Estimation of Total Hemoglobin (SpHb) from Facial Videos Using 3D Convolutional Neural Network-Based Regression
Abstract
1. Introduction
2. Related Works
- Baseline, channel attention-enhanced, and residual 3D CNN based regression models were developed for SpHb detection.
- A unique dataset that can be used for SpHb detection was obtained by collecting 30-s facial video images from 279 volunteers.
- The three different models developed were applied on the test data and the comparative results of the models were presented.
- A user-friendly GUI was developed for the use of trained models.
3. Materials and Methods
3.1. Dataset
3.2. Regression with 3D CNN Methods
- Baseline 3D CNN Model: A compact architecture serving as a performance baseline.
- Channel Attention-Enhanced 3D CNN Model: A deeper network augmented with channel attention modules, which emphasize Hb-related visual cues, such as subtle skin-tone and blood-volume changes, while suppressing noise.
- Residual 3D CNN Model: A ResNet-inspired 3D CNN that uses residual connections to facilitate training of a deeper network by mitigating vanishing gradient issues.
3.2.1. 3D CNN (Baseline) Regression Model
3.2.2. Channel Attention-Enhanced 3D CNN Model
3.2.3. Residual Regression Model
3.3. Performance Metrics
3.4. Graphical User Interface
4. Results and Discussion
4.1. Experimental Results
4.2. Discussion
4.3. Comparative Analysis of Results and Methodologies
5. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tuo, Y.; Li, Y.; Li, Y.; Ma, J.; Yang, X.; Wu, S.; Jin, J.; He, Z. Global, Regional, and National Burden of Thalassemia, 1990–2021: A Systematic Analysis for the Global Burden of Disease Study 2021. eClinicalMedicine 2024, 72, 102619. [Google Scholar] [CrossRef] [PubMed]
- Global Health Metrics Anemia—Level 1 Impairment|Institute for Health Metrics and Evaluation. Available online: https://www.healthdata.org/research-analysis/diseases-injuries-risks/factsheets/2021-anemia-level-1-impairment (accessed on 22 July 2025).
- Karakochuk, C.D.; Hess, S.Y.; Moorthy, D.; Namaste, S.; Parker, M.E.; Rappaport, A.I.; Wegmüller, R.; Dary, O.; the HEmoglobin MEasurement (HEME) Working Group. Measurement and Interpretation of Hemoglobin Concentration in Clinical and Field Settings: A Narrative Review. Ann. N. Y. Acad. Sci. 2019, 1450, 126–146. [Google Scholar] [CrossRef] [PubMed]
- Bal, U.; Utzinger, U.; Bal, A.; Moral, O.T. The Determination of Absorption and Reduced Scattering Coefficients of Optical Phantoms Using a Frequency-Domain Multi-Distance Method in a Non-Contact Manner. Adv. Electr. Comput. Eng. 2020, 20, 3–10. [Google Scholar] [CrossRef]
- Bıcılıoğlu, Y.; Bal, A.; Demir Yenigürbüz, F.; Ergonul, E.; Geter, S.; Kazanasmaz, H.; Bal, U. Noninvasive Hemoglobin Measurement Reduce Invasive Procedures in Thalassemia Patients. Hemoglobin 2022, 46, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Mathew, J.; Tian, X.; Wong, C.-W.; Ho, S.; Milton, D.K.; Wu, M. Remote Blood Oxygen Estimation From Videos Using Neural Networks. IEEE J. Biomed. Health Inform. 2023, 27, 3710–3720. [Google Scholar] [CrossRef] [PubMed]
- Moral, Ö.T.; Bal, U. Non-Contact Total Hemoglobin Estimation Using a Deep Learning Model. In Proceedings of the 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Istanbul, Turkey, 22–24 October 2020; pp. 1–6. [Google Scholar]
- Suner, S.; Rayner, J.; Ozturan, I.U.; Hogan, G.; Meehan, C.P.; Chambers, A.B.; Baird, J.; Jay, G.D. Prediction of Anemia and Estimation of Hemoglobin Concentration Using a Smartphone Camera. PLoS ONE 2021, 16, e0253495. [Google Scholar] [CrossRef] [PubMed]
- Mannino, R.G.; Myers, D.R.; Tyburski, E.A.; Caruso, C.; Boudreaux, J.; Leong, T.; Clifford, G.D.; Lam, W.A. Smartphone App for Non-Invasive Detection of Anemia Using Only Patient-Sourced Photos. Nat. Commun. 2018, 9, 4924. [Google Scholar] [CrossRef] [PubMed]
- Appiahene, P.; Arthur, E.J.; Korankye, S.; Afrifa, S.; Asare, J.W.; Donkoh, E.T. Detection of Anemia Using Conjunctiva Images: A Smartphone Application Approach. Med. Nov. Technol. Devices 2023, 18, 100237. [Google Scholar] [CrossRef]
- Zhang, J.; Petitjean, C.; Lopez, P.; Ainouz, S. Direct Estimation of Fetal Head Circumference from Ultrasound Images Based on Regression CNN. In Proceedings of the Third Conference on Medical Imaging with Deep Learning, Montreal, QC, Canada, 21 September 2020; pp. 914–922. [Google Scholar]
- Zhao, X.; Meng, L.; Su, H.; Lv, B.; Lv, C.; Xie, G.; Chen, Y. Deep-Learning-Based Hemoglobin Concentration Prediction and Anemia Screening Using Ultra-Wide Field Fundus Images. Front. Cell Dev. Biol. 2022, 10, 888268. [Google Scholar] [CrossRef] [PubMed]
- Yılmaz, H.; Kızılateş, B.S.; Shaaban, F.; Karataş, Z.R. A Novel Combined Deep Learning Methodology to Non-Invasively Estimate Hemoglobin Levels in Blood with High Accuracy. Med. Eng. Phys. 2022, 108, 103891. [Google Scholar] [CrossRef] [PubMed]
- Appiahene, P.; Asare, J.W.; Donkoh, E.T.; Dimauro, G.; Maglietta, R. Detection of Iron Deficiency Anemia by Medical Images: A Comparative Study of Machine Learning Algorithms. BioData Min. 2023, 16, 2. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Li, Y.; Shu, X.; Song, A.; Liang, H.; Sun, Y.; Wu, X.; Li, Y.; Tan, L.; Yang, Z.; et al. A New, Feasible, and Convenient Method Based on Semantic Segmentation and Deep Learning for Hemoglobin Monitoring. Front. Med. 2023, 10, 1151996. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Hu, X.; Zhu, Y.; Liu, X.; Yi, B. Real-Time Non-Invasive Hemoglobin Prediction Using Deep Learning-Enabled Smartphone Imaging. BMC Med. Inform. Decis. Mak. 2024, 24, 187. [Google Scholar] [CrossRef] [PubMed]
- Lin, E.-T.; Lu, S.-C.; Liu, A.-S.; Ko, C.-H.; Huang, C.-H.; Tsai, C.-L.; Fu, L.-C. Deep Learning-Based Model for Non-Invasive Hemoglobin Estimation via Body Parts Images: A Retrospective Analysis and a Prospective Emergency Department Study. J. Imaging Inform. Med. 2025, 38, 775–792. [Google Scholar] [CrossRef] [PubMed]
- Mitani, A.; Huang, A.; Venugopalan, S.; Corrado, G.S.; Peng, L.; Webster, D.R.; Hammel, N.; Liu, Y.; Varadarajan, A.V. Detection of Anaemia from Retinal Fundus Images via Deep Learning. Nat. Biomed. Eng. 2020, 4, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.; Maseedupally, V.; Thakoor, K.A.; Raman, R.; Roy, M. Noninvasive Anemia Detection and Hemoglobin Estimation from Retinal Images Using Deep Learning: A Scalable Solution for Resource-Limited Settings. Transl. Vis. Sci. Technol. 2025, 14, 20. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Qin, H.; Ge, W.; Li, S.; Liang, Y. Research on a Non-Invasive Hemoglobin Measurement System Based on Four-Wavelength Photoplethysmography. Electronics 2023, 12, 1346. [Google Scholar] [CrossRef]
- Kavsaoğlu, A.R.; Polat, K.; Hariharan, M. Non-Invasive Prediction of Hemoglobin Level Using Machine Learning Techniques with the PPG Signal’s Characteristics Features. Appl. Soft Comput. 2015, 37, 983–991. [Google Scholar] [CrossRef]
- Wang, E.J.; Li, W.; Hawkins, D.; Gernsheimer, T.; Norby-Slycord, C.; Patel, S.N. HemaApp: Noninvasive Blood Screening of Hemoglobin Using Smartphone Cameras. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Heidelberg, Germany, 12–16 September 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 593–604. [Google Scholar]
- Noor, N.B.; Anwar, M.S.; Dey, M. An Efficient Technique of Hemoglobin Level Screening Using Machine Learning Algorithms. In Proceedings of the 2019 4th International Conference on Electrical Information and Communication Technology (EICT), Brno, Czech Republic, 18–20 December 2019; pp. 1–6. [Google Scholar]
- Zhang, A.; Lou, J.; Pan, Z.; Luo, J.; Zhang, X.; Zhang, H.; Li, J.; Wang, L.; Cui, X.; Ji, B.; et al. Prediction of Anemia Using Facial Images and Deep Learning Technology in the Emergency Department. Front. Public Health 2022, 10, 964385. [Google Scholar] [CrossRef] [PubMed]
- Dobrescu, A.; Valerio Giuffrida, M.; Tsaftaris, S.A. Understanding Deep Neural Networks for Regression in Leaf Counting. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, CA, USA, 16–17 June 2019. [Google Scholar]
- Song, C.M. Hydrological Image Building Using Curve Number and Prediction and Evaluation of Runoff through Convolution Neural Network. Water 2020, 12, 2292. [Google Scholar] [CrossRef]
- Chen, C.-H.; Lai, J.-P.; Chang, Y.-M.; Lai, C.-J.; Pai, P.-F. A Study of Optimization in Deep Neural Networks for Regression. Electronics 2023, 12, 3071. [Google Scholar] [CrossRef]
- Botina-Monsalve, D.; Benezeth, Y.; Miteran, J. RTrPPG: An Ultra Light 3DCNN for Real-Time Remote Photoplethysmography; IEEE: Piscataway, NJ, USA, 2022; pp. 2146–2154. [Google Scholar]
- Pakel, S.N.; Bal, U.; Seçkin, A.Ç.; Akkuş, E. A Channel Attention-Enhanced 3D Cnn–Bades Regression Model For Non-Contact Total Hemoglobin (SpHb) Estimation From Facial Videos. In Proceedings of the 6th International Uludağ Scientific Research Congress, Bursa, Turkey, 22–23 June 2025. [Google Scholar]
- Wang, H.; Huang, H.; Wu, X. An Attention-Based Deep Convolutional Neural Network for Classification and Grading of Interferents in Serum Specimens. Chemom. Intell. Lab. Syst. 2022, 231, 104688. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Tatachar, A.V. Comparative Assessment of Regression Models Based On Model Evaluation Metrics. Int. Res. J. Eng. Technol. 2021, 8, 853–860. [Google Scholar]
- Chicco, D.; Warrens, M.J.; Jurman, G. The Coefficient of Determination R-Squared Is More Informative than SMAPE, MAE, MAPE, MSE and RMSE in Regression Analysis Evaluation. PeerJ Comput. Sci. 2021, 7, e623. [Google Scholar] [CrossRef] [PubMed]
- Chen, J. Analysis of Statistic Metrics in Different Types of Machine Learning. Highlights Sci. Eng. Technol. 2024, 88, 182–188. [Google Scholar] [CrossRef]
- de Myttenaere, A.; Golden, B.; Le Grand, B.; Rossi, F. Mean Absolute Percentage Error for Regression Models. Neurocomputing 2016, 192, 38–48. [Google Scholar] [CrossRef]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763. [Google Scholar] [CrossRef] [PubMed]
- Giavarina, D. Understanding Bland Altman Analysis. Biochem. Medica 2015, 25, 141–151. [Google Scholar] [CrossRef] [PubMed]
Anemia Status | Count |
---|---|
<12 g/dL | 116 |
≥12 g/dL | 163 |
Training Options | Baseline, 3D Attention, and Residual Regression Models |
---|---|
Number of frames used (per sample) | 224 frames |
Input tensor shape | 224 frames, 224 height, 224 width, 3 channels |
Batch size | 4 |
Number of epochs | 100 |
Optimizer | Adam |
Early stopping criterion | Validation loss < 0.3 |
Loss function | MSE |
Model | Performance Metrics | ||||||
---|---|---|---|---|---|---|---|
MSE | R2 | PCC | RMSE | MAE | Explained Variance | MAPE (%) | |
3D CNN (baseline) [29] | 3.2029 | −0.4687 | 0.5744 | 1.7897 | 1.4269 | 0.2871 | 10.90 |
Channel Attention-Enhanced 3D CNN [29] | 1.3767 | 0.3972 | 0.6563 | 1.1733 | 0.9630 | 0.4022 | 7.81 |
Residual 3D CNN | 1.1300 | 0.5000 | 0.7300 | 1.0600 | 0.8500 | 0.5100 | 6.00 |
Reference | Methodology | Data Type | Dataset Size | Performance Metrics |
---|---|---|---|---|
[16] | EGE-UNet for eyelid segmentation and DHA(C3AE) for Hb prediction | Smartphone images of the eye | 1124 perioperative eyelid images | MAE: 1.34 g/dL |
[17] | Mask R-CNN for image segmentation and MobileNet for Hb prediction | Images of conjunctiva, palm, and fingernails | 3705 images (1235 patients: eye, palm, nail image each) + 101 patients (prospective set) | Accuracy: 84.9% in anemia detection |
[18] | InceptionV3 DL model | Retinal fundus images | 114,257 fundus images (57,243 participants) | AUC: 0.88 in anemia detection |
[19] | VGG16, ResNet50, and InceptionV3 architectures | Retinal fundus images | 4517 fundus images (2265 participants) + 255 UWF images (external test set) | MAE: 0.58 g/dL |
[20] | XGBoost regression model | Four-wavelength PPG signals from fingertips | PPG signal from 58 people in 4 wavelengths (160 features extraction) | MAE: 0.325 g/dL |
Proposed System | 3D CNN-based regression | Facial videos | Facial videos and synchronous Hb measurements from 279 participants | MAE: 0.850 g/dL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bal, U.; Oguz, F.E.; Sunnetci, K.M.; Alkan, A.; Bal, A.; Akkuş, E.; Erol, H.; Seçkin, A.Ç. Estimation of Total Hemoglobin (SpHb) from Facial Videos Using 3D Convolutional Neural Network-Based Regression. Biosensors 2025, 15, 485. https://doi.org/10.3390/bios15080485
Bal U, Oguz FE, Sunnetci KM, Alkan A, Bal A, Akkuş E, Erol H, Seçkin AÇ. Estimation of Total Hemoglobin (SpHb) from Facial Videos Using 3D Convolutional Neural Network-Based Regression. Biosensors. 2025; 15(8):485. https://doi.org/10.3390/bios15080485
Chicago/Turabian StyleBal, Ufuk, Faruk Enes Oguz, Kubilay Muhammed Sunnetci, Ahmet Alkan, Alkan Bal, Ebubekir Akkuş, Halil Erol, and Ahmet Çağdaş Seçkin. 2025. "Estimation of Total Hemoglobin (SpHb) from Facial Videos Using 3D Convolutional Neural Network-Based Regression" Biosensors 15, no. 8: 485. https://doi.org/10.3390/bios15080485
APA StyleBal, U., Oguz, F. E., Sunnetci, K. M., Alkan, A., Bal, A., Akkuş, E., Erol, H., & Seçkin, A. Ç. (2025). Estimation of Total Hemoglobin (SpHb) from Facial Videos Using 3D Convolutional Neural Network-Based Regression. Biosensors, 15(8), 485. https://doi.org/10.3390/bios15080485