considerations surrounding the access to equitable genomic resources. Based on the above, we propose evidence-based best practices for clinical GWAS implementation, including the direct genotyping of clinically actionable variants, the cross-population validation of imputation models, the transparent reporting of imputation quality metrics, and the use of ancestry-matched reference panels. As genomic data becomes increasingly adopted in healthcare systems worldwide, ensuring the accuracy and inclusivity of GWAS-derived insights is paramount. Here, we suggest a framework for the responsible clinical integration of imputed genetic data, paving the way for more reliable and equitable personalized medicine. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Graphical abstract

17 pages, 910 KiB  
Review
A Framework for Integrating Robotic Process Automation with Artificial Intelligence Applied to Industry 5.0
by Leonel Patrício, Leonilde Varela, Zilda Silveira, Carlos Felgueiras and Filipe Pereira
Appl. Sci. 2025, 15(13), 7402; https://doi.org/10.3390/app15137402 - 1 Jul 2025
Viewed by 593
Abstract
The transition to Industry 5.0 highlights the growing integration of Robotic Process Automation (RPA) and Artificial Intelligence (AI) in industrial ecosystems. However, adoption remains fragmented, lacking standardized frameworks to align intelligent automation with human-centric principles. While RPA improves operational efficiency and AI enhances [...] Read more.
The transition to Industry 5.0 highlights the growing integration of Robotic Process Automation (RPA) and Artificial Intelligence (AI) in industrial ecosystems. However, adoption remains fragmented, lacking standardized frameworks to align intelligent automation with human-centric principles. While RPA improves operational efficiency and AI enhances cognitive decision-making, challenges such as organizational resistance, interoperability, and ethical governance hinder scalable and sustainable implementation. The envisioned scenario involves seamless RPA-AI integration, fostering human–machine collaboration, operational resilience, and sustainability. Expected outcomes include (1) hyperautomation for efficiency gains, (2) agile, data-driven decision-making, (3) sustainable resource optimization, and (4) an upskilled workforce focusing on innovation. This study proposes a structured five-stage framework for RPA-AI deployment in Industry 5.0, combining automation, cognitive enhancement, and human–machine symbiosis. A systematic literature review (PICO method) identifies gaps and supports the framework’s design, validated through operational, human-impact, and sustainability metrics. Incorporating ethical governance and continuous upskilling, the model ensures technological advancement aligns with societal and environmental values. Results demonstrate its potential as a roadmap for responsible digital transformation, balancing efficiency with human-centricity. Future research should focus on empirical validation and sector-specific adaptations. Full article
Show Figures

Figure 1

Back to TopTop