Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (123,787)

Search Parameters:
Keywords = estimate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 449 KiB  
Article
New Estimates of the q-Hermite–Hadamard Inequalities via Strong Convexity
by Chanokgan Sahatsathatsana and Pongsakorn Yotkaew
Axioms 2025, 14(8), 576; https://doi.org/10.3390/axioms14080576 (registering DOI) - 25 Jul 2025
Abstract
A refined version of the q-Hermite–Hadamard inequalities for strongly convex functions is introduced in this paper, utilizing both left and right q-integrals. Tighter bounds and more accurate estimates are derived by incorporating strong convexity. New q-trapezoidal and q-midpoint estimates [...] Read more.
A refined version of the q-Hermite–Hadamard inequalities for strongly convex functions is introduced in this paper, utilizing both left and right q-integrals. Tighter bounds and more accurate estimates are derived by incorporating strong convexity. New q-trapezoidal and q-midpoint estimates are also presented to enhance the precision of the results. The improvements in the results compared to previous work are demonstrated through numerical examples in terms of precision and tighter bounds, and the advantages of using strongly convex functions are showcased. Full article
(This article belongs to the Section Mathematical Analysis)
53 pages, 876 KiB  
Review
Optical Sensor-Based Approaches in Obesity Detection: A Literature Review of Gait Analysis, Pose Estimation, and Human Voxel Modeling
by Sabrine Dhaouadi, Mohamed Moncef Ben Khelifa, Ala Balti and Pascale Duché
Sensors 2025, 25(15), 4612; https://doi.org/10.3390/s25154612 (registering DOI) - 25 Jul 2025
Abstract
Optical sensor technologies are reshaping obesity detection by enabling non-invasive, dynamic analysis of biomechanical and morphological biomarkers. This review synthesizes recent advances in three key areas: optical gait analysis, vision-based pose estimation, and depth-sensing voxel modeling. Gait analysis leverages optical sensor arrays and [...] Read more.
Optical sensor technologies are reshaping obesity detection by enabling non-invasive, dynamic analysis of biomechanical and morphological biomarkers. This review synthesizes recent advances in three key areas: optical gait analysis, vision-based pose estimation, and depth-sensing voxel modeling. Gait analysis leverages optical sensor arrays and video systems to identify obesity-specific deviations, such as reduced stride length and asymmetric movement patterns. Pose estimation algorithms—including markerless frameworks like OpenPose and MediaPipe—track kinematic patterns indicative of postural imbalance and altered locomotor control. Human voxel modeling reconstructs 3D body composition metrics, such as waist–hip ratio, through infrared-depth sensing, offering precise, contactless anthropometry. Despite their potential, challenges persist in sensor robustness under uncontrolled environments, algorithmic biases in diverse populations, and scalability for widespread deployment in existing health workflows. Emerging solutions such as federated learning and edge computing aim to address these limitations by enabling multimodal data harmonization and portable, real-time analytics. Future priorities involve standardizing validation protocols to ensure reproducibility, optimizing cost-efficacy for scalable deployment, and integrating optical systems with wearable technologies for holistic health monitoring. By shifting obesity diagnostics from static metrics to dynamic, multidimensional profiling, optical sensing paves the way for scalable public health interventions and personalized care strategies. Full article
18 pages, 3750 KiB  
Article
Design and Analysis of an Electro-Hydraulic Servo Loading System for a Pavement Mechanical Properties Test Device
by Yufeng Wu and Hongbin Tang
Appl. Sci. 2025, 15(15), 8277; https://doi.org/10.3390/app15158277 (registering DOI) - 25 Jul 2025
Abstract
An electro-hydraulic servo loading system for a pavement mechanical properties test device was designed. The simulation analysis and test results showed that the PID control met the design requirements, but the output’s maximum error did not. Therefore, a fast terminal sliding mode control [...] Read more.
An electro-hydraulic servo loading system for a pavement mechanical properties test device was designed. The simulation analysis and test results showed that the PID control met the design requirements, but the output’s maximum error did not. Therefore, a fast terminal sliding mode control strategy with an extended state observer (ESO) was proposed. A tracking differentiator was constructed to obtain smooth differential signals from the input signals. The order of the system was reduced by considering the third and higher orders of the system as the total disturbance, and the states and the total disturbance of the system were estimated using the ESO. The fast terminal sliding mode control achieved fast convergence of the system within a limited time. The simulation results showed that the proposed control strategy improved the system accuracy and anti-disturbance ability, and system control performance was optimized. Full article
Show Figures

Figure 1

20 pages, 324 KiB  
Article
Role of Questionnaires in the Assessment of Severity and the Outcomes of Minimally Invasive Surgery for Snoring and Obstructive Sleep Apnea
by Natalia Olszewska, Ewa Olszewska and Cuneyt M. Alper
J. Clin. Med. 2025, 14(15), 5268; https://doi.org/10.3390/jcm14155268 (registering DOI) - 25 Jul 2025
Abstract
Background/Objectives: Sleep questionnaires are used as screening tools to estimate the presence and severity of snoring and obstructive sleep apnea (OSA). The aim was to prospectively assess the diagnostic and prognostic accuracy of sleep questionnaires (Epworth Sleepiness Scale (ESS), Visual Analog Scale [...] Read more.
Background/Objectives: Sleep questionnaires are used as screening tools to estimate the presence and severity of snoring and obstructive sleep apnea (OSA). The aim was to prospectively assess the diagnostic and prognostic accuracy of sleep questionnaires (Epworth Sleepiness Scale (ESS), Visual Analog Scale for snoring loudness (VAS), Short Form Health Survey 36 (SF-36), STOP-Bang, and Pittsburgh Quality of Sleep (PSQI)) in subjects who underwent minimally invasive surgery for snoring and OSA. Methods: A total of 49 participants with primary snoring and/or OSA underwent minimally invasive surgery. Pre- and post-operative sleep study parameters and sleep questionnaire results were analyzed to assess the correlation between the subjective and objective parameters before and after surgery and changes with the surgery. Results: Pre-operative sleep study parameters demonstrated: an apnea–hypopnea index (AHI) of 16.71 ± 9.31, oxygen desaturation index (ODI) of 14.43 ± 9.31, and mean percentage of snoring time (ST) of 17.26 ± 14.5%, ESS of 9.04 ± 5.76, VAS of 8.18 ± 1.93, SF-36 of 42.12 ± 22.86, STOP-Bang of 3.65 ± 1.13, and PSQI of 6.61 ± 3.23. Post-operative sleep study parameters demonstrated an AHI of 10.39 ± 7.86, ODI of 10.17 ± 7.78, and ST of 12.55 ± 13.36%, ESS of 6.61 ± 4.55, VAS of 4.13 ± 2.87, SF-36 of 42.45 ± 24.70, STOP-Bang of 2.49 ± 1.42, and PSQI of 4.98 ± 2.13. Changes with surgery for sleep parameters demonstrated a decrease in AHI: 37.83%, ODI: 29.52%, ST: 27.3%, ESS: 26.86%, VAS: 49.50%, PSQI: 24.69%, and STOP-Bang: 31.84%. The score of SF-36 was not significant. Conclusions: Sleep questionnaires are an essential component of the workup for patients with snoring and OSA. There are differences in their ability to identify the presence and quantify the severity of snoring and OSA when compared to objective sleep parameters. Their sensitivity in assessing changes with treatment also varies. Full article
(This article belongs to the Special Issue Obstructive Sleep Apnea: Latest Advances and Prospects)
21 pages, 6351 KiB  
Article
Derivation and Application of Allometric Equations to Quantify the Net Primary Productivity (NPP) of the Salix pierotii Miq. Community as a Representative Riparian Vegetation Type
by Bong Soon Lim, Jieun Seok, Seung Jin Joo, Jeong Cheol Lim and Chang Seok Lee
Forests 2025, 16(8), 1225; https://doi.org/10.3390/f16081225 (registering DOI) - 25 Jul 2025
Abstract
International efforts are underway to implement carbon neutrality policies in rapidly changing climate conditions. This situation has strongly demanded the discovery of novel carbon sinks. The Salix genus has attracted attention as a promising carbon sink owing to its rapid growth and efficient [...] Read more.
International efforts are underway to implement carbon neutrality policies in rapidly changing climate conditions. This situation has strongly demanded the discovery of novel carbon sinks. The Salix genus has attracted attention as a promising carbon sink owing to its rapid growth and efficient use as a biofuel in short-rotation cultivation. The present study aims to derive an allometric equation and conduct stem analysis as fundamental tools for estimating net primary productivity (NPP) in Salix pierotii Miq. stand, which is increasingly acknowledged as an important emerging carbon sink. The allometric equations derived showed a high explanatory rate and fitness (R2 ranged from 0.74 to 0.99). The allometric equations between DBH and stem volume and biomass derived in the process of stem analysis also showed a high explanatory rate and fitness (R2 ranged from 0.87 to 0.94). The NPPs calculated based on the allometric equation derived and stem analysis were 11.87 tonC∙ha−1∙yr−1 and 15.70 tonC∙ha−1∙yr−1, respectively. These results show that the S. pierotii community, recognized as the representative riparian vegetation, could play an important role as a carbon sink. In this context, an assessment of the carbon absorption capacity of riparian vegetation such as willow communities could contribute significantly to achieving carbon neutrality goals. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
28 pages, 42032 KiB  
Article
A Building Crack Detection UAV System Based on Deep Learning and Linear Active Disturbance Rejection Control Algorithm
by Lei Zhang, Lili Gong, Le Wang, Zhou Wang and Song Yan
Electronics 2025, 14(15), 2975; https://doi.org/10.3390/electronics14152975 (registering DOI) - 25 Jul 2025
Abstract
This paper presents a UAV-based building crack real-time detection system that integrates an improved YOLOv8 algorithm with Linear Active Disturbance Rejection Control (LADRC). The system is equipped with a high-resolution camera and sensors to capture high-definition images and height information. First, a trajectory [...] Read more.
This paper presents a UAV-based building crack real-time detection system that integrates an improved YOLOv8 algorithm with Linear Active Disturbance Rejection Control (LADRC). The system is equipped with a high-resolution camera and sensors to capture high-definition images and height information. First, a trajectory tracking controller based on LADRC was designed for the UAV, which uses a linear extended state observer to estimate and compensate for unknown disturbances such as wind interference, significantly enhancing the flight stability of the UAV in complex environments and ensuring stable crack image acquisition. Secondly, we integrated Convolutional Block Attention Module (CBAM) into the YOLOv8 model, dynamically enhancing crack feature extraction through both channel and spatial attention mechanisms, thereby improving recognition robustness in complex backgrounds. Lastly, a skeleton extraction algorithm was applied for the secondary processing of the segmented cracks, enabling precise calculations of crack length and average width and outputting the results to a user interface for visualization. The experimental results demonstrate that the system successfully identifies and extracts crack regions, accurately calculates crack dimensions, and enables real-time monitoring through high-speed data transmission to the ground station. Compared to traditional manual inspection methods, the system significantly improves detection efficiency while maintaining high accuracy and reliability. Full article
23 pages, 2428 KiB  
Article
Scheduling Control Considering Model Inconsistency of Membrane-Wing Aircraft
by Yanxuan Wu, Yifan Fu, Zhengjie Wang, Yang Yu and Hao Li
Processes 2025, 13(8), 2367; https://doi.org/10.3390/pr13082367 - 25 Jul 2025
Abstract
Inconsistency in the structural strengths of a membrane wing under positive and negative loads has undesirable impacts on the aeroelastic deflections of the wing, which results in more significant flight control system modeling errors and worsens the performance of the aircraft. In this [...] Read more.
Inconsistency in the structural strengths of a membrane wing under positive and negative loads has undesirable impacts on the aeroelastic deflections of the wing, which results in more significant flight control system modeling errors and worsens the performance of the aircraft. In this paper, an integrated dynamic model is derived for a membrane-wing aircraft based on the structural dynamics equation of the membrane wing and the flight dynamics equation of the traditional fixed wing. Based on state feedback control theory, an autopilot system is designed to unify the flight and control properties of different flight and wing deformation statuses. The system uses models of different operating regions to estimate the dynamic response of the vehicle and compares the estimation results with the sensor signals. Based on the compared results, the autopilot can identify the overall flight and select the correct operating region for the control system. By switching to the operating region with the minimum modeling error, the autopilot system maintains good flight performance while flying in turbulence. According to the simulation results, compared with traditional rigid aircraft autopilots, the proposed autopilot can reduce the absolute maximum attack angles by nearly 27% and the absolute maximum wingtip twist angles by nearly 25% under gust conditions. This enhanced robustness and stability performance demonstrates the autopilot’s significant potential for practical deployment in micro-aerial vehicles, particularly in applications demanding reliable operation under turbulent conditions, such as military surveillance, environmental monitoring, precision agriculture, or infrastructure inspection. Full article
(This article belongs to the Special Issue Design and Analysis of Adaptive Identification and Control)
26 pages, 5326 KiB  
Article
Spatiotemporal Dengue Forecasting for Sustainable Public Health in Bandung, Indonesia: A Comparative Study of Classical, Machine Learning, and Bayesian Models
by I Gede Nyoman Mindra Jaya, Yudhie Andriyana, Bertho Tantular, Sinta Septi Pangastuti and Farah Kristiani
Sustainability 2025, 17(15), 6777; https://doi.org/10.3390/su17156777 - 25 Jul 2025
Abstract
Accurate dengue forecasting is essential for sustainable public health planning, especially in tropical regions where the disease remains a persistent threat. This study evaluates the predictive performance of seven modeling approaches—Seasonal Autoregressive Integrated Moving Average (SARIMA), Extreme Gradient Boosting (XGBoost), Recurrent Neural Network [...] Read more.
Accurate dengue forecasting is essential for sustainable public health planning, especially in tropical regions where the disease remains a persistent threat. This study evaluates the predictive performance of seven modeling approaches—Seasonal Autoregressive Integrated Moving Average (SARIMA), Extreme Gradient Boosting (XGBoost), Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Bidirectional LSTM (BiLSTM), Convolutional LSTM (CNN–LSTM), and a Bayesian spatiotemporal model—using monthly dengue incidence data from 2009 to 2023 in Bandung City, Indonesia. Model performance was assessed using MAE, sMAPE, RMSE, and Pearson’s correlation (R). Among all models, the Bayesian spatiotemporal model achieved the best performance, with the lowest MAE (5.543), sMAPE (62.137), and RMSE (7.482), and the highest R (0.723). While SARIMA and XGBoost showed signs of overfitting, the Bayesian model not only delivered more accurate forecasts but also produced spatial risk estimates and identified high-risk hotspots via exceedance probabilities. These features make it particularly valuable for developing early warning systems and guiding targeted public health interventions, supporting the broader goals of sustainable disease management. Full article
(This article belongs to the Section Health, Well-Being and Sustainability)
Show Figures

Figure 1

19 pages, 1803 KiB  
Article
Sustainable Crop Farm Productivity: Weather Effects, Technology Adoption, and Farm Management
by Sun Ling Wang, Ryan Olver and Daniel Bonin
Sustainability 2025, 17(15), 6778; https://doi.org/10.3390/su17156778 - 25 Jul 2025
Abstract
The main purpose of this study is to understand the potential determinants of sustainable field crop farm productivity. This paper considers a multi-input, multi-output production technology to estimate the effects of aridity on farm-level productivity using a stochastic input distance function. By isolating [...] Read more.
The main purpose of this study is to understand the potential determinants of sustainable field crop farm productivity. This paper considers a multi-input, multi-output production technology to estimate the effects of aridity on farm-level productivity using a stochastic input distance function. By isolating the respective weather components of agricultural total factor productivity (TFP), we can better assess the impact on productivity of adopting various technologies and farm practices that might otherwise be masked by changing climate conditions or weather shocks. We make use of data from Phase 3 of the United States Department of Agriculture (USDA) Agricultural Resource Management Survey (ARMS) between 2006 and 2020. We supplement this estimation using field crop farm productivity determinants, including technology adoption and farm practice variables derived from the ARMS Phase 2 data. We identify several factors that affect farm productivity, including many practices that help farmers make more sustainable use of natural resources. The results show that adopting yield monitoring technology, fallowing in previous years, adding or improving tile drainage, and contour farming each improved farm productivity. In particular, during our study period, conservation tillage increased by over 300% across states on average. It is estimated to increase productivity level by approximately 3% for those adopting this practice. Critically, accounting for local weather effects increased the estimated productivity of nearly all farm practices and increased the statistical significance of several variables, indicating that other TFP studies that did not account for climate or weather effects may have underestimated the technical efficiency of farms that adopted these conservation practices. However, the results also show the impacts can be heterogeneous, with effects varying between farms located in the U.S. northern or southern regions. Full article
(This article belongs to the Special Issue Sustainable Agricultural and Rural Development)
Show Figures

Figure 1

24 pages, 10881 KiB  
Article
Dynamics of Water Quality in the Mirim–Patos–Mangueira Coastal Lagoon System with Sentinel-3 OLCI Data
by Paula Andrea Contreras Rojas, Felipe de Lucia Lobo, Wesley J. Moses, Gilberto Loguercio Collares and Lino Sander de Carvalho
Geomatics 2025, 5(3), 36; https://doi.org/10.3390/geomatics5030036 - 25 Jul 2025
Abstract
The Mirim–Patos–Mangueira coastal lagoon system provides a wide range of ecosystem services. However, its vast territorial extent and the political boundaries that divide it hinder integrated assessments, especially during extreme hydrological events. This study is divided into two parts. First, we assessed the [...] Read more.
The Mirim–Patos–Mangueira coastal lagoon system provides a wide range of ecosystem services. However, its vast territorial extent and the political boundaries that divide it hinder integrated assessments, especially during extreme hydrological events. This study is divided into two parts. First, we assessed the spatial and temporal patterns of water quality in the lagoon system using Sentinel-3/OLCI satellite imagery. Atmospheric correction was performed using ACOLITE, followed by spectral grouping and classification into optical water types (OWTs) using the Sentinel Applications Platform (SNAP). To explore the behavior of water quality parameters across OWTs, Chlorophyll-a and turbidity were estimated using semi-empirical algorithms specifically designed for complex inland and coastal waters. Results showed a gradual increase in mean turbidity from OWT 2 to OWT 6 and a rise in chlorophyll-a from OWT 2 to OWT 4, with a decline at OWT 6. These OWTs correspond, in general terms, to distinct water masses: OWT 2 to clearer waters, OWT 3 and 4 to intermediate/mixed conditions, and OWT 6 to turbid environments. In the second part, we analyzed the response of the Patos Lagoon to flooding in Rio Grande do Sul during an extreme weather event in May 2024. Satellite-derived turbidity estimates were compared with in situ measurements, revealing a systematic underestimation, with a negative bias of 2.6%, a mean relative error of 78%, and a correlation coefficient of 0.85. The findings highlight the utility of OWT classification for tracking changes in water quality and support the use of remote sensing tools to improve environmental monitoring in data-scarce regions, particularly under extreme hydrometeorological conditions. Full article
(This article belongs to the Special Issue Advances in Ocean Mapping and Hydrospatial Applications)
Show Figures

Figure 1

19 pages, 3862 KiB  
Article
Estimation of Total Hemoglobin (SpHb) from Facial Videos Using 3D Convolutional Neural Network-Based Regression
by Ufuk Bal, Faruk Enes Oguz, Kubilay Muhammed Sunnetci, Ahmet Alkan, Alkan Bal, Ebubekir Akkuş, Halil Erol and Ahmet Çağdaş Seçkin
Biosensors 2025, 15(8), 485; https://doi.org/10.3390/bios15080485 - 25 Jul 2025
Abstract
Hemoglobin plays a critical role in diagnosing various medical conditions, including infections, trauma, hemolytic disorders, and Mediterranean anemia, which is particularly prevalent in Mediterranean populations. Conventional measurement methods require blood sampling and laboratory analysis, which are often time-consuming and impractical during emergency situations [...] Read more.
Hemoglobin plays a critical role in diagnosing various medical conditions, including infections, trauma, hemolytic disorders, and Mediterranean anemia, which is particularly prevalent in Mediterranean populations. Conventional measurement methods require blood sampling and laboratory analysis, which are often time-consuming and impractical during emergency situations with limited medical infrastructure. Although portable oximeters enable non-invasive hemoglobin estimation, they still require physical contact, posing limitations for individuals with circulatory or dermatological conditions. Additionally, reliance on disposable probes increases operational costs. This study presents a non-contact and automated approach for estimating total hemoglobin levels from facial video data using three-dimensional regression models. A dataset was compiled from 279 volunteers, with synchronized acquisition of facial video and hemoglobin values using a commercial pulse oximeter. After preprocessing, the dataset was divided into training, validation, and test subsets. Three 3D convolutional regression models, including 3D CNN, channel attention-enhanced 3D CNN, and residual 3D CNN, were trained, and the most successful model was implemented in a graphical interface. Among these, the residual model achieved the most favorable performance on the test set, yielding an RMSE of 1.06, an MAE of 0.85, and a Pearson correlation coefficient of 0.73. This study offers a novel contribution by enabling contactless hemoglobin estimation from facial video using 3D CNN-based regression techniques. Full article
Show Figures

Figure 1

17 pages, 706 KiB  
Article
Empirical Energy Consumption Estimation and Battery Operation Analysis from Long-Term Monitoring of an Urban Electric Bus Fleet
by Tom Klaproth, Erik Berendes, Thomas Lehmann, Richard Kratzing and Martin Ufert
World Electr. Veh. J. 2025, 16(8), 419; https://doi.org/10.3390/wevj16080419 - 25 Jul 2025
Abstract
Electric buses are key in the strategy towards a greenhouse-gas-neutral fleet. However, their restrictions in terms of range and refueling as well as their increased price point present new challenges for public transport companies. This study aims to address, based on real-world operational [...] Read more.
Electric buses are key in the strategy towards a greenhouse-gas-neutral fleet. However, their restrictions in terms of range and refueling as well as their increased price point present new challenges for public transport companies. This study aims to address, based on real-world operational data, how energy consumption and charging behavior affect battery aging and how operational strategies can be optimized to extend battery life under realistic conditions. This article presents an energy consumption analysis with respect to ambient temperatures and average vehicle speed based exclusively on real-world data of an urban bus fleet, providing a data foundation for range forecasting and infrastructure planning optimized for public transport needs. Additionally, the State of Charge (SOC) window during operation and vehicle idle time as well as the charging power were analyzed in this case study to formulate recommendations towards a more battery-friendly treatment. The central research question is whether battery-friendly operational strategies—such as reduced charging power and lower SOC windows—can realistically be implemented in daily public transport operations. The impact of the recommendations on battery lifetime is estimated using a battery aging model on drive cycles. Finally, the reduction in CO2 emissions compared to diesel buses is estimated. Full article
(This article belongs to the Special Issue Zero Emission Buses for Public Transport)
Show Figures

Figure 1

21 pages, 2704 KiB  
Article
A BIM-Based Integrated Model for Low-Cost Housing Mass Customization in Brazil: Real-Time Variability with Data Control
by Alexander Lopes de Aquino Brasil and Andressa Carmo Pena Martinez
Architecture 2025, 5(3), 54; https://doi.org/10.3390/architecture5030054 - 25 Jul 2025
Abstract
Addressing the growing demand for affordable housing requires innovative solutions that strike a balance between cost efficiency and user-specific needs. Mass customization (MC) presents a promising approach that enables the creation of tailored housing solutions on a scale. In this context, this study [...] Read more.
Addressing the growing demand for affordable housing requires innovative solutions that strike a balance between cost efficiency and user-specific needs. Mass customization (MC) presents a promising approach that enables the creation of tailored housing solutions on a scale. In this context, this study introduces a model for mass customization of affordable single-family housing units in the city of Teresina, PI, Brazil. Our approach integrates algorithmic–parametric modeling and BIM technologies, facilitating the flow of information and enabling informed decision-making throughout the design process. Since the early design stages, the work has assumed that these integrated technologies provide real-time control over design variables and associated construction data. To develop the model, the method proceeded through the following phases: (1) analysis of the context and definition of the design language; (2) definition of the design process; (3) definition of the cost calculation method and estimation of construction time; (4) definition of the computing model based on the specified technologies; and (5) quantitative and qualitative evaluation of the computational model. As a result, this research aims to contribute to the state-of-the-art by formalizing the knowledge generated through the systematic description of the processes involved in this workflow, with a special focus on the Brazilian context, where the issue of social housing is a critical challenge. Full article
(This article belongs to the Special Issue Shaping Architecture with Computation)
Show Figures

Figure 1

23 pages, 1593 KiB  
Article
Natural Ventilation Technique of uNVeF in Urban Residential Unit Through a Case Study
by Ming-Lun Alan Fong and Wai-Kit Chan
Urban Sci. 2025, 9(8), 291; https://doi.org/10.3390/urbansci9080291 - 25 Jul 2025
Abstract
The present study was motivated by the need to enhance indoor air quality and reduce airborne disease transmission in dense urban environments where high-rise residential buildings face challenges in achieving effective natural ventilation. The problem lies in the lack of scalable and convenient [...] Read more.
The present study was motivated by the need to enhance indoor air quality and reduce airborne disease transmission in dense urban environments where high-rise residential buildings face challenges in achieving effective natural ventilation. The problem lies in the lack of scalable and convenient tools to optimize natural ventilation rate, particularly in urban settings with varying building heights. To address this, the scientific technique developed with an innovative metric, the urbanized natural ventilation effectiveness factor (uNVeF), integrates regression analysis of wind direction, velocity, air change rate per hour (ACH), window configurations, and building height to quantify ventilation efficiency. By employing a field measurement methodology, the measurements were conducted across 25 window-opening scenarios in a 13.9 m2 residential unit on the 35/F of a Hong Kong public housing building, supplemented by the Hellman Exponential Law with a site-specific friction coefficient (0.2907, R2 = 0.9232) to estimate the lower floor natural ventilation rate. The results confirm compliance with Hong Kong’s statutory 1.5 ACH requirement (Practice Note for Authorized Persons, Registered Structural Engineers, and Registered Geotechnical Engineers) and achieving a peak ACH at a uNVeF of 0.953 with 75% window opening. The results also revealed that lower floors can maintain 1.5 ACH with adjusted window configurations. Using the Wells–Riley model, the estimation results indicated significant airborne disease infection risk reductions of 96.1% at 35/F and 93.4% at 1/F compared to the 1.5 ACH baseline which demonstrates a strong correlation between ACH, uNVeF and infection risks. The uNVeF framework offers a practical approach to optimize natural ventilation and provides actionable guidelines, together with future research on the scope of validity to refine this technique for residents and developers. The implications in the building industry include setting up sustainable design standards, enhancing public health resilience, supporting policy frameworks for energy-efficient urban planning, and potentially driving innovation in high-rise residential construction and retrofitting globally. Full article
Show Figures

Figure 1

15 pages, 343 KiB  
Article
Perception of Climate Change and Adoption of Cottonseed Cake in Pastoral Systems in the Hauts-Bassins Region of Burkina Faso
by Yacouba Kagambega and Patrice Rélouendé Zidouemba
Reg. Sci. Environ. Econ. 2025, 2(3), 21; https://doi.org/10.3390/rsee2030021 - 25 Jul 2025
Abstract
In the Sahelian context characterized by the increasing scarcity of forage resources, this study investigated how climate change perceptions influence the adoption of cottonseed cake in pastoral and agro-pastoral systems in the Hauts-Bassins region of Burkina Faso. Drawing on the Subjective Expected Utility [...] Read more.
In the Sahelian context characterized by the increasing scarcity of forage resources, this study investigated how climate change perceptions influence the adoption of cottonseed cake in pastoral and agro-pastoral systems in the Hauts-Bassins region of Burkina Faso. Drawing on the Subjective Expected Utility (SEU) theory and using a logit model estimated from survey data collected from 366 livestock farms, the analysis reveals that the perceived degradation of rangelands due to climate change is a key determinant of adoption. Over 40% of surveyed herders believed that climate change is negatively affecting the availability of natural forage. This heightened awareness is significantly associated with a greater likelihood of adopting cottonseed cake as a feed supplementation strategy. This study highlights the crucial role of cognitive factors in shaping adaptation decisions, beyond traditional economic and structural determinants. It underscores the importance of incorporating environmental perceptions into public policies supporting livestock systems and technological innovations in pastoral. Full article
Back to TopTop