Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (636)

Search Parameters:
Keywords = essential forest products

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1278 KiB  
Article
Research on the Main Influencing Factors and Variation Patterns of Basal Area Increment (BAI) of Pinus massoniana
by Zhuofan Li, Cancong Zhao, Jun Lu, Jianfeng Yao, Yanling Li, Mengli Zhou and Denglong Ha
Sustainability 2025, 17(15), 7137; https://doi.org/10.3390/su17157137 - 6 Aug 2025
Abstract
Understanding the environmental drivers of radial growth in the Pinus massoniana (lamb.) is essential for improving forest productivity and carbon sequestration in subtropical ecosystems. This study used the basal area increment (BAI) as an indicator of radial growth to investigate the main factors [...] Read more.
Understanding the environmental drivers of radial growth in the Pinus massoniana (lamb.) is essential for improving forest productivity and carbon sequestration in subtropical ecosystems. This study used the basal area increment (BAI) as an indicator of radial growth to investigate the main factors affecting the radial growth rate of P. massoniana and the changes in BAI with these factors. A total of 58 high quality tree ring series were analyzed. Six common methods were used to comprehensively analyze the importance of nine factor variables on the BAI, including tree age, competition index, average temperature, and so on. Generalized additive models (GAMs) were developed to explore the nonlinear relationships between each selected variable and the BAI. The results revealed the following: (1) Age and Competition Index was identified as the primary driving force; (2) BAI increased with Age when tree age was below 69 years; (3) from the overall trend, the BAI of P. massoniana decreased with the increase in the Competition Index. These findings provide a scientific basis for developing management plans for P. massoniana forests. Full article
25 pages, 15953 KiB  
Article
Land Use Change and Its Climatic and Vegetation Impacts in the Brazilian Amazon
by Sérvio Túlio Pereira Justino, Richardson Barbosa Gomes da Silva, Rafael Barroca Silva and Danilo Simões
Sustainability 2025, 17(15), 7099; https://doi.org/10.3390/su17157099 - 5 Aug 2025
Abstract
The Brazilian Amazon is recognized worldwide for its biodiversity and it plays a key role in maintaining the regional and global climate balance. However, it has recently been greatly impacted by changes in land use, such as replacing native forests with agricultural activities. [...] Read more.
The Brazilian Amazon is recognized worldwide for its biodiversity and it plays a key role in maintaining the regional and global climate balance. However, it has recently been greatly impacted by changes in land use, such as replacing native forests with agricultural activities. These changes have resulted in serious environmental consequences, including significant alterations to climate and hydrological cycles. This study aims to analyze changes in land use and land covered in the Brazilian Amazon between 2001 and 2023, as well as the resulting effects on precipitation variability, land surface temperature, and evapotranspiration. Data obtained via remote sensing and processed on the Google Earth Engine platform were used, including MODIS, CHIRPS, Hansen products. The results revealed significant changes: forest formation decreased by 8.55%, while agricultural land increased by 575%. Between 2016 and 2023, accumulated deforestation reached 242,689 km2. Precipitation decreased, reaching minimums of 772.7 mm in 2015 and 726.4 mm in 2020. Evapotranspiration was concentrated between 941 and 1360 mm in 2020, and surface temperatures ranged between 30 °C and 34 °C in 2015, 2020, and 2023. We conclude that anthropogenic transformations in the Brazilian Amazon directly impact vegetation cover and the regional climate. Therefore, conservation and monitoring measures are essential for mitigating these effects. Full article
(This article belongs to the Section Sustainable Forestry)
Show Figures

Figure 1

31 pages, 2983 KiB  
Review
Sustainable Management of Willow Forest Landscapes: A Review of Ecosystem Functions and Conservation Strategies
by Florin Achim, Lucian Dinca, Danut Chira, Razvan Raducu, Alexandru Chirca and Gabriel Murariu
Land 2025, 14(8), 1593; https://doi.org/10.3390/land14081593 - 4 Aug 2025
Abstract
Willow stands (Salix spp.) are an essential part of riparian ecosystems, as they sustain biodiversity and provide bioenergy solutions. The present review synthesizes the global scientific literature about the management of willow stands. In order to achieve this goal, we used a [...] Read more.
Willow stands (Salix spp.) are an essential part of riparian ecosystems, as they sustain biodiversity and provide bioenergy solutions. The present review synthesizes the global scientific literature about the management of willow stands. In order to achieve this goal, we used a dual approach combining bibliometric analysis with traditional literature review. As such, we consulted 416 publications published between 1978 and 2024. This allowed us to identify key species, ecosystem services, conservation strategies, and management issues. The results we have obtained show a diversity of approaches, with an increase in short-rotation coppice (SRC) systems and the multiple roles covered by willow stands (carbon sequestration, biomass production, riparian restoration, and habitat provision). The key trends we have identified show a shift toward topics such as climate resilience, ecological restoration, and precision forestry. This trend has become especially pronounced over the past decade (2014–2024), as reflected in the increasing use of these keywords in the literature. However, as willow systems expand in scale and function—from biomass production to ecological restoration—they also raise complex challenges, including invasive tendencies in non-native regions and uncertainties surrounding biodiversity impacts and soil carbon dynamics over the long term. The present review is a guide for forest policies and, more specifically, for future research, linking the need to integrate and use adaptive strategies in order to maintain the willow stands. Full article
Show Figures

Figure 1

19 pages, 1721 KiB  
Article
Demography and Biomass Productivity in Colombian Sub-Andean Forests in Cueva de los Guácharos National Park (Huila): A Comparison Between Primary and Secondary Forests
by Laura I. Ramos, Cecilia M. Prada and Pablo R. Stevenson
Forests 2025, 16(8), 1256; https://doi.org/10.3390/f16081256 - 1 Aug 2025
Viewed by 498
Abstract
Understanding species composition and forest dynamics is essential for predicting biomass productivity and informing conservation in tropical montane ecosystems. We evaluated floristic, demographic, and biomass changes in eighteen 0.1 ha permanent plots in the Colombian Sub-Andean forest, including both primary (ca. 60 y [...] Read more.
Understanding species composition and forest dynamics is essential for predicting biomass productivity and informing conservation in tropical montane ecosystems. We evaluated floristic, demographic, and biomass changes in eighteen 0.1 ha permanent plots in the Colombian Sub-Andean forest, including both primary (ca. 60 y old) and secondary forests (ca. 30 years old). Two censuses of individuals (DBH ≥ 2.5 cm) were conducted over 7–13 years. We recorded 516 species across 202 genera and 89 families. Floristic composition differed significantly between forest types (PERMANOVA, p = 0.001), and black oak (Trigonobalanus excelsa Lozano, Hern. Cam. & Henao) forests formed distinct assemblages. Demographic rates were higher in secondary forests, with mortality (4.17% yr), recruitment (4.51% yr), and relative growth rate (0.02% yr) exceeding those of primary forests. The mean aboveground biomass accumulation and the rate of annual change were higher in primary forests (447.5 Mg ha−1 and 466.8 Mg ha−1 yr−1, respectively) than in secondary forests (217.2 Mg ha−1 and 217.2 Mg ha−1 yr−1, respectively). Notably, black oak forests showed the greatest biomass accumulation and rate of change in biomass. Annual net biomass production was higher in secondary forests (8.72 Mg ha−1 yr−1) than in primary forests (5.66 Mg ha−1 yr−1). These findings highlight the ecological distinctiveness and recovery potential of secondary Sub-Andean forests and underscore the value of multitemporal monitoring to understand forest resilience and assess vulnerability to environmental change. Full article
(This article belongs to the Special Issue Forest Inventory: The Monitoring of Biomass and Carbon Stocks)
Show Figures

Figure 1

21 pages, 23129 KiB  
Article
Validation of Global Moderate-Resolution FAPAR Products over Boreal Forests in North America Using Harmonized Landsat and Sentinel-2 Data
by Yinghui Zhang, Hongliang Fang, Zhongwen Hu, Yao Wang, Sijia Li and Guofeng Wu
Remote Sens. 2025, 17(15), 2658; https://doi.org/10.3390/rs17152658 - 1 Aug 2025
Viewed by 107
Abstract
The fraction of absorbed photosynthetically active radiation (FAPAR) stands as a pivotal parameter within the Earth system, quantifying the energy exchange between vegetation and solar radiation. Accordingly, there is an urgent need for comprehensive validation studies to accurately quantify uncertainties and improve the [...] Read more.
The fraction of absorbed photosynthetically active radiation (FAPAR) stands as a pivotal parameter within the Earth system, quantifying the energy exchange between vegetation and solar radiation. Accordingly, there is an urgent need for comprehensive validation studies to accurately quantify uncertainties and improve the reliability of FAPAR-based applications. This study validated five global FAPAR products, MOD15A2H, MYD15A2H, VNP15A2H, GEOV2, and GEOV3, over four boreal forest sites in North America. Qualitative quality flags (QQFs) and quantitative quality indicators (QQIs) of each product were analyzed. Time series high-resolution reference FAPAR maps were developed using the Harmonized Landsat and Sentinel-2 dataset. The reference FAPAR maps revealed a strong agreement with the in situ FAPAR from AmeriFlux (correlation coefficient (R) = 0.91; root mean square error (RMSE) = 0.06). The results revealed that global FAPAR products show similar uncertainties (RMSE: 0.16 ± 0.04) and moderate agreement with the reference FAPAR (R = 0.75 ± 0.10). On average, 34.47 ± 6.91% of the FAPAR data met the goal requirements of the Global Climate Observing System (GCOS), while 54.41 ± 6.89% met the threshold requirements of the GCOS. Deciduous forests perform better than evergreen forests, and the products tend to underestimate the reference data, especially for the beginning and end of growing seasons in evergreen forests. There are no obvious quality differences at different QQFs, and the relative QQI can be used to filter high-quality values. To enhance the regional applicability of global FAPAR products, further algorithm improvements and expanded validation efforts are essential. Full article
Show Figures

Figure 1

16 pages, 1833 KiB  
Article
Prediction of Waste Generation Using Machine Learning: A Regional Study in Korea
by Jae-Sang Lee and Dong-Chul Shin
Urban Sci. 2025, 9(8), 297; https://doi.org/10.3390/urbansci9080297 - 30 Jul 2025
Viewed by 235
Abstract
Accurate forecasting of household waste generation is essential for sustainable urban planning and the development of data-driven environmental policies. Conventional statistical models, while simple and interpretable, often fail to capture the nonlinear and multidimensional relationships inherent in waste production patterns. This study proposes [...] Read more.
Accurate forecasting of household waste generation is essential for sustainable urban planning and the development of data-driven environmental policies. Conventional statistical models, while simple and interpretable, often fail to capture the nonlinear and multidimensional relationships inherent in waste production patterns. This study proposes a machine learning-based regression framework utilizing Random Forest and XGBoost algorithms to predict annual household waste generation across four metropolitan regions in South Korea Seoul, Gyeonggi, Incheon, and Jeju over the period from 2000 to 2023. Independent variables include demographic indicators (total population, working-age population, elderly population), economic indicators (Gross Regional Domestic Product), and regional identifiers encoded using One-Hot Encoding. A derived feature, elderly ratio, was introduced to reflect population aging. Model performance was evaluated using R2, RMSE, and MAE, with artificial noise added to simulate uncertainty. Random Forest demonstrated superior generalization and robustness to data irregularities, especially in data-scarce regions like Jeju. SHAP-based interpretability analysis revealed total population and GRDP as the most influential features. The findings underscore the importance of incorporating economic indicators in waste forecasting models, as demographic variables alone were insufficient for explaining waste dynamics. This approach provides valuable insights for policymakers and supports the development of adaptive, region-specific strategies for waste reduction and infrastructure investment. Full article
Show Figures

Figure 1

16 pages, 3137 KiB  
Article
Variation in Microbiota and Chemical Components Within Pinus massoniana During Initial Wood Decay
by Bo Chen, Hua Lu, Feng-Gang Luan, Zi-Liang Zhang, Jiang-Tao Zhang and Xing-Ping Liu
Microorganisms 2025, 13(8), 1743; https://doi.org/10.3390/microorganisms13081743 - 25 Jul 2025
Viewed by 185
Abstract
Deadwood is essential for the forest ecosystem productivity and stability. A growing body of evidence indicates that deadwood-inhabiting microbes are effective decomposition agents, yet little is known about how changes in microbial communities during the initial deadwood decay. In a small forest area, [...] Read more.
Deadwood is essential for the forest ecosystem productivity and stability. A growing body of evidence indicates that deadwood-inhabiting microbes are effective decomposition agents, yet little is known about how changes in microbial communities during the initial deadwood decay. In a small forest area, we performed dense sampling from the top, middle, and bottom portions of two representative Pinus massoniana cultivars logs to track deadwood xylem microbiota shift during the initial deadwood decay. We found xylem mycobiota varied dramatically during the initial deadwood decay. Deadwood microbes might largely originate from the endophytic microbes of living trees during the initial deadwood decay. Notably, bark type is an important driving factor for xylem mycobiota changes during the initial deadwood decay. Ten upregulated metabolites were screened out by a univariate analysis approach. Moreover, our correlation analysis suggests that enriched microbes at class level was significantly correlated with the upregulated metabolites during the initial deadwood decay. Our work provides new insights into the process of mycobiota and metabolite changes during the initial deadwood decay. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

18 pages, 3361 KiB  
Article
Model-Based Assessment of Phenological and Climate Suitability Dynamics for Winter Wheat in the 3H Plain Under Future Climate Scenarios
by Yifei Xu, Te Li, Min Xu, Shuanghe Shen and Ling Tan
Agriculture 2025, 15(15), 1606; https://doi.org/10.3390/agriculture15151606 - 25 Jul 2025
Viewed by 253
Abstract
Understanding future changes in crop phenology and climate suitability is essential for sustaining winter wheat production in the Huang-Huai-Hai (3H) Plain under climate change. This study integrates bias-corrected CMIP6 climate projections, the DSSAT CERES-Wheat crop model, and Random Forest analysis to assess spatiotemporal [...] Read more.
Understanding future changes in crop phenology and climate suitability is essential for sustaining winter wheat production in the Huang-Huai-Hai (3H) Plain under climate change. This study integrates bias-corrected CMIP6 climate projections, the DSSAT CERES-Wheat crop model, and Random Forest analysis to assess spatiotemporal shifts in winter wheat phenology and climate suitability. The assessment focuses on the mid- (2041–2060) and late 21st century (2081–2100) under the SSP2-4.5 and SSP5-8.5 scenarios. The results indicate that the vegetative and whole growing periods (VGP and WGP) will be extended in the mid-century but shorten by the late century. In contrast, the reproductive growing period (RGP) will be slightly reduced in the mid-century and extended under high emissions in the late century. Temperature suitability is projected to increase during the VGP and WGP but decline during the RGP. Precipitation suitability generally improves, except for a decrease during the reproductive period south of 32° N. Solar radiation suitability is expected to decline across all stages. Temperature is identified as the primary driver of phenological changes, with solar radiation and precipitation playing increasingly important roles in the mid- and late 21st century, respectively. Adaptive strategies, including the adoption of heat-tolerant varieties, longer reproductive periods, and earlier sowing, are recommended to enhance yield stability under future climate conditions. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

31 pages, 2773 KiB  
Review
Actualized Scope of Forestry Biomass Valorization in Chile: Fostering the Bioeconomy
by Cecilia Fuentalba, Victor Ferrer, Luis E. Arteaga-Perez, Jorge Santos, Nacarid Delgado, Yannay Casas-Ledón, Gastón Bravo-Arrepol, Miguel Pereira, Andrea Andrade, Danilo Escobar-Avello and Gustavo Cabrera-Barjas
Forests 2025, 16(8), 1208; https://doi.org/10.3390/f16081208 - 23 Jul 2025
Viewed by 525
Abstract
Chile is among the leading global exporters of pulp and paper, supported by extensive plantations of Pinus radiata and Eucalyptus spp. This review synthesizes recent progress in the valorization of forestry biomass in Chile, including both established practices and emerging bio-based applications. It [...] Read more.
Chile is among the leading global exporters of pulp and paper, supported by extensive plantations of Pinus radiata and Eucalyptus spp. This review synthesizes recent progress in the valorization of forestry biomass in Chile, including both established practices and emerging bio-based applications. It highlights advances in lignin utilization, nanocellulose production, hemicellulose processing, and tannin extraction, as well as developments in thermochemical conversion technologies, including torrefaction, pyrolysis, and gasification. Special attention is given to non-timber forest products and essential oils due to their potential bioactivity. Sustainability perspectives, including Life Cycle Assessments, national policy instruments such as the Circular Economy Roadmap and Extended Producer Responsibility (REP) Law, are integrated to provide context. Barriers to technology transfer and industrial implementation are also discussed. This work contributes to understanding how forestry biomass can support Chile’s transition toward a circular bioeconomy. Full article
Show Figures

Figure 1

28 pages, 7506 KiB  
Article
Impact of Plateau Grassland Degradation on Ecological Suitability: Revealing Degradation Mechanisms and Dividing Potential Suitable Areas with Multi Criteria Models
by Yi Chai, Lin Xu, Yong Xu, Kun Yang, Rao Zhu, Rui Zhang and Xiaxing Li
Remote Sens. 2025, 17(15), 2539; https://doi.org/10.3390/rs17152539 - 22 Jul 2025
Viewed by 316
Abstract
The Qinghai–Tibetan Plateau (QTP), often referred to as the “Third Pole” of the world, harbors alpine grassland ecosystems that play an essential role as global carbon sinks, helping to mitigate the pace of climate change. Nonetheless, alterations in natural environmental conditions coupled with [...] Read more.
The Qinghai–Tibetan Plateau (QTP), often referred to as the “Third Pole” of the world, harbors alpine grassland ecosystems that play an essential role as global carbon sinks, helping to mitigate the pace of climate change. Nonetheless, alterations in natural environmental conditions coupled with escalating human activities have disrupted the seasonal growth cycles of grasslands, thereby intensifying degradation processes. To date, the key drivers and lifecycle dynamics of Grassland Depletion across the QTP remain contentious, limiting our comprehension of its ecological repercussions and regulatory mechanisms. This study comprehensively investigates grassland degradation on the Qinghai–Tibetan Plateau, analyzing its drivers and changes in ecological suitability during the growing season. By integrating natural factors (e.g., precipitation and temperature) and anthropogenic influences (e.g., population density and grazing intensity), it examines observational data from over 160 monitoring stations collected between the 1980s and 2020. The findings reveal three distinct phases of grassland degradation: an acute degradation phase in 1990 (GDI, Grassland Degradation Index = 2.53), a partial recovery phase from 1996 to 2005 (GDI < 2.0) during which the proportion of degraded grassland decreased from 71.85% in 1990 to 51.22% in 2005, and a renewed intensification of degradation after 2006 (GDI > 2.0), with degraded grassland areas reaching 56.39% by 2020. Among the influencing variables, precipitation emerged as the most significant driver, interacting closely with anthropogenic factors such as grazing practices and population distribution. Specifically, the combined impacts of precipitation with population density, grazing pressure, and elevation were particularly notable, yielding interaction q-values of 0.796, 0.767, and 0.752, respectively. Our findings reveal that while grasslands exhibit superior carbon sink potential relative to forests, their productivity and ecological functionality are undergoing considerable declines due to the compounded effects of multiple interacting factors. Consequently, the spatial distribution of ecologically suitable zones has contracted significantly, with the remaining high-suitability regions concentrating in the “twin-star” zones of Baingoin and Zanda grasslands, areas recognized as focal points for future ecosystem preservation. Furthermore, the effects of climate change and intensifying anthropogenic activity have driven the reduction in highly suitable grassland areas, shrinking from 41,232 km2 in 1990 to 24,485 km2 by 2020, with projections indicating a further decrease to only 2844 km2 by 2060. This study sheds light on the intricate mechanisms behind Grassland Depletion, providing essential guidance for conservation efforts and ecological restoration on the QTP. Moreover, it offers theoretical underpinnings to support China’s carbon neutrality and peak carbon emission goals. Full article
Show Figures

Figure 1

21 pages, 4050 KiB  
Article
Classification Prediction of Jujube Variety Based on Hyperspectral Imaging: A Comparative Study of Intelligent Optimization Algorithms
by Quancheng Liu, Jun Zhou, Zhaoyi Wu, Didi Ma, Yuxuan Ma, Shuxiang Fan and Lei Yan
Foods 2025, 14(14), 2527; https://doi.org/10.3390/foods14142527 - 18 Jul 2025
Viewed by 339
Abstract
Accurate classification of jujube varieties is essential for ensuring their quality and medicinal value. Traditional methods, relying on manual detection, are inefficient and fail to meet the demands of modern production and quality control. This study integrates hyperspectral imaging with intelligent optimization algorithms—Zebra [...] Read more.
Accurate classification of jujube varieties is essential for ensuring their quality and medicinal value. Traditional methods, relying on manual detection, are inefficient and fail to meet the demands of modern production and quality control. This study integrates hyperspectral imaging with intelligent optimization algorithms—Zebra Optimization Algorithm (ZOA), Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Grey Wolf Optimization (GWO)—and a Support Vector Machine (SVM) model to classify jujube varieties. First, the Isolation Forest (IF) algorithm was employed to remove outliers from the spectral data. The data were then processed using Baseline correction, Multiplicative Scatter Correction (MSC), and Savitzky-Golay first derivative (SG1st) spectral preprocessing techniques, followed by feature enhancement with the Competitive Adaptive Reweighted Sampling (CARS) algorithm. A comparative analysis of the optimization algorithms in the SVM model revealed that SG1st preprocessing significantly boosted classification accuracy. Among the algorithms, GWO demonstrated the best global search ability and generalization performance, effectively enhancing classification accuracy. The GWO-SVM-SG1st model achieved the highest classification accuracy, with 94.641% on the prediction sets. This study showcases the potential of combining hyperspectral imaging with intelligent optimization algorithms, offering an effective solution for jujube variety classification. Full article
Show Figures

Figure 1

28 pages, 7545 KiB  
Article
Estimation of Rice Leaf Nitrogen Content Using UAV-Based Spectral–Texture Fusion Indices (STFIs) and Two-Stage Feature Selection
by Xiaopeng Zhang, Yating Hu, Xiaofeng Li, Ping Wang, Sike Guo, Lu Wang, Cuiyu Zhang and Xue Ge
Remote Sens. 2025, 17(14), 2499; https://doi.org/10.3390/rs17142499 - 18 Jul 2025
Viewed by 481
Abstract
Accurate estimation of rice leaf nitrogen content (LNC) is essential for optimizing nitrogen management in precision agriculture. However, challenges such as spectral saturation and canopy structural variations across different growth stages complicate this task. This study proposes a robust framework for LNC estimation [...] Read more.
Accurate estimation of rice leaf nitrogen content (LNC) is essential for optimizing nitrogen management in precision agriculture. However, challenges such as spectral saturation and canopy structural variations across different growth stages complicate this task. This study proposes a robust framework for LNC estimation that integrates both spectral and texture features extracted from UAV-based multispectral imagery through the development of novel Spectral–Texture Fusion Indices (STFIs). Field data were collected under nitrogen gradient treatments across three critical growth stages: heading, early filling, and late filling. A total of 18 vegetation indices (VIs), 40 texture features (TFs), and 27 STFIs were derived from UAV images. To optimize the feature set, a two-stage feature selection strategy was employed, combining Pearson correlation analysis with model-specific embedded selection methods: Recursive Feature Elimination with Cross-Validation (RFECV) for Random Forest (RF) and Extreme Gradient Boosting (XGBoost), and Sequential Forward Selection (SFS) for Support Vector Regression (SVR) and Deep Neural Networks (DNNs). The models—RFECV-RF, RFECV-XGBoost, SFS-SVR, and SFS-DNN—were evaluated using four feature configurations. The SFS-DNN model with STFIs achieved the highest prediction accuracy (R2 = 0.874, RMSE = 2.621 mg/g). SHAP analysis revealed the significant contribution of STFIs to model predictions, underscoring the effectiveness of integrating spectral and texture information. The proposed STFI-based framework demonstrates strong generalization across phenological stages and offers a scalable, interpretable approach for UAV-based nitrogen monitoring in rice production systems. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Figure 1

21 pages, 5361 KiB  
Article
Inversion of County-Level Farmland Soil Moisture Based on SHAP and Stacking Models
by Hui Zhan, Peng Guo, Jiaxin Hao, Jiali Li and Zixu Wang
Agriculture 2025, 15(14), 1506; https://doi.org/10.3390/agriculture15141506 - 13 Jul 2025
Viewed by 296
Abstract
Accurate monitoring of soil moisture in arid agricultural regions is essential for improving crop production and the efficient management of water resources. This study focuses on Shihezi City in Xinjiang, China. We propose a novel method for soil moisture retrieval by integrating Sentinel-1 [...] Read more.
Accurate monitoring of soil moisture in arid agricultural regions is essential for improving crop production and the efficient management of water resources. This study focuses on Shihezi City in Xinjiang, China. We propose a novel method for soil moisture retrieval by integrating Sentinel-1 and Sentinel-2 remote sensing data. Dual-polarization parameters (VV + VH and VV × VH) were constructed and tested. Pearson correlation analysis showed that these polarization combinations carried the most useful information for soil moisture estimation. We then applied Shapley Additive exPlanations (SHAP) for feature selection, and a Stacking model was used to perform soil moisture inversion based on the selected features. SHAP values derived from the coupled support vector regression (SVR) and random forest regression (RFR) models were used to select an additional six key features for model construction. Building on this framework, a comparative analysis was conducted to evaluate the predictive performance of multivariate linear regression (MLR), RFR, SVR, and a Stacking model that integrates these three models. The results demonstrate that the Stacking model outperformed other approaches in soil moisture retrieval, achieving a higher R2 of 0.70 compared to 0.52, 0.61, and 0.62 for MLR, RFR, and SVR, respectively. This process concluded with the use of the Stacking model to generate a county-level farmland soil moisture distribution map, which provides an objective and practical approach to guide agricultural management and the optimized allocation of water resources in arid regions. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

15 pages, 564 KiB  
Article
MicroForest: Lightweight Bottleneck Prediction for Manufacturing Processes on Edge Devices
by Seungmin Yoo and Chanyoung Oh
Appl. Sci. 2025, 15(14), 7798; https://doi.org/10.3390/app15147798 - 11 Jul 2025
Viewed by 201
Abstract
As digital transformation in manufacturing accelerates, process bottleneck prediction has emerged as a central task in industrial automation. To streamline manufacturing processes, where diverse tasks interact in complex ways, it is essential to identify in advance both the location and timing of bottleneck [...] Read more.
As digital transformation in manufacturing accelerates, process bottleneck prediction has emerged as a central task in industrial automation. To streamline manufacturing processes, where diverse tasks interact in complex ways, it is essential to identify in advance both the location and timing of bottleneck occurrences. However, manufacturing environments often lack high-performance computing resources and must rely on cost-effective, resource-constrained embedded devices, making fast and accurate prediction challenging. We present MicroForest, a lightweight decision tree-based model designed to predict multiple process bottlenecks simultaneously under such resource-constrained environments. MicroForest reassembles the high-information-gain nodes from dozens of large random forests into compact forests. Evaluated on a simulation containing up to 150 production tasks, MicroForest achieves 34%p higher recall scores compared to original random forests while shrinking model size by two orders of magnitude and accelerating inference latency by up to 7.2×. Compared with other recent work, MicroForest outperforms them with the highest prediction accuracy (F1 = 0.74) and shows a much gentler increase in latency as process complexity grows. Full article
(This article belongs to the Special Issue Integration of Digital Simulation Models in Smart Manufacturing)
Show Figures

Figure 1

18 pages, 22954 KiB  
Article
Spatiotemporal Analysis of Drought Variation from 2001 to 2023 in the China–Mongolia–Russia Transboundary Heilongjiang River Basin Based on ITVDI
by Weihao Zou, Juanle Wang, Congrong Li, Keming Yang, Denis Fetisov, Jiawei Jiang, Meng Liu and Yaping Liu
Remote Sens. 2025, 17(14), 2366; https://doi.org/10.3390/rs17142366 - 9 Jul 2025
Viewed by 372
Abstract
Drought impacts agricultural production and regional sustainable development. Accordingly, timely and accurate drought monitoring is essential for ensuring food security in rain-fed agricultural regions. Alternating drought and flood events frequently occur in the Heilongjiang River Basin, the largest grain-producing area in Far East [...] Read more.
Drought impacts agricultural production and regional sustainable development. Accordingly, timely and accurate drought monitoring is essential for ensuring food security in rain-fed agricultural regions. Alternating drought and flood events frequently occur in the Heilongjiang River Basin, the largest grain-producing area in Far East Asia. However, spatiotemporal variability in drought is not well understood, in part owing to the limitations of the traditional Temperature Vegetation Dryness Index (TVDI). In this study, an Improved Temperature Vegetation Dryness Index (ITVDI) was developed by incorporating Digital Elevation Model data to correct land surface temperatures and introducing a constraint line method to replace the traditional linear regression for fitting dry–wet boundaries. Based on MODIS (Moderate-resolution Imaging Spectroradiometer) normalized vegetation index and land surface temperature products, the Heilongjiang River Basin, a cross-border basin between China, Mongolia, and Russia, exhibited pronounced spatiotemporal variability in drought conditions of the growing season from 2001 to 2023. Drought severity demonstrated clear geographical zonation, with a higher intensity in the western region and lower intensity in the eastern region. The Mongolian Plateau and grasslands were identified as drought hotspots. The Far East Asia forest belt was relatively humid, with an overall lower drought risk. The central region exhibited variation in drought characteristics. From the perspective of cross-national differences, the drought severity distribution in Northeast China and Inner Mongolia exhibits marked spatial heterogeneity. In Mongolia, regional drought levels exhibited a notable trend toward homogenization, with a higher proportion of extreme drought than in other areas. The overall drought risk in the Russian part of the basin was relatively low. A trend analysis indicated a general pattern of drought alleviation in western regions and intensification in eastern areas. Most regions showed relatively stable patterns, with few areas exhibiting significant changes, mainly surrounding cities such as Qiqihar, Daqing, Harbin, Changchun, and Amur Oblast. Regions with aggravation accounted for 52.29% of the total study area, while regions showing slight alleviation account for 35.58%. This study provides a scientific basis and data infrastructure for drought monitoring in transboundary watersheds and for ensuring agricultural production security. Full article
Show Figures

Figure 1

Back to TopTop