Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,715)

Search Parameters:
Keywords = estimating interference

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 774 KiB  
Article
Robust Variable Selection via Bayesian LASSO-Composite Quantile Regression with Empirical Likelihood: A Hybrid Sampling Approach
by Ruisi Nan, Jingwei Wang, Hanfang Li and Youxi Luo
Mathematics 2025, 13(14), 2287; https://doi.org/10.3390/math13142287 - 16 Jul 2025
Abstract
Since the advent of composite quantile regression (CQR), its inherent robustness has established it as a pivotal methodology for high-dimensional data analysis. High-dimensional outlier contamination refers to data scenarios where the number of observed dimensions (p) is much greater than the [...] Read more.
Since the advent of composite quantile regression (CQR), its inherent robustness has established it as a pivotal methodology for high-dimensional data analysis. High-dimensional outlier contamination refers to data scenarios where the number of observed dimensions (p) is much greater than the sample size (n) and there are extreme outliers in the response variables or covariates (e.g., p/n > 0.1). Traditional penalized regression techniques, however, exhibit notable vulnerability to data outliers during high-dimensional variable selection, often leading to biased parameter estimates and compromised resilience. To address this critical limitation, we propose a novel empirical likelihood (EL)-based variable selection framework that integrates a Bayesian LASSO penalty within the composite quantile regression framework. By constructing a hybrid sampling mechanism that incorporates the Expectation–Maximization (EM) algorithm and Metropolis–Hastings (M-H) algorithm within the Gibbs sampling scheme, this approach effectively tackles variable selection in high-dimensional settings with outlier contamination. This innovative design enables simultaneous optimization of regression coefficients and penalty parameters, circumventing the need for ad hoc selection of optimal penalty parameters—a long-standing challenge in conventional LASSO estimation. Moreover, the proposed method imposes no restrictive assumptions on the distribution of random errors in the model. Through Monte Carlo simulations under outlier interference and empirical analysis of two U.S. house price datasets, we demonstrate that the new approach significantly enhances variable selection accuracy, reduces estimation bias for key regression coefficients, and exhibits robust resistance to data outlier contamination. Full article
Show Figures

Figure 1

19 pages, 5627 KiB  
Article
Reliability Modeling of Wind Turbine Gearbox System Considering Failure Correlation Under Shock–Degradation
by Xiaojun Liu, Ziwen Wu, Yiping Yuan, Wenlei Sun and Jianxiong Gao
Sensors 2025, 25(14), 4425; https://doi.org/10.3390/s25144425 - 16 Jul 2025
Abstract
To address traditional methods’ limitations in neglecting the interaction between random shock loads and progressive degradation, as well as failure correlations, this study proposes a dynamic reliability framework integrating Gamma processes, homogeneous Poisson processes (HPP), and mixed Copula functions. The framework develops a [...] Read more.
To address traditional methods’ limitations in neglecting the interaction between random shock loads and progressive degradation, as well as failure correlations, this study proposes a dynamic reliability framework integrating Gamma processes, homogeneous Poisson processes (HPP), and mixed Copula functions. The framework develops a wind turbine gearbox reliability model under shock–degradation coupling while quantifying failure correlations. Gamma processes characterize continuous degradation, with parameters estimated from P-S-N curves. Based on stress–strength interference theory, random shocks within damage thresholds are integrated to form a coupled reliability model. A Gumbel–Clayton–Frank mixed Copula with a multi-layer nested algorithm quantifies failure correlations, with correlation parameters estimated via the RSS principle and genetic algorithms. Validation using a 2 MW gearbox’s planetary gear-stage system covers four scenarios: natural degradation, shock–degradation coupling, and both scenarios with failure correlations. The results show that compared to independent assumptions, the model accelerates reliability decline, increasing failure rates by >37%. Relative to natural degradation-only models, failure rates rise by >60%, validating the model’s effectiveness and alignment with real-world operational conditions. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

20 pages, 5781 KiB  
Article
Performance Evaluation of Uplink Cell-Free Massive MIMO Network Under Weichselberger Rician Fading Channel
by Birhanu Dessie, Javed Shaikh, Georgi Iliev, Maria Nenova, Umar Syed and K. Kiran Kumar
Mathematics 2025, 13(14), 2283; https://doi.org/10.3390/math13142283 - 16 Jul 2025
Abstract
Cell-free massive multiple-input multiple-output (CF M-MIMO) is one of the most promising technologies for future wireless communication such as 5G and beyond fifth-generation (B5G) networks. It is a type of network technology that uses a massive number of distributed antennas to serve a [...] Read more.
Cell-free massive multiple-input multiple-output (CF M-MIMO) is one of the most promising technologies for future wireless communication such as 5G and beyond fifth-generation (B5G) networks. It is a type of network technology that uses a massive number of distributed antennas to serve a large number of users at the same time. It has the ability to provide high spectral efficiency (SE) as well as improved coverage and interference management, compared to traditional cellular networks. However, estimating the channel with high-performance, low-cost computational methods is still a problem. Different algorithms have been developed to address these challenges in channel estimation. One of the high-performance channel estimators is a phase-aware minimum mean square error (MMSE) estimator. This channel estimator has high computational complexity. To address the shortcomings of the existing estimator, this paper proposed an efficient phase-aware element-wise minimum mean square error (PA-EW-MMSE) channel estimator with QR decomposition and a precoding matrix at the user side. The closed form uplink (UL) SE with the phase MMSE and proposed estimators are evaluated using MMSE combining. The energy efficiency and area throughput are also calculated from the SE. The simulation results show that the proposed estimator achieved the best SE, EE, and area throughput performance with a substantial reduction in the complexity of the computation. Full article
Show Figures

Figure 1

18 pages, 12793 KiB  
Article
A Mainlobe Interference Suppression Method for Small Hydrophone Arrays
by Wenbo Wang, Ye Li, Luwen Meng, Tongsheng Shen and Dexin Zhao
J. Mar. Sci. Eng. 2025, 13(7), 1348; https://doi.org/10.3390/jmse13071348 - 16 Jul 2025
Abstract
In order to solve the problem of mainlobe interference in small hydroacoustic array signal processing, this paper proposes a beamforming method based on the high-resolution direction of arrival (DOA) estimation and interference coherence matrix (ICM) reconstruction. The DOA estimation is first performed using [...] Read more.
In order to solve the problem of mainlobe interference in small hydroacoustic array signal processing, this paper proposes a beamforming method based on the high-resolution direction of arrival (DOA) estimation and interference coherence matrix (ICM) reconstruction. The DOA estimation is first performed using an improved sparse iterative covariance-based (SPICE) method, unaffected by the coherent signal, and it can provide highly accurate DOA estimation for multiple targets. The fitted signal energy distribution obtained from the SPICE is then utilized for the reconstruction of the signal coherence matrix. The reconstructed ICM matrix is used to construct a blocking masking matrix and an eigen-projection matrix to suppress the mainlobe interference signal. Compared with existing methods, the method in this paper possesses better mainlobe interference suppression ability. Within the mainlobe interference interval angle of 3° to 13.5° from the signal of interest (SOI) based on eight-element uniform linear arrays, the method in this paper can enhance the signal-to-interference ratio (SIR) by about 15.59 dB on average compared with the interference-free suppression of conventional beamforming (CBF) and outperforms the other interference suppression methods simultaneously. Simulations and experiments demonstrate the effectiveness of this method in mainlobe interference scenarios. Full article
Show Figures

Figure 1

30 pages, 8543 KiB  
Article
Multi-Channel Coupled Variational Bayesian Framework with Structured Sparse Priors for High-Resolution Imaging of Complex Maneuvering Targets
by Xin Wang, Jing Yang and Yong Luo
Remote Sens. 2025, 17(14), 2430; https://doi.org/10.3390/rs17142430 - 13 Jul 2025
Viewed by 113
Abstract
High-resolution ISAR (Inverse Synthetic Aperture Radar) imaging plays a crucial role in dynamic target monitoring for aerospace, maritime, and ground surveillance. Among various remote sensing techniques, ISAR is distinguished by its ability to produce high-resolution images of non-cooperative maneuvering targets. To meet the [...] Read more.
High-resolution ISAR (Inverse Synthetic Aperture Radar) imaging plays a crucial role in dynamic target monitoring for aerospace, maritime, and ground surveillance. Among various remote sensing techniques, ISAR is distinguished by its ability to produce high-resolution images of non-cooperative maneuvering targets. To meet the increasing demands for resolution and robustness, modern ISAR systems are evolving toward wideband and multi-channel architectures. In particular, multi-channel configurations based on large-scale receiving arrays have gained significant attention. In such systems, each receiving element functions as an independent spatial channel, acquiring observations from distinct perspectives. These multi-angle measurements enrich the available echo information and enhance the robustness of target imaging. However, this setup also brings significant challenges, including inter-channel coupling, high-dimensional joint signal modeling, and non-Gaussian, mixed-mode interference, which often degrade image quality and hinder reconstruction performance. To address these issues, this paper proposes a Hybrid Variational Bayesian Multi-Interference (HVB-MI) imaging algorithm based on a hierarchical Bayesian framework. The method jointly models temporal correlations and inter-channel structure, introducing a coupled processing strategy to reduce dimensionality and computational complexity. To handle complex noise environments, a Gaussian mixture model (GMM) is used to represent nonstationary mixed noise. A variational Bayesian inference (VBI) approach is developed for efficient parameter estimation and robust image recovery. Experimental results on both simulated and real-measured data demonstrate that the proposed method achieves significantly improved image resolution and noise robustness compared with existing approaches, particularly under conditions of sparse sampling or strong interference. Quantitative evaluation further shows that under the continuous sparse mode with a 75% sampling rate, the proposed method achieves a significantly higher Laplacian Variance (LV), outperforming PCSBL and CPESBL by 61.7% and 28.9%, respectively and thereby demonstrating its superior ability to preserve fine image details. Full article
Show Figures

Figure 1

20 pages, 3710 KiB  
Article
An Accurate LiDAR-Inertial SLAM Based on Multi-Category Feature Extraction and Matching
by Nuo Li, Yiqing Yao, Xiaosu Xu, Shuai Zhou and Taihong Yang
Remote Sens. 2025, 17(14), 2425; https://doi.org/10.3390/rs17142425 - 12 Jul 2025
Viewed by 165
Abstract
Light Detection and Ranging(LiDAR)-inertial simultaneous localization and mapping (SLAM) is a critical component in multi-sensor autonomous navigation systems, providing both accurate pose estimation and detailed environmental understanding. Despite its importance, existing optimization-based LiDAR-inertial SLAM methods often face key limitations: unreliable feature extraction, sensitivity [...] Read more.
Light Detection and Ranging(LiDAR)-inertial simultaneous localization and mapping (SLAM) is a critical component in multi-sensor autonomous navigation systems, providing both accurate pose estimation and detailed environmental understanding. Despite its importance, existing optimization-based LiDAR-inertial SLAM methods often face key limitations: unreliable feature extraction, sensitivity to noise and sparsity, and the inclusion of redundant or low-quality feature correspondences. These weaknesses hinder their performance in complex or dynamic environments and fail to meet the reliability requirements of autonomous systems. To overcome these challenges, we propose a novel and accurate LiDAR-inertial SLAM framework with three major contributions. First, we employ a robust multi-category feature extraction method based on principal component analysis (PCA), which effectively filters out noisy and weakly structured points, ensuring stable feature representation. Second, to suppress outlier correspondences and enhance pose estimation reliability, we introduce a coarse-to-fine two-stage feature correspondence selection strategy that evaluates geometric consistency and structural contribution. Third, we develop an adaptive weighted pose estimation scheme that considers both distance and directional consistency, improving the robustness of feature matching under varying scene conditions. These components are jointly optimized within a sliding-window-based factor graph, integrating LiDAR feature factors, IMU pre-integration, and loop closure constraints. Extensive experiments on public datasets (KITTI, M2DGR) and a custom-collected dataset validate the proposed method’s effectiveness. Results show that our system consistently outperforms state-of-the-art approaches in accuracy and robustness, particularly in scenes with sparse structure, motion distortion, and dynamic interference, demonstrating its suitability for reliable real-world deployment. Full article
(This article belongs to the Special Issue LiDAR Technology for Autonomous Navigation and Mapping)
Show Figures

Figure 1

22 pages, 1724 KiB  
Article
Analysis of Surface EMG Parameters in the Overhead Deep Squat Performance
by Dariusz Komorowski and Barbara Mika
Appl. Sci. 2025, 15(14), 7749; https://doi.org/10.3390/app15147749 - 10 Jul 2025
Viewed by 164
Abstract
Background and Objective: This study aimed to examine the possibility of using surface electromyography (sEMG) to aid in assessing the correctness of overhead deep squat performance. Electromyography signals were recorded for 20 athletes from the lower (rectus femoris (RF), vastus medialis (VM), biceps [...] Read more.
Background and Objective: This study aimed to examine the possibility of using surface electromyography (sEMG) to aid in assessing the correctness of overhead deep squat performance. Electromyography signals were recorded for 20 athletes from the lower (rectus femoris (RF), vastus medialis (VM), biceps femoris (BF), and gluteus (GM)) and upper (deltoid (D), latissimus dorsi (L)) muscles. The sEMG signals were categorized into three groups based on physiotherapists’ evaluations of deep squat correctness. Methods: The raw sEMG signals were filtering at 10–250 Hz, and then the mean frequency, median frequency, and kurtosis were calculated. Next, the maximum excitation of the muscles expressed in percentage of maximum voluntary contraction (%MVC) and co-activation index (CAI) were estimated. To determine the muscle excitation level, the pulse interference filter and variance analysis of the sEMG signal derivative were applied. Next, analysis of variance (ANOVA) tests, that is, nonparametric Kruskal–Wallis and post hoc tests, were performed. Results: The parameter that most clearly differentiated the groups considered turned out to be %MVC. The statistically significant difference with a large effect size in the excitation of RF & GM (p = 0.0011) and VM & GM (p = 0.0002) in group 3, where the correctness of deep squat execution was the highest and ranged from 85% to 92%, was pointed out. With the decrease in the correctness of deep squat performance, an additional statistically significant difference appeared in the excitation of RF & BF and VM & BF for both groups 2 and 1, which was not present in group 3. However, in group 2, with the correctness of the deep squat execution at 62–77%, the statistically significant differences in muscle excitation found in group 3 were preserved, in contrast to group 1, with the lowest 23–54% correctness of the deep squat execution, where the statistical significance of these differences was not confirmed. Conclusions: The results indicate that sEMG can differentiate muscle activity and provide additional information for physiotherapists when assessing the correctness of deep squat performance. The proposed analysis can be used to evaluate the correctness of physical exercises when physiotherapist access is limited. Full article
(This article belongs to the Special Issue Human Biomechanics and EMG Signal Processing)
Show Figures

Figure 1

22 pages, 3432 KiB  
Article
Tracking Accuracy Evaluation of Autonomous Agricultural Tractors via Rear Three-Point Hitch Estimation Using a Hybrid Model of EKF Transformer
by Eun-Kuk Kim, Tae-Ho Han, Jun-Ho Lee, Cheol-Woo Han and Ryu-Gap Lim
Agriculture 2025, 15(14), 1475; https://doi.org/10.3390/agriculture15141475 - 9 Jul 2025
Viewed by 214
Abstract
The objective of this study was to improve measurement accuracy in the evaluation of autonomous agricultural tractor performance by addressing external disturbances, such as sensor installation errors, vibrations, and heading-induced bias that occur during the measurement of the conventional rear three-point hitch (Rear [...] Read more.
The objective of this study was to improve measurement accuracy in the evaluation of autonomous agricultural tractor performance by addressing external disturbances, such as sensor installation errors, vibrations, and heading-induced bias that occur during the measurement of the conventional rear three-point hitch (Rear 3-Point) system. To mitigate these disturbances, the measurement point was relocated to the cab, where external interference is comparatively minimal. However, in compliance with the ISO 12188 standard, the Rear 3-Point system must be used as the reference measurement point. Therefore, its coordinates were indirectly estimated using an extended Kalman filter (EKF) and artificial intelligence (AI)-based techniques. A hybrid model was developed in which a transformer-based AI model was trained using the Rear 3-Point coordinates predicted by EKF as the ground truth. While traditional time-series models, such as LSTM and GRU, show limitations in predicting nonlinear data, the application of an attention mechanism was found to enhance prediction performance by effectively learning temporal dependencies and vibration patterns. The experimental results show that the EKF-based estimation achieved a precision of RMSE 1.6 mm, a maximum error of 12.6 mm, and a maximum standard deviation of 3.9 mm compared to actual measurements. From the perspective of experimental design, the proposed hybrid model was able to predict the trajectory of the autonomous agricultural tractor with significantly reduced external disturbances when compared to the actual measured Rear 3-Point coordinates, while also complying with the ISO 12188 standard. These findings suggest that the proposed approach provides an effective and integrated solution for developing high-precision autonomous agricultural systems. Full article
(This article belongs to the Special Issue Soil-Machine Systems and Its Related Digital Technologies Application)
Show Figures

Figure 1

21 pages, 7528 KiB  
Article
A Fine-Tuning Method via Adaptive Symmetric Fusion and Multi-Graph Aggregation for Human Pose Estimation
by Yinliang Shi, Zhaonian Liu, Bin Jiang, Tianqi Dai and Yuanfeng Lian
Symmetry 2025, 17(7), 1098; https://doi.org/10.3390/sym17071098 - 9 Jul 2025
Viewed by 217
Abstract
Human Pose Estimation (HPE) aims to accurately locate the positions of human key points in images or videos. However, the performance of HPE is often significantly reduced in practical application scenarios due to environmental interference. To address this challenge, we propose a ladder [...] Read more.
Human Pose Estimation (HPE) aims to accurately locate the positions of human key points in images or videos. However, the performance of HPE is often significantly reduced in practical application scenarios due to environmental interference. To address this challenge, we propose a ladder side-tuning method for the Vision Transformer (ViT) pre-trained model based on multi-path feature fusion to improve the accuracy of HPE in highly interfering environments. First, we extract the global features, frequency features and multi-scale spatial features through the ViT pre-trained model, the discrete wavelet convolutional network and the atrous spatial pyramid pooling network (ASPP). By comprehensively capturing the information of the human body and the environment, the ability of the model to analyze local details, textures, and spatial information is enhanced. In order to efficiently fuse these features, we devise an adaptive symmetric feature fusion strategy, which dynamically adjusts the intensity of feature fusion according to the similarity among features to achieve the optimal fusion effect. Finally, a multi-graph feature aggregation method is developed. We construct graph structures of different features and deeply explore the subtle differences among the features based on the dual fusion mechanism of points and edges to ensure the information integrity. The experimental results demonstrate that our method achieves 4.3% and 4.2% improvements in the AP metric on the MS COCO dataset and a custom high-interference dataset, respectively, compared with the HRNet. This highlights its superiority for human pose estimation tasks in both general and interfering environments. Full article
(This article belongs to the Special Issue Symmetry and Asymmetry in Computer Vision and Graphics)
Show Figures

Figure 1

16 pages, 1935 KiB  
Article
Adaptive Modulation Tracking for High-Precision Time-Delay Estimation in Multipath HF Channels
by Qiwei Ji and Huabing Wu
Sensors 2025, 25(14), 4246; https://doi.org/10.3390/s25144246 - 8 Jul 2025
Viewed by 193
Abstract
High-frequency (HF) communication is critical for applications such as over-the-horizon positioning and ionospheric detection. However, precise time-delay estimation in complex HF channels faces significant challenges from multipath fading, Doppler shifts, and noise. This paper proposes a Modulation Signal-based Adaptive Time-Delay Estimation (MATE) algorithm, [...] Read more.
High-frequency (HF) communication is critical for applications such as over-the-horizon positioning and ionospheric detection. However, precise time-delay estimation in complex HF channels faces significant challenges from multipath fading, Doppler shifts, and noise. This paper proposes a Modulation Signal-based Adaptive Time-Delay Estimation (MATE) algorithm, which effectively decouples carrier and modulation signals and integrates phase-locked loop (PLL) and delay-locked loop (DLL) techniques. By leveraging the autocorrelation properties of 8PSK (Eight-Phase Shift Keying) signals, MATE compensates for carrier frequency deviations and mitigates multipath interference. Simulation results based on the Watterson channel model demonstrate that MATE achieves an average time-delay estimation error of approximately 0.01 ms with a standard deviation of approximately 0.01 ms, representing a 94.12% reduction in mean error and a 96.43% reduction in standard deviation compared to the traditional Generalized Cross-Correlation (GCC) method. Validation with actual measurement data further confirms the robustness of MATE against channel variations. MATE offers a high-precision, low-complexity solution for HF time-delay estimation, significantly benefiting applications in HF communication systems. This advancement is particularly valuable for enhancing the accuracy and reliability of time-of-arrival (TOA) detection in HF-based sensor networks and remote sensing systems. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

16 pages, 1616 KiB  
Article
Estimation of Ship-to-Ship Link Persistence in Maritime Autonomous Surface Ship Communication Scenarios
by Shuaiheng Huai, Xiaoyu Du and Qing Hu
Electronics 2025, 14(14), 2742; https://doi.org/10.3390/electronics14142742 - 8 Jul 2025
Viewed by 166
Abstract
Maritime Autonomous Surface Ships (MASSs) are expected to become vital participants in future maritime commerce and ocean development activities. This paper investigates a channel capacity-based scheme for estimating the persistence of ship-to-ship communication links in MASS communication scenarios. Specifically, this study presents a [...] Read more.
Maritime Autonomous Surface Ships (MASSs) are expected to become vital participants in future maritime commerce and ocean development activities. This paper investigates a channel capacity-based scheme for estimating the persistence of ship-to-ship communication links in MASS communication scenarios. Specifically, this study presents a relative motion model for nodes within the network and estimates link persistence based on the dynamic characteristics of the links. Additionally, transmission modes tailored to maritime communication scenarios are proposed to optimize link capacity and reduce interference. Simulation results demonstrate that the proposed method can accurately estimate the duration and capacity of the links, thereby achieving higher network capacity. When used as a metric for routing protocols, the proposed link-persistence measure outperforms traditional metrics in terms of packet loss ratio, end-to-end delay, and throughput. Comparisons with other mobility models show that the proposed mobility model offers greater accuracy and reliability in describing the relative mobility of nodes. Full article
(This article belongs to the Special Issue Autonomous and Connected Vehicles)
Show Figures

Figure 1

24 pages, 3241 KiB  
Article
An Advanced Indoor Localization Method Based on xLSTM and Residual Multimodal Fusion of UWB/IMU Data
by Haoyang Wang, Jiaxing He and Lizhen Cui
Electronics 2025, 14(13), 2730; https://doi.org/10.3390/electronics14132730 - 7 Jul 2025
Viewed by 203
Abstract
To address the limitations of single-modality UWB/IMU systems in complex indoor environments, this study proposes a multimodal fusion localization method based on xLSTM. After extracting features from UWB and IMU data, the xLSTM network enables deep temporal feature learning. A three-stage residual fusion [...] Read more.
To address the limitations of single-modality UWB/IMU systems in complex indoor environments, this study proposes a multimodal fusion localization method based on xLSTM. After extracting features from UWB and IMU data, the xLSTM network enables deep temporal feature learning. A three-stage residual fusion module is introduced to enhance cross-modal complementarity, while a multi-head attention mechanism dynamically adjusts the sensor weights. The end-to-end trained network effectively constructs nonlinear multimodal mappings for two-dimensional position estimation under both static and dynamic non-line-of-sight (NLOS) conditions with human-induced interference. Experimental results demonstrate that the localization errors reach 0.181 m under static NLOS and 0.187 m under dynamic NLOS, substantially outperforming traditional filtering-based approaches. The proposed deep fusion framework significantly improves localization reliability under occlusion and offers an innovative solution for high-precision indoor positioning. Full article
Show Figures

Figure 1

25 pages, 34645 KiB  
Article
DFN-YOLO: Detecting Narrowband Signals in Broadband Spectrum
by Kun Jiang, Kexiao Peng, Yuan Feng, Xia Guo and Zuping Tang
Sensors 2025, 25(13), 4206; https://doi.org/10.3390/s25134206 - 5 Jul 2025
Viewed by 224
Abstract
With the rapid development of wireless communication technologies and the increasing demand for efficient spectrum utilization, broadband spectrum sensing has become critical in both civilian and military fields. Detecting narrowband signals under broadband environments, especially under low-signal-to-noise-ratio (SNR) conditions, poses significant challenges due [...] Read more.
With the rapid development of wireless communication technologies and the increasing demand for efficient spectrum utilization, broadband spectrum sensing has become critical in both civilian and military fields. Detecting narrowband signals under broadband environments, especially under low-signal-to-noise-ratio (SNR) conditions, poses significant challenges due to the complexity of time–frequency features and noise interference. To this end, this study presents a signal detection model named deformable feature-enhanced network–You Only Look Once (DFN-YOLO), specifically designed for blind signal detection in broadband scenarios. The DFN-YOLO model incorporates a deformable channel feature fusion network (DCFFN), replacing the concatenate-to-fusion (C2f) module to enhance the extraction and integration of channel features. The deformable attention mechanism embedded in DCFFN adaptively focuses on critical signal regions, while the loss function is optimized to the focal scaled intersection over union (Focal_SIoU), improving detection accuracy under low-SNR conditions. To support this task, a signal detection dataset is constructed and utilized to evaluate the performance of DFN-YOLO. The experimental results for broadband time–frequency spectrograms demonstrate that DFN-YOLO achieves a mean average precision (mAP50–95) of 0.850, averaged over IoU thresholds ranging from 0.50 to 0.95 with a step of 0.05, significantly outperforming mainstream object detection models such as YOLOv8, which serves as the benchmark baseline in this study. Additionally, the model maintains an average time estimation error within 5.55×105 s and provides preliminary center frequency estimation in the broadband spectrum. These findings underscore the strong potential of DFN-YOLO for blind signal detection in broadband environments, with significant implications for both civilian and military applications. Full article
(This article belongs to the Special Issue Emerging Trends in Cybersecurity for Wireless Communication and IoT)
Show Figures

Figure 1

22 pages, 1405 KiB  
Review
Knee Osteoarthritis Diagnosis: Future and Perspectives
by Henri Favreau, Kirsley Chennen, Sylvain Feruglio, Elise Perennes, Nicolas Anton, Thierry Vandamme, Nadia Jessel, Olivier Poch and Guillaume Conzatti
Biomedicines 2025, 13(7), 1644; https://doi.org/10.3390/biomedicines13071644 - 4 Jul 2025
Viewed by 432
Abstract
The risk of developing symptomatic knee osteoarthritis (KOA) during a lifetime, i.e., pain, aching, or stiffness in a joint associated with radiographic KOA, was estimated in 2008 to be around 40% in men and 47% in women. The clinical and scientific communities lack [...] Read more.
The risk of developing symptomatic knee osteoarthritis (KOA) during a lifetime, i.e., pain, aching, or stiffness in a joint associated with radiographic KOA, was estimated in 2008 to be around 40% in men and 47% in women. The clinical and scientific communities lack an efficient diagnostic method to effectively monitor, evaluate, and predict the evolution of KOA before and during the therapeutic protocol. In this review, we summarize the main methods that are used or seem promising for the diagnosis of osteoarthritis, with a specific focus on non- or low-invasive methods. As standard diagnostic tools, arthroscopy, magnetic resonance imaging (MRI), and X-ray radiography provide spatial and direct visualization of the joint. However, discrepancies between findings and patient feelings often occur, indicating a lack of correlation between current imaging methods and clinical symptoms. Alternative strategies are in development, including the analysis of biochemical markers or acoustic emission recordings. These methods have undergone deep development and propose, with non- or minimally invasive procedures, to obtain data on tissue condition. However, they present some drawbacks, such as possible interference or the lack of direct visualization of the tissue. Other original methods show strong potential in the field of KOA monitoring, such as electrical bioimpedance or near-infrared spectrometry. These methods could permit us to obtain cheap, portable, and non-invasive data on joint tissue health, while they still need strong implementation to be validated. Also, the use of Artificial Intelligence (AI) in the diagnosis seems essential to effectively develop and validate predictive models for KOA evolution, provided that a large and robust database is available. This would offer a powerful tool for researchers and clinicians to improve therapeutic strategies while permitting an anticipated adaptation of the clinical protocols, moving toward reliable and personalized medicine. Full article
Show Figures

Figure 1

22 pages, 2789 KiB  
Article
Longitudinal Tire Force Estimation Method for 4WIDEV Based on Data-Driven Modified Recursive Subspace Identification Algorithm
by Xiaoyu Wang, Te Chen and Jiankang Lu
Algorithms 2025, 18(7), 409; https://doi.org/10.3390/a18070409 - 3 Jul 2025
Viewed by 253
Abstract
For the longitudinal tire force estimation problem of four-wheel independent drive electric vehicles (4WIDEVs), traditional model-based observers have limitations such as high modeling complexity and strong parameter sensitivity, while pure data-driven methods are susceptible to noise interference and have insufficient generalization ability. Therefore, [...] Read more.
For the longitudinal tire force estimation problem of four-wheel independent drive electric vehicles (4WIDEVs), traditional model-based observers have limitations such as high modeling complexity and strong parameter sensitivity, while pure data-driven methods are susceptible to noise interference and have insufficient generalization ability. Therefore, this study proposes a joint estimation framework that integrates data-driven and modified recursive subspace identification algorithms. Firstly, based on the electromechanical coupling mechanism, an electric drive wheel dynamics model (EDWM) is constructed, and multidimensional driving data is collected through a chassis dynamometer experimental platform. Secondly, an improved proportional integral observer (PIO) is designed to decouple the longitudinal force from the system input into a state variable, and a subspace identification recursive algorithm based on correction term with forgetting factor (CFF-SIR) is introduced to suppress the residual influence of historical data and enhance the ability to track time-varying parameters. The simulation and experimental results show that under complex working conditions without noise and interference, with noise influence (5% white noise), and with interference (5% irregular signal), the mean and mean square error of longitudinal force estimation under the CFF-SIR algorithm are significantly reduced compared to the correction-based subspace identification recursive (C-SIR) algorithm, and the comprehensive estimation accuracy is improved by 8.37%. It can provide a high-precision and highly adaptive longitudinal force estimation solution for vehicle dynamics control and intelligent driving systems. Full article
Show Figures

Figure 1

Back to TopTop