Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (142)

Search Parameters:
Keywords = estrogen receptor (ER) β

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2106 KiB  
Article
ERα36 Promotes MDR1-Mediated Adriamycin Resistance via Non-Genomic Signaling in Triple-Negative Breast Cancer
by Muslimbek Mukhammad Ugli Poyonov, Anh Thi Ngoc Bui, Seung-Yeon Lee, Gi-Ho Lee and Hye-Gwang Jeong
Int. J. Mol. Sci. 2025, 26(15), 7200; https://doi.org/10.3390/ijms26157200 - 25 Jul 2025
Viewed by 188
Abstract
Drug resistance remains a critical barrier to effective treatment in several cancers, particularly triple-negative breast cancer (TNBC). Estrogen receptor α36 (ERα36), a variant of the estrogen receptor in ER-negative breast cancer cells, plays important roles in cancer cell proliferation. We investigated the role [...] Read more.
Drug resistance remains a critical barrier to effective treatment in several cancers, particularly triple-negative breast cancer (TNBC). Estrogen receptor α36 (ERα36), a variant of the estrogen receptor in ER-negative breast cancer cells, plays important roles in cancer cell proliferation. We investigated the role of ERα36 in regulating multidrug resistance protein 1 (MDR1) in MDA-MB-231 human breast cancer cells. The activation of ERα36 by BSA-conjugated estradiol (BSA-E2) increased cell viability under Adriamycin exposure, suggesting its involvement in promoting drug resistance. BSA-E2 treatment significantly reduced the intracellular rhodamine-123 levels by activating the MDR1 efflux function, which was linked to increased MDR1 transcription and protein expression. The mechanical ERα36-mediated BSA-E2-induced activation of EGFR and downstream signaling via c-Src led to an activation of the Akt/ERK pathways and transcription factors, NF-κB and CREB. Additionally, ERα36 is involved in activating Wnt/β-catenin pathways to induce MDR1 expression. The silencing of ERα36 inhibited the BSA-E2-induced phosphorylation of Akt and ERK, thereby reducing MDR1 expression via downregulation of NF-κB and CREB as well as Wnt/β-catenin signaling. These findings demonstrated that ERα36 promotes MDR1 expression through multiple non-genomic signaling cascades, including Akt/ERK-NF-κB/CREB and Wnt/β-catenin pathways, and highlight the role of ERα36 as a promising target to enhance chemotherapeutic efficacy in TNBC. Full article
(This article belongs to the Special Issue Drug Resistance Mechanisms in Human Cancer Cells to Anticancer Drugs)
Show Figures

Figure 1

21 pages, 3526 KiB  
Article
Prenatal Bisphenol A Exposure Impairs Fetal Heart Development: Molecular and Structural Alterations with Sex-Specific Differences
by Alessandro Marrone, Anna De Bartolo, Vittoria Rago, Francesco Conforti, Lidia Urlandini, Tommaso Angelone, Rosa Mazza, Maurizio Mandalà and Carmine Rocca
Antioxidants 2025, 14(7), 863; https://doi.org/10.3390/antiox14070863 - 14 Jul 2025
Viewed by 439
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality worldwide, with increasing evidence suggesting that their origins may lie in prenatal life. Endocrine-disrupting chemicals (EDCs), such as bisphenol A (BPA), have been implicated in the alteration of fetal programming mechanisms that [...] Read more.
Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality worldwide, with increasing evidence suggesting that their origins may lie in prenatal life. Endocrine-disrupting chemicals (EDCs), such as bisphenol A (BPA), have been implicated in the alteration of fetal programming mechanisms that cause a predisposition to long-term cardiovascular vulnerability. However, the impact of prenatal endocrine disruption on fetal heart development and its sex-specific nature remains incompletely understood. This study investigates the molecular and structural effects of low-dose prenatal BPA exposure on fetal rat hearts. Our results reveal that BPA disrupts estrogen receptor (ER) signaling in a sex-dependent manner, with distinct alterations in ERα, ERβ, and GPER expression. BPA exposure also triggers significant inflammation, oxidative stress, and ferroptosis; this is evidenced by elevated NF-κB, IL-1β, TNF-α, and NLRP3 inflammasome activation, as well as impaired antioxidant defenses (SOD1, SOD2, CAT, and SELENOT), increased lipid peroxidation (MDA) and protein oxidation, decreased GPX4, and increased ACSL4 levels. These alterations are accompanied by increased markers of cardiac distension (ANP, BNP), extracellular matrix remodeling mediators, and pro-fibrotic regulators (Col1A1, Col3A1, TGF-β, and CTGF), with a more pronounced response in males. Histological analyses corroborated these molecular findings, revealing structural alterations as well as glycogen depletion in male fetal hearts, consistent with altered cardiac morphogenesis and metabolic stress. These effects were milder in females, reinforcing the notion of sex-specific vulnerability. Moreover, prenatal BPA exposure affected myocardial fiber architecture and vascular remodeling in a sex-dependent manner, as evidenced by reduced expression of desmin alongside increased levels of CD34 and Ki67. Overall, our findings provide novel insights into the crucial role of prenatal endocrine disruption during fetal heart development and its contribution to the early origins of CVD, underscoring the urgent need for targeted preventive strategies and further research into the functional impact of BPA-induced alterations on postnatal cardiac function and long-term disease susceptibility. Full article
Show Figures

Graphical abstract

15 pages, 263 KiB  
Review
Challenges in Differentiating Uterine Mesenchymal Tumors—Key Diagnostic Criteria
by Karolina Daniłowska, Małgorzata Satora, Krzysztof Kułak, Anna Kułak and Rafał Tarkowski
J. Clin. Med. 2025, 14(13), 4644; https://doi.org/10.3390/jcm14134644 - 1 Jul 2025
Viewed by 433
Abstract
Background: Uterine fibroids are the most common tumors in gynecology, detected in up to 80% of patients at various points in their lives. Uterine sarcomas account for 3% to 7% of all uterine cancers. The diagnosis of uterine fibroids is possible through [...] Read more.
Background: Uterine fibroids are the most common tumors in gynecology, detected in up to 80% of patients at various points in their lives. Uterine sarcomas account for 3% to 7% of all uterine cancers. The diagnosis of uterine fibroids is possible through ultrasonography (US), but this method has many limitations. More accurate examinations include magnetic resonance imaging (MRI) and positron emission tomography (PET) scans. Methods: This study evaluates MRI and PET in differentiating uterine fibroids from sarcomas. MRI uses T2-weighted and diffusion-weighted imaging (DWI), while PET assesses metabolism and estrogen receptor activity using [18F] fluorodeoxyglucose (FDG) and 16α-[18F]-fluoro-17β-estradiol (FES). Results: MRI allows for the identification of uterine fibroids when they exhibit good delineation and low intensity in T2-weighted images and DWI. Uterine sarcoma is characterized by moderate to high signal intensity on T2-weighted imaging, irregular borders, high signal intensity at high DWI values, and a decreased apparent diffusion coefficient. PET imaging with FDG and FES is a useful tool in differentiating uterine fibroids from sarcomas. Uterine sarcomas exhibit greater FDG uptake than smooth muscle fibroids, although cases of similar uptake do occur. On the other hand, FES provides information about estrogen receptors (ERs). Conclusions: Future research should focus on conducting standardized imaging studies, which would facilitate the inclusion of larger patient cohorts. This, in turn, would enable the development of specific diagnostic guidelines, ultimately leading to more accurate diagnoses and reducing the difficulty of differentiating these tumors through imaging. Full article
28 pages, 7888 KiB  
Article
Estradiol Prevents Amyloid Beta-Induced Mitochondrial Dysfunction and Neurotoxicity in Alzheimer’s Disease via AMPK-Dependent Suppression of NF-κB Signaling
by Pranav Mishra, Ehsan K. Esfahani, Paul Fernyhough and Benedict C. Albensi
Int. J. Mol. Sci. 2025, 26(13), 6203; https://doi.org/10.3390/ijms26136203 - 27 Jun 2025
Viewed by 704
Abstract
Alzheimer’s disease (AD), the most common form of dementia, is a progressive neurodegenerative disorder characterized by memory loss and cognitive decline. In addition to its two major pathological hallmarks, extracellular amyloid beta (Aβ) plaques and intracellular neurofibrillary tangles (NFTs), recent evidence highlights the [...] Read more.
Alzheimer’s disease (AD), the most common form of dementia, is a progressive neurodegenerative disorder characterized by memory loss and cognitive decline. In addition to its two major pathological hallmarks, extracellular amyloid beta (Aβ) plaques and intracellular neurofibrillary tangles (NFTs), recent evidence highlights the critical roles of mitochondrial dysfunction and neuroinflammation in disease progression. Aβ impairs mitochondrial function, which, in part, can subsequently trigger inflammatory cascades, creating a vicious cycle of neuronal damage. Estrogen receptors (ERs) are widely expressed throughout the brain, and the sex hormone 17β-estradiol (E2) exerts neuroprotection through both anti-inflammatory and mitochondrial mechanisms. While E2 exhibits neuroprotective properties, its mechanisms against Aβ toxicity remain incompletely understood. In this study, we investigated the neuroprotective effects of E2 against Aβ-induced mitochondrial dysfunction and neuroinflammation in primary cortical neurons, with a particular focus on the role of AMP-activated protein kinase (AMPK). We found that E2 treatment significantly increased phosphorylated AMPK and upregulated the expression of mitochondrial biogenesis regulator peroxisome proliferator-activated receptor gamma coactivator-1 α (PGC-1α), leading to improved mitochondrial respiration. In contrast, Aβ suppressed AMPK and PGC-1α signaling, impaired mitochondrial function, activated the pro-inflammatory nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB), and reduced neuronal viability. E2 pretreatment also rescued Aβ-induced mitochondrial dysfunction, suppressed NF-κB activation, and, importantly, prevented the decline in neuronal viability. However, the pharmacological inhibition of AMPK using Compound C (CC) abolished these protective effects, resulting in mitochondrial collapse, elevated inflammation, and cell death, highlighting AMPK’s critical role in mediating E2’s actions. Interestingly, while NF-κB inhibition using BAY 11-7082 partially restored mitochondrial respiration, it failed to prevent Aβ-induced cytotoxicity, suggesting that E2’s full neuroprotective effects rely on broader AMPK-dependent mechanisms beyond NF-κB suppression alone. Together, these findings establish AMPK as a key mediator of E2’s protective effects against Aβ-driven mitochondrial dysfunction and neuroinflammation, providing new insights into estrogen-based therapeutic strategies for AD. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Graphical abstract

12 pages, 278 KiB  
Review
The Role of [18F]FES PET/CT in Breast Cancer Management: An Umbrella Review
by Marco Cuzzocrea, Rosa Di Micco, Giorgia Elisabeth Colombo, Stefania Maria Rita Rizzo, Gaetano Paone, Virginia Casati, Turki Alkhaldii, Fatemah Khajah, Claudia Rauh, Maggie Banys-Paluchowsky, Nina Ditsch, Thorsten Kuehn, Oreste D. Gentilini, Giorgio Treglia and Maria Luisa Gasparri
Cancers 2025, 17(10), 1644; https://doi.org/10.3390/cancers17101644 - 13 May 2025
Cited by 1 | Viewed by 999
Abstract
Background/Objectives: Breast cancer (BC) is the most commonly diagnosed cancer worldwide. Estrogen receptor (ER) status is a key determinant in the diagnosis and treatment of BC. Although immunohistochemistry (IHC) is the gold standard for ER assessment, it has limitations. This umbrella review aims [...] Read more.
Background/Objectives: Breast cancer (BC) is the most commonly diagnosed cancer worldwide. Estrogen receptor (ER) status is a key determinant in the diagnosis and treatment of BC. Although immunohistochemistry (IHC) is the gold standard for ER assessment, it has limitations. This umbrella review aims to evaluate the role of 16α-18F-fluoro-17β-estradiol ([18F]FES) PET/CT as a non-invasive imaging tool for assessing ER expression and its implications in BC management. Methods: A comprehensive search was conducted in PubMed/MEDLINE and Cochrane Library for systematic reviews and meta-analyses published in the last decade. Studies eligible for inclusion evaluated the diagnostic accuracy and clinical utility of [18F]FES PET/CT in BC based on a predefined research question “What is the role of fluoroestradiol ([18F]FES) PET/CT in breast cancer?”. Data extraction and quality assessment were performed independently by two reviewers using the AMSTAR-2 tool. Results: Eight systematic reviews met the inclusion criteria. [18F]FES PET/CT demonstrated high sensitivity (81–94%) and specificity (78–95%) in detecting ER-positive lesions. It provided a real-time, whole-body assessment of ER expression, outperforming IHC in detecting functional ER activity. Additionally, [18F]FES PET/CT showed promise in predicting treatment response and guiding therapy decisions, particularly in metastatic settings. Conclusions: This review highlights the clinical value of [18F]FES PET/CT in BC management, offering a non-invasive alternative for ER assessment with high diagnostic accuracy. Its integration into clinical practice may enhance personalized treatment strategies for BC patients. Full article
(This article belongs to the Special Issue Rare Breast Tumors)
15 pages, 12413 KiB  
Article
17β-Estradiol Promotes Tumorigenicity Through an Autocrine AREG/EGFR Loop in ER-α-Positive Breast Cancer Cells
by Sun Young Yoon, Yisun Jeong, Jai Min Ryu, Se Kyung Lee, Byung Joo Chae, Jonghan Yu, Seok Won Kim, Seok Jin Nam, Sangmin Kim and Jeong Eon Lee
Cells 2025, 14(10), 703; https://doi.org/10.3390/cells14100703 - 12 May 2025
Viewed by 1016
Abstract
We previously reported that the level of EGFR expression is directly associated with the survival rate of estrogen receptor-positive (ER+) breast cancer patients. Here, we investigated how ER activation by 17β-estradiol (E2), the most potent form of estrogen, affects the expression or activity [...] Read more.
We previously reported that the level of EGFR expression is directly associated with the survival rate of estrogen receptor-positive (ER+) breast cancer patients. Here, we investigated how ER activation by 17β-estradiol (E2), the most potent form of estrogen, affects the expression or activity of EGFR or EGFR-related genes in ER+ breast cancer cells. As expected, E2 enhanced cell proliferation, the induction of S phase, and tumor growth in ER+ breast cancer models. E2 also increased the expression of secretory proteins, including amphiregulin (AREG), angiogenin, artemin, and CXCL16. We focused on AREG, which is a ligand of the epidermal growth factor receptor (EGFR). The levels of AREG expression were positively correlated with ESR1 expression. Our results also showed higher AREG mRNA expression levels in ER+ breast cancer cells than in ER- breast cancer cells. We treated ER+ breast cancer cells with lapatinib to inhibit the AREG/EGFR signaling pathway and then completely inhibited E2-induced cell proliferation and S-phase induction. Similar to the lapatinib treatment, cell proliferation, S-phase induction, cell migration, and tumor growth were suppressed by AREG knockdown. Taken together, we demonstrated that the induction of AREG by E2 contributes to EGFR activation, which then affects cell proliferation and tumor growth. Therefore, we suggest that AREG acts as an intermediary between EGFR and ER and targeting both ERs and EGFRs through combination therapy could prevent tumor progression in EGFR+ ER+ breast cancer patients. Full article
Show Figures

Figure 1

24 pages, 5731 KiB  
Article
Antiproliferative Role of Natural and Semi-Synthetic Tocopherols on Colorectal Cancer Cells Overexpressing the Estrogen Receptor β
by Irene Falsetti, Gaia Palmini, Roberto Zonefrati, Kristian Vasa, Simone Donati, Cinzia Aurilia, Allegra Baroncelli, Caterina Viglianisi, Francesco Ranaldi, Teresa Iantomasi, Piero Procacci, Stefano Menichetti and Maria Luisa Brandi
Int. J. Mol. Sci. 2025, 26(5), 2305; https://doi.org/10.3390/ijms26052305 - 5 Mar 2025
Viewed by 771
Abstract
Estrogen receptor β (ERβ) is the most highly expressed subtype in the colon epithelium and mediates the protective effect of estrogen against the development of colon cancer. Indeed, the expression of this receptor is inversely related to colorectal cancer progression. Structurally estrogen-like compounds, [...] Read more.
Estrogen receptor β (ERβ) is the most highly expressed subtype in the colon epithelium and mediates the protective effect of estrogen against the development of colon cancer. Indeed, the expression of this receptor is inversely related to colorectal cancer progression. Structurally estrogen-like compounds, including vitamin E components, affect cell growth by binding to ERs. In the present study, cell proliferation was measured by cell counting in a Bürker hemocytometer, and ERβ expression was measured by Real-Time qPCR and immunoenzymatic methods. The results obtained show that natural δ-tocopherol (δ-Toc) and two of its semi-synthetic derivatives, bis-δ-tocopheryl sulfide (δ-Toc)2S and bis-δ-tocopheryl disulfide (δ-Toc)2S2, play an antiproliferative role and upregulate ERβ expression, similar to 17-β-estradiol (17β-E2), in human colon adenocarcinoma HCT8 cells engineered to overexpress ERβ protein (HCT8-β8). These events are not present in HCT8-pSV2neo and in HCT8-β8 pretreated with ICI 182,780, suggesting that they are mediated by the binding of compounds to ERβ, as also boosted by an in silico assay. The antiproliferative effect is independent of the intracellular redox state and (δ-Toc)2S and (δ-Toc)2S2 reduce cell proliferation at concentrations lower than that of δ-Toc and all tested compounds are also able to upregulate ERβ expression. Taken together, the data indicate that, through the involvement of ERβ activity and expression, δ-Toc, (δ-Toc)2S, and (δ-Toc)2S2 may provide potential therapeutic support against colorectal cancer. Full article
(This article belongs to the Special Issue Hormone/Receptor System in Human Diseases)
Show Figures

Figure 1

20 pages, 6401 KiB  
Article
Genes Associated with the Immune System Affected by Ionizing Radiation and Estrogen in an Experimental Breast Cancer Model
by Gloria M. Calaf, Debasish Roy, Lilian Jara, Carmen Romero and Leodan A. Crispin
Biology 2024, 13(12), 1078; https://doi.org/10.3390/biology13121078 - 20 Dec 2024
Viewed by 985
Abstract
Breast cancer is a global health issue that, when in the metastasis stage, is characterized by the lack of estrogen receptor-α, the progesterone receptor, and human epidermal growth receptor expressions. The present study analyzed the differential gene expression related to the immune system [...] Read more.
Breast cancer is a global health issue that, when in the metastasis stage, is characterized by the lack of estrogen receptor-α, the progesterone receptor, and human epidermal growth receptor expressions. The present study analyzed the differential gene expression related to the immune system affected by ionizing radiation and estrogen in cell lines derived from an experimental breast cancer model that was previously developed; where the immortalized human breast epithelial cell line MCF-10F, a triple-negative breast cancer cell line, was exposed to low doses of high linear energy transfer α particle radiation (150 keV/μm), it subsequently grew in the presence or absence of 17β-estradiol. Results indicated that interferon-related developmental regulator 1 gene expression was affected in the estrogen-treated cell line; this interferon, as well as the Interferon-Induced Transmembrane protein 2, and the TNF alpha-induced Protein 6 gene expression levels were higher than the control in the Alpha3 cell line. Furthermore, the interferon-related developmental regulator 1, the Interferon-Induced Transmembrane protein 2, the TNF alpha-induced Protein 6, the Nuclear Factor Interleukin 3-regulated, and the Interferon-Gamma Receptor 1 showed high expression levels in the Alpha5 cell line, and the Interferon Regulatory Factor 6 was high in the Tumor2 cell line. Additionally, to further strengthen these data, publicly available datasets were analyzed. This analysis was conducted to assess the correlation between estrogen receptor alpha expression and the genes mentioned above in breast cancer patients, the differential gene expression between tumor and normal tissues, the immune infiltration level, the ER status, and the survival outcome adjusted by the clinical stage factor. It can be concluded that the genes of the interferon family and Tumor Necrosis factors can be potential therapeutic targets for breast cancer, since they are active before tumor formation as a defense of the body under radiation or estrogen effects. Full article
Show Figures

Figure 1

25 pages, 7880 KiB  
Article
Antioxidant 1,2,3,4,6-Penta-O-galloyl-β-D-glucose Alleviating Apoptosis and Promoting Bone Formation Is Associated with Estrogen Receptors
by Yongqing Hua, Haili Wang, Tingting Chen, Yeru Zhou, Zhiyuan Chen, Xinyue Zhao, Shaoqin Mo, Hongyun Mao, Miao Li, Linxia Wang and Min Hong
Molecules 2024, 29(21), 5110; https://doi.org/10.3390/molecules29215110 - 29 Oct 2024
Viewed by 1385
Abstract
1,2,3,4,6-penta-O-galloyl-β-D-glucose (PGG) is the main phenolic active ingredient in Paeoniae Radix Alba, which is commonly used for the treatment of osteoporosis (OP). PGG is a potent natural antioxidant, and its effects on OP remain unknown. This study aimed to investigate [...] Read more.
1,2,3,4,6-penta-O-galloyl-β-D-glucose (PGG) is the main phenolic active ingredient in Paeoniae Radix Alba, which is commonly used for the treatment of osteoporosis (OP). PGG is a potent natural antioxidant, and its effects on OP remain unknown. This study aimed to investigate the effects of PGG on promoting bone formation and explore its estrogen receptor (ER)-related mechanisms. A hydrogen peroxide-induced osteoblast apoptosis model was established in MC3T3-E1 cells. The effects of PGG were assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry, alkaline phosphatase (ALP) staining, RT-qPCR, and Western blot methods. Furthermore, a prednisolone-induced zebrafish OP model was employed to study the effects in vivo. ER inhibitors and molecular docking methods were used further to investigate the interactions between PGG and ERs. The results showed that PGG significantly enhanced cell viability and decreased cell apoptosis by restoring mitochondrial function, attenuating reactive oxygen species levels, decreasing the mitochondrial membrane potential, and enhancing ATP production. PGG enhanced ALP expression and activity and elevated osteogenic differentiation. PGG also promoted bone formation in the zebrafish model, and these effects were reversed by ICI182780. These results provide evidence that the effects of PGG in alleviating apoptosis and promoting bone formation may depend on ERs. As such, PGG is considered a valuable candidate for treating OP. Full article
Show Figures

Figure 1

17 pages, 14209 KiB  
Article
Protective Effects of 17-βE2 on the Primary Hepatocytes of Rainbow Trout (Oncorhynchus mykiss) Under Acute Heat Stress
by Guiyan Zhao, Zhe Liu, Junhao Lu, Jinqiang Quan and Yucai Pan
Antioxidants 2024, 13(11), 1316; https://doi.org/10.3390/antiox13111316 - 29 Oct 2024
Cited by 1 | Viewed by 1024 | Correction
Abstract
The rainbow trout (Oncorhynchus mykiss) is a typical cold-water species. However, due to global warming, it has experienced prolonged high-temperature stress. Research indicates that thermotolerance in rainbow trout varies by sex at multiple physiological levels. Specifically, females exhibit higher thermotolerance, which [...] Read more.
The rainbow trout (Oncorhynchus mykiss) is a typical cold-water species. However, due to global warming, it has experienced prolonged high-temperature stress. Research indicates that thermotolerance in rainbow trout varies by sex at multiple physiological levels. Specifically, females exhibit higher thermotolerance, which may be attributed to estrogen-mediated signal transduction pathways. This study involved culturing primary hepatocytes from rainbow trout and exposing them to estradiol and estrogen receptor antagonists to assess estradiol’s protective effects. The analysis focused on expression of ER, HSPs genes, hepatocyte viability, and antioxidant indices. Four experimental groups were treated with 17-βE2 at concentrations of 0, 0.1, 1, and 10 μM/mL for durations of 4, 8, 12, 24, and 48 h at 18 °C. 17-βE2 treatment led to increased hepatocyte viability and enhanced SOD, GSH-Px, and CAT levels but decreased MDA levels. hsp70a, hsp90β, era1, and erβ1 levels were notably higher, with the optimal 17-βE2 concentration being 1.0 μM/mL. Following heat stress (24 °C), the addition of 1.0 μM/mL 17-βE2 improved hepatocyte viability and increased SOD, GSH-Px, and CAT levels, while MDA content initially decreased before rising. The gene expression of hsp70a, hsp90β, era1, and erβ1 was significantly elevated compared to controls. Flow cytometry analysis showed increased apoptosis after heat exposure; however, 17-βE2 treatment significantly reduced the heat stress-induced effects (p < 0.05). In conclusion, 17-βE2 and mild heat stress collaboratively enhanced the expression of HSPs and estrogen receptors, thereby providing protection to hepatocytes from heat stress damage, indicating a beneficial protective role of estradiol in rainbow trout hepatocytes. Full article
Show Figures

Figure 1

22 pages, 6281 KiB  
Article
17β-Estradiol Abrogates TNF-α-Induced Human Brain Vascular Pericyte Migration by Downregulating miR-638 via ER-β
by Lisa Kurmann, Giovanna Azzarito, Brigitte Leeners, Marinella Rosselli and Raghvendra K. Dubey
Int. J. Mol. Sci. 2024, 25(21), 11416; https://doi.org/10.3390/ijms252111416 - 24 Oct 2024
Cited by 5 | Viewed by 1599
Abstract
Pericytes (PCs) contribute to brain capillary/BBB integrity and PC migration is a hallmark for brain capillary leakage following pro-inflammatory insults. Estradiol promotes endothelial barrier integrity by inhibiting tumor necrosis factor-alpha (TNF-α)-induced PC migration. However, the underlying mechanisms remain unclear. Since micro-RNAs (miRs) regulate [...] Read more.
Pericytes (PCs) contribute to brain capillary/BBB integrity and PC migration is a hallmark for brain capillary leakage following pro-inflammatory insults. Estradiol promotes endothelial barrier integrity by inhibiting tumor necrosis factor-alpha (TNF-α)-induced PC migration. However, the underlying mechanisms remain unclear. Since micro-RNAs (miRs) regulate BBB integrity and increases in miR638 and TNF-α occur in pathological events associated with capillary leakage, we hypothesize that TNF-α mediates its capillary disruptive actions via miR638 and that estradiol blocks these actions. Using quantitative reverse transcription PCR, we first assessed the modulatory effects of TNF-α on miR638. The treatment of PCs with TNF-α significantly induced miR638. Moreover, transfection with miR638 mimic induced PC migration, whereas inhibitory miR638 (anti-miR) abrogated the pro-migratory actions of TNF-α, suggesting that TNF-α stimulates PC migration via miR638. At a molecular level, the pro-migratory effects of miR638 involved the phosphorylation of ERK1/2 but not Akt. Interestingly, estradiol downregulated the constitutive and TNF-α-stimulated expression of miR638 and inhibited the TNF-α-induced migration of PCs. In PCs treated with estrogen receptor (ER) ER-α, ER-β, and GPR30 agonists, a significant downregulation in miR638 expression was solely observed in response to DPN, an ER-β agonist. DPN inhibited the pro-migratory effects of TNF-α but not miR638. Additionally, the ectopic expression of miR638 prevented the inhibitory effects of DPN on TNF-α-induced PC migration, suggesting that interference in miR638 formation plays a key role in mediating the inhibitory actions of estradiol/DPN. In conclusion, these findings provide the first evidence that estradiol inhibits TNF-α-induced PC migration by specifically downregulating miR638 via ER-β and may protect the neurovascular unit during injury/stroke via this mechanism. Full article
Show Figures

Graphical abstract

10 pages, 1292 KiB  
Article
Endometrial Dysbiosis: A Possible Association with Estrobolome Alteration
by Giorgia Scarfò, Simona Daniele, Elisa Chelucci, Francesca Papini, Francesco Epifani, Maria Ruggiero, Vito Cela, Ferdinando Franzoni and Paolo Giovanni Artini
Biomolecules 2024, 14(10), 1325; https://doi.org/10.3390/biom14101325 - 18 Oct 2024
Cited by 2 | Viewed by 1624
Abstract
Background/Objectives: Microbiota modification at the endometrial level can favor gynecological diseases and impair women’s fertility. The overgrowth of pathogen microorganisms is related to the contemporary alteration of estrogen-metabolizing bacteria, including β-glucuronidase, thereby enhancing estrogen-related inflammatory states and decreasing anti-inflammatory cells. The possible connection [...] Read more.
Background/Objectives: Microbiota modification at the endometrial level can favor gynecological diseases and impair women’s fertility. The overgrowth of pathogen microorganisms is related to the contemporary alteration of estrogen-metabolizing bacteria, including β-glucuronidase, thereby enhancing estrogen-related inflammatory states and decreasing anti-inflammatory cells. The possible connection between estrobolome impairment and gynecological diseases has been suggested in animal models. Nevertheless, in humans, coherent evidence on the estrobolome alteration and functionality of the female reproductive tract is still lacking. The objective of this study was to explore alterations in estrogen-related signaling and the putative link with endometrial dysbiosis. Methods: Women with infertility and repeated implantation failure (RIF, N = 40) were enrolled in order to explore the putative link between estrogen metabolism and endometrial dysbiosis. Endometrial biopsies were used to measure inflammatory and growth factor molecules. β-glucuronidase enzyme activity and estrogen receptor (ER) expression were also assessed. Results: Herein, increased levels of inflammatory molecules (i.e., IL-1β and HIF-1α) and decreased levels of the growth factor IGF-1 were found in the endometrial biopsies of patients presenting dysbiosis compared to eubiotic ones. β-glucuronidase activity and the expression of ERβ were significantly enhanced in patients in the dysbiosis group. Interestingly, Lactobacilli abundance was inversely related to β-glucuronidase activity and to ERβ expression, thus suggesting that an alteration of the estrogen-activating enzyme may affect the expression of ERs as well. Conclusions. Overall, these preliminary data suggested a link between endometrial dysbiosis and estrobolome impairment as possible synergistic contributing factors to women infertility and RIF. Full article
(This article belongs to the Special Issue Molecular Aspects of Female Infertility)
Show Figures

Figure 1

13 pages, 2130 KiB  
Article
Anti-Cancer Potential of Linear β-(1→6)-D-Glucan from Agaricus bisporus on Estrogen Receptor-Positive (ER+) Breast Cancer Cells
by Renata Rutckeviski, Claudia Rita Corso, Aline Simoneti Fonseca, Mariane Londero Rodrigues, Yony Román-Ochoa, Thales Ricardo Cipriani, Luciane Regina Cavalli, Silvia Maria Suter Correia Cadena and Fhernanda Ribeiro Smiderle
Molecules 2024, 29(19), 4781; https://doi.org/10.3390/molecules29194781 - 9 Oct 2024
Cited by 4 | Viewed by 1652
Abstract
Mushroom β-D-glucans can be isolated from several species, including the widely consumed Agaricus bisporus. Besides immunomodulatory responses, some β-D-glucans may exhibit direct antitumoral effects. It was previously observed that a β-(1→6)-D-glucan (BDG16) has indirect cytotoxicity on triple-negative breast cancer cells. In this study, [...] Read more.
Mushroom β-D-glucans can be isolated from several species, including the widely consumed Agaricus bisporus. Besides immunomodulatory responses, some β-D-glucans may exhibit direct antitumoral effects. It was previously observed that a β-(1→6)-D-glucan (BDG16) has indirect cytotoxicity on triple-negative breast cancer cells. In this study, the cytotoxicity of this same glucan was observed on estrogen receptor-positive (ER+) breast cancer cells (MCF-7). Cell viability was determined by multiple methods to assess metabolic activity, lysosomal membrane integrity, and adhesion capacity. Assays to evaluate cell respiration, cell cycle, apoptosis, necroptosis, and oxidative stress were performed to determine the action of BDG16 on MCF-7 cells. A gradual and significant cell viability reduction was observed when the cells were treated with BDG16 (10–1000 µg/mL). This result could be associated with the inhibition of the basal state respiration after incubation with the β-D-glucan. The cells showed a significant arrest in G1 phase population at 1000 µg/mL, with no induction of apoptosis. However, an increase in necrosis and necroptosis at the same concentration was observed. No difference in oxidative stress-related molecules was observed. Altogether, our findings demonstrate that BDG16 directly induces toxicity in MCF-7 cells, primarily by impairing mitochondrial respiration and promoting necroptosis. The specific mechanisms that mediate this action are being investigated. Full article
(This article belongs to the Section Cross-Field Chemistry)
Show Figures

Graphical abstract

21 pages, 758 KiB  
Review
Estrogen Receptors: A New Frontier in Alzheimer’s Disease Therapy
by Giovanni Luca Cipriano, Emanuela Mazzon and Ivan Anchesi
Int. J. Mol. Sci. 2024, 25(16), 9077; https://doi.org/10.3390/ijms25169077 - 21 Aug 2024
Cited by 9 | Viewed by 3804
Abstract
Alzheimer’s disease (AD) is a long-term neurodegenerative condition that leads to the deterioration of neurons and synapses in the cerebral cortex, resulting in severe dementia. AD is significantly more prevalent in postmenopausal women, suggesting a neuroprotective role for estrogen. Estrogen is now known [...] Read more.
Alzheimer’s disease (AD) is a long-term neurodegenerative condition that leads to the deterioration of neurons and synapses in the cerebral cortex, resulting in severe dementia. AD is significantly more prevalent in postmenopausal women, suggesting a neuroprotective role for estrogen. Estrogen is now known to regulate a wide array of physiological functions in the body by interacting with three known estrogen receptors (ERs) and with the β-amyloid precursor protein, a key factor in AD pathogenesis. Recent experimental evidence indicates that new selective ER modulators and phytoestrogens may be promising treatments for AD for their neuroprotective and anti-apoptotic properties. These alternatives may offer fewer side effects compared to traditional hormone therapies, which are associated with risks such as cardiovascular diseases, cancer, and metabolic dysfunctions. This review sheds light on estrogen-based treatments that may help to partially prevent or control the neurodegenerative processes characteristic of AD, paving the way for further investigation in the development of estrogen-based treatments. Full article
Show Figures

Figure 1

13 pages, 5318 KiB  
Article
The GPR30 Receptor Is Involved in IL-6-Induced Metastatic Properties of MCF-7 Luminal Breast Cancer Cells
by Ana Carolina Tirado-Garibay, Betzabe Ruiz-Barcenas, Julia Isabel Rescala-Ponce de León, Alejandra Ochoa-Zarzosa and Joel E. López-Meza
Int. J. Mol. Sci. 2024, 25(16), 8988; https://doi.org/10.3390/ijms25168988 - 18 Aug 2024
Cited by 1 | Viewed by 1918
Abstract
Luminal breast cancer has a high incidence worldwide and poses a severe health threat. Estrogen receptor alpha (ER-α) is activated by 17β-estradiol (E2), and its overexpression promotes cancerous characteristics. Luminal breast cancer is an epithelial type; however, the cytokine IL-6, secreted by cells [...] Read more.
Luminal breast cancer has a high incidence worldwide and poses a severe health threat. Estrogen receptor alpha (ER-α) is activated by 17β-estradiol (E2), and its overexpression promotes cancerous characteristics. Luminal breast cancer is an epithelial type; however, the cytokine IL-6, secreted by cells within the tumor microenvironment, stimulates the epithelial-to-mesenchymal transition (EMT) and promotes metastasis. Also, IL-6 decreases ER-α levels, favoring the tamoxifen (TMX) resistance development. However, genes under E2 regulation continue to be expressed even though this receptor is absent. GPR30 is an alternative E2 receptor present in both luminal and aggressive triple-negative breast cancer and is related to TMX resistance and cancer progression. The roles of GPR30 and IL-6 in metastasis have been individually established; however, their interplay remains unexplored. This study aims to elucidate the role of GPR30 in IL-6-induced metastatic properties of MCF-7 luminal breast cancer cells. Results showed that GPR30 contributes to the E2-induced MCF-7 proliferation because its inhibition with the antagonist G15 and the Pertussis toxin (PTX) reduced it. Besides, GPR30 upregulated vimentin and downregulated E-cadherin levels in MCF-7 and TMX-resistant (R-TMX) cells and is also involved in the IL-6-induced migration, invasion, and TMX resistance in MCF-7 cells. In addition, in MDA-MB-231 triple-negative cells, both basal and IL-6-induced metastatic properties were related to GPR30 activity. These results indicate that the GPR30 receptor regulates the EMT induced by IL-6 in breast cancer cells. Full article
Show Figures

Figure 1

Back to TopTop