Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (36,909)

Search Parameters:
Keywords = error models

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2819 KiB  
Article
Robust Predictive Functional Control for Quadrotor Flight Systems
by Kai Masuda and Kenji Uchiyama
Drones 2025, 9(7), 506; https://doi.org/10.3390/drones9070506 - 18 Jul 2025
Abstract
Predictive Functional Control (PFC) has a control structure similar to Model Predictive Control (MPC), determining control inputs by predicting future states using a motion model. However, PFC does not require solving a quadratic programming problem for every control loop like MPC. This feature [...] Read more.
Predictive Functional Control (PFC) has a control structure similar to Model Predictive Control (MPC), determining control inputs by predicting future states using a motion model. However, PFC does not require solving a quadratic programming problem for every control loop like MPC. This feature enables PFC to be implemented in small-scale systems such as actuators, where embedding a high-performance computer is difficult. However, similar to MPC, there are concerns with PFC regarding control performance degradation due to incorrect predictions of future states in environments affected by modeling errors and disturbances. Therefore, in this study, we propose a novel method that employs robustness, Robust Predictive Functional Control (RPFC). The proposed RPFC method was applied to a quadrotor flight control system, and its effectiveness was verified through numerical simulations. Specifically, the control performance of RPFC under disturbance conditions was compared with that of conventional PFC, demonstrating the advantages of the proposed approach. Full article
29 pages, 3158 KiB  
Article
A Forecasting Method for COVID-19 Epidemic Trends Using VMD and TSMixer-BiKSA Network
by Yuhong Li, Guihong Bi, Taonan Tong and Shirui Li
Computers 2025, 14(7), 290; https://doi.org/10.3390/computers14070290 - 18 Jul 2025
Abstract
The spread of COVID-19 is influenced by multiple factors, including control policies, virus characteristics, individual behaviors, and environmental conditions, exhibiting highly complex nonlinear dynamic features. The time series of new confirmed cases shows significant nonlinearity and non-stationarity. Traditional prediction methods that rely solely [...] Read more.
The spread of COVID-19 is influenced by multiple factors, including control policies, virus characteristics, individual behaviors, and environmental conditions, exhibiting highly complex nonlinear dynamic features. The time series of new confirmed cases shows significant nonlinearity and non-stationarity. Traditional prediction methods that rely solely on one-dimensional case data struggle to capture the multi-dimensional features of the data and are limited in handling nonlinear and non-stationary characteristics. Their prediction accuracy and generalization capabilities remain insufficient, and most existing studies focus on single-step forecasting, with limited attention to multi-step prediction. To address these challenges, this paper proposes a multi-module fusion prediction model—TSMixer-BiKSA network—that integrates multi-feature inputs, Variational Mode Decomposition (VMD), and a dual-branch parallel architecture for 1- to 3-day-ahead multi-step forecasting of new COVID-19 cases. First, variables highly correlated with the target sequence are selected through correlation analysis to construct a feature matrix, which serves as one input branch. Simultaneously, the case sequence is decomposed using VMD to extract low-complexity, highly regular multi-scale modal components as the other input branch, enhancing the model’s ability to perceive and represent multi-source information. The two input branches are then processed in parallel by the TSMixer-BiKSA network model. Specifically, the TSMixer module employs a multilayer perceptron (MLP) structure to alternately model along the temporal and feature dimensions, capturing cross-time and cross-variable dependencies. The BiGRU module extracts bidirectional dynamic features of the sequence, improving long-term dependency modeling. The KAN module introduces hierarchical nonlinear transformations to enhance high-order feature interactions. Finally, the SA attention mechanism enables the adaptive weighted fusion of multi-source information, reinforcing inter-module synergy and enhancing the overall feature extraction and representation capability. Experimental results based on COVID-19 case data from Italy and the United States demonstrate that the proposed model significantly outperforms existing mainstream methods across various error metrics, achieving higher prediction accuracy and robustness. Full article
23 pages, 5229 KiB  
Article
Design and Experiment of Autonomous Shield-Cutting End-Effector for Dual-Zone Maize Field Weeding
by Yunxiang Li, Yinsong Qu, Yuan Fang, Jie Yang and Yanfeng Lu
Agriculture 2025, 15(14), 1549; https://doi.org/10.3390/agriculture15141549 - 18 Jul 2025
Abstract
This study presented an autonomous shield-cutting end-effector for maize surrounding weeding (SEMSW), addressing the challenges of the low weed removal rate (WRR) and high seedling damage rate (SDR) in northern China’s 3–5 leaf stage maize. The SEMSW integrated seedling positioning, robotic arm control, [...] Read more.
This study presented an autonomous shield-cutting end-effector for maize surrounding weeding (SEMSW), addressing the challenges of the low weed removal rate (WRR) and high seedling damage rate (SDR) in northern China’s 3–5 leaf stage maize. The SEMSW integrated seedling positioning, robotic arm control, and precision weeding functionalities: a seedling positioning sensor identified maize seedlings and weeds, guiding XYZ translational motions to align the robotic arm. The seedling-shielding anti-cutting mechanism (SAM) enclosed crop stems, while the contour-adaptive weeding mechanism (CWM) activated two-stage retractable blades (TRWBs) for inter/intra-row weeding operations. The following key design parameters were determined: 150 mm inner diameter for the seedling-shielding disc; 30 mm minimum inscribed-circle for retractable clamping units (RCUs); 40 mm ground clearance for SAM; 170 mm shielding height; and 100 mm minimum inscribed-circle diameter for the TRWB. Mathematical optimization defined the shape-following weeding cam (SWC) contour and TRWB dimensional chain. Kinematic/dynamic models were introduced alongside an adaptive sliding mode controller, ensuring lateral translation error convergence. A YOLOv8 model achieved 0.951 precision, 0.95 mAP50, and 0.819 mAP50-95, striking a balance between detection accuracy and localization precision. Field trials of the prototype showed 88.3% WRR and 2.2% SDR, meeting northern China’s agronomic standards. Full article
29 pages, 3930 KiB  
Article
KAN-Based Tool Wear Modeling with Adaptive Complexity and Symbolic Interpretability in CNC Turning Processes
by Zhongyuan Che, Chong Peng, Jikun Wang, Rui Zhang, Chi Wang and Xinyu Sun
Appl. Sci. 2025, 15(14), 8035; https://doi.org/10.3390/app15148035 - 18 Jul 2025
Abstract
Tool wear modeling in CNC turning processes is critical for proactive maintenance and process optimization in intelligent manufacturing. However, traditional physics-based models lack adaptability, while machine learning approaches are often limited by poor interpretability. This study develops Kolmogorov–Arnold Networks (KANs) to address the [...] Read more.
Tool wear modeling in CNC turning processes is critical for proactive maintenance and process optimization in intelligent manufacturing. However, traditional physics-based models lack adaptability, while machine learning approaches are often limited by poor interpretability. This study develops Kolmogorov–Arnold Networks (KANs) to address the trade-off between accuracy and interpretability in lathe tool wear modeling. Three KAN variants (KAN-A, KAN-B, and KAN-C) with varying complexities are proposed, using feed rate, depth of cut, and cutting speed as input variables to model flank wear. The proposed KAN-based framework generates interpretable mathematical expressions for tool wear, enabling transparent decision-making. To evaluate the performance of KANs, this research systematically compares prediction errors, topological evolutions, and mathematical interpretations of derived symbolic formulas. For benchmarking purposes, MLP-A, MLP-B, and MLP-C models are developed based on the architectures of their KAN counterparts. A comparative analysis between KAN and MLP frameworks is conducted to assess differences in modeling performance, with particular focus on the impact of network depth, width, and parameter configurations. Theoretical analyses, grounded in the Kolmogorov–Arnold representation theorem and Cybenko’s theorem, explain KANs’ ability to approximate complex functions with fewer nodes. The experimental results demonstrate that KANs exhibit two key advantages: (1) superior accuracy with fewer parameters compared to traditional MLPs, and (2) the ability to generate white-box mathematical expressions. Thus, this work bridges the gap between empirical models and black-box machine learning in manufacturing applications. KANs uniquely combine the adaptability of data-driven methods with the interpretability of physics-based models, offering actionable insights for researchers and practitioners. Full article
Show Figures

Figure 1

20 pages, 1811 KiB  
Article
Sentinel-2 Satellite-Derived Bathymetry with Data-Efficient Domain Adaptation
by Christos G. E. Anagnostopoulos, Vassilios Papaioannou, Konstantinos Vlachos, Anastasia Moumtzidou, Ilias Gialampoukidis, Stefanos Vrochidis and Ioannis Kompatsiaris
J. Mar. Sci. Eng. 2025, 13(7), 1374; https://doi.org/10.3390/jmse13071374 - 18 Jul 2025
Abstract
Satellite-derived bathymetry (SDB) enables the efficient mapping of shallow waters such as coastal zones but typically requires extensive local ground truth data to achieve high accuracy. This study evaluates the effectiveness of transfer learning in reducing this requirement while keeping estimation accuracy at [...] Read more.
Satellite-derived bathymetry (SDB) enables the efficient mapping of shallow waters such as coastal zones but typically requires extensive local ground truth data to achieve high accuracy. This study evaluates the effectiveness of transfer learning in reducing this requirement while keeping estimation accuracy at acceptable levels by adapting a deep learning model pretrained on data from Puck Lagoon (Poland) to a new coastal site in Agia Napa (Cyprus). Leveraging the open MagicBathyNet benchmark dataset and a lightweight U-Net architecture, three scenarios were studied and compared: direct inference to Cyprus, site-specific training in Cyprus, and fine-tuning from Poland to Cyprus with incrementally larger subsets of training data. Results demonstrate that fine-tuning with 15 samples reduces RMSE by over 50% relative to the direct inference baseline. In addition, the domain adaptation approach using 15 samples shows comparable performance to the site-specific model trained on all available data in Cyprus. Depth-stratified error analysis and paired statistical tests confirm that around 15 samples represent a practical lower bound for stable SDB, according to the MagicBathyNet benchmark. The findings of this work provide quantitative evidence on the effectiveness of deploying data-efficient SDB pipelines in settings of limited in situ surveys, as well as a practical lower bound for clear and shallow coastal waters. Full article
(This article belongs to the Section Physical Oceanography)
46 pages, 10548 KiB  
Review
A Review of Hybrid LSTM Models in Smart Cities
by Bum-Jun Kim and Il-Woo Nam
Processes 2025, 13(7), 2298; https://doi.org/10.3390/pr13072298 - 18 Jul 2025
Abstract
Rapid global urbanization poses complex challenges that demand advanced data-driven forecasting solutions for smart cities. Traditional statistical and standalone Long Short-Term Memory (LSTM) models often struggle to capture non-linear dynamics and long-term dependencies in urban time-series data. This review critically examines hybrid LSTM [...] Read more.
Rapid global urbanization poses complex challenges that demand advanced data-driven forecasting solutions for smart cities. Traditional statistical and standalone Long Short-Term Memory (LSTM) models often struggle to capture non-linear dynamics and long-term dependencies in urban time-series data. This review critically examines hybrid LSTM models that integrate LSTM with complementary algorithms, including CNN, GRU, ARIMA, and SVM. These hybrid architectures aim to enhance prediction accuracy, integrate diverse data sources, and improve computational efficiency. This study systematically reviews principles, trends, and real-world applications, quantitatively evaluating hybrid LSTM models using performance metrics such as mean absolute error (MAE), root mean square error (RMSE), and the coefficient of determination (R2), while identifying key study limitations. The case studies considered include traffic management, environmental monitoring, energy forecasting, public health, infrastructure assessment, and urban waste management. For example, hybrid models have achieved substantial accuracy improvements in traffic congestion forecasting, reducing their mean absolute error by up to 29%. Despite the inherent challenges related to structural complexity, interpretability, and data requirements, ongoing research on attention mechanisms, model compression, and explainable AI has significantly mitigated these limitations. Thus, hybrid LSTM models have emerged as vital analytical tools capable of robust spatiotemporal prediction, effectively supporting sustainable urban development and data-driven decision-making in evolving smart city environments. Full article
Show Figures

Figure 1

16 pages, 1383 KiB  
Article
Probabilistic Demand Forecasting in the Southeast Region of the Mexican Power System Using Machine Learning Methods
by Ivan Itai Bernal Lara, Roberto Jair Lorenzo Diaz, María de los Ángeles Sánchez Galván, Jaime Robles García, Mohamed Badaoui, David Romero Romero and Rodolfo Alfonso Moreno Flores
Forecasting 2025, 7(3), 39; https://doi.org/10.3390/forecast7030039 - 18 Jul 2025
Abstract
This paper focuses on electricity demand forecasting and its uncertainty representation using a hybrid machine learning (ML) model in the eastern control area of southeastern Mexico. In this case, different sources of uncertainty are integrated by applying the Bootstrap method, which adds the [...] Read more.
This paper focuses on electricity demand forecasting and its uncertainty representation using a hybrid machine learning (ML) model in the eastern control area of southeastern Mexico. In this case, different sources of uncertainty are integrated by applying the Bootstrap method, which adds the characteristics of stochastic noise, resulting in a hybrid probabilistic and ML model in the form of a time series. The proposed methodology addresses a function density probability, which is the generalized of extreme values obtained from the errors of the ML model; however, it is adaptable and independent and simulates the variability that may arise due to unforeseen events. Results indicate that for a five-day forecast using only demand data, the proposed model achieves a Mean Absolute Percentage Error (MAPE) of 4.358%; however, incorporating temperature increases the MAPE to 5.123% due to growing uncertainty. In contrast, a day-ahead forecast, including temperature, improves accuracy, reducing MAPE to 1.644%. The stochastic noise component enhances probabilistic modeling, yielding a MAPE of 3.042% with and 2.073% without temperature in five-day forecasts. Therefore, the proposed model proves useful for regions with high demand variability, such as southeastern Mexico, while maintaining accuracy over longer time horizons. Full article
(This article belongs to the Section Power and Energy Forecasting)
Show Figures

Figure 1

18 pages, 11668 KiB  
Article
A Hybrid XAJ-LSTM-TFM Model for Improved Runoff Simulation in the Poyang Lake Basin: Integrating Physical Processes with Temporal and Lag Feature Learning
by Haoyu Jiang and Chunxiao Zhang
Water 2025, 17(14), 2146; https://doi.org/10.3390/w17142146 - 18 Jul 2025
Abstract
As the largest freshwater lake in China, Poyang Lake plays a crucial role in hydrological processes. Conventional models often fail to capture the time-lagged relationships between meteorological drivers and runoff responses, while lacking regional generalization capability. To address these limitations, this study proposes [...] Read more.
As the largest freshwater lake in China, Poyang Lake plays a crucial role in hydrological processes. Conventional models often fail to capture the time-lagged relationships between meteorological drivers and runoff responses, while lacking regional generalization capability. To address these limitations, this study proposes a novel XAJ-LSTM-TFM hybrid model that accounts for time-lagged hydrological responses and enhances the regional applicability of the Xinanjiang model. The model innovatively integrates the physical mechanisms of the Xinanjiang model with the temporal learning capacity of LSTM networks. By incorporating intermediate hydrological variables (including interflow and groundwater flow) along with 1–3 day lagged meteorological features, the model achieves an average 15.3% improvement in Nash–Sutcliffe Efficiency (NSE) across five sub-basins, with the Ganjiang Basin attaining an NSE of 0.812 and a 25.7% reduction in flood peak errors. The results demonstrate superior runoff simulation performance and reliable generalization capability under intensive anthropogenic activities. Full article
13 pages, 1746 KiB  
Article
Calibration of DEM Parameters and Microscopic Deformation Characteristics During Compression Process of Lateritic Soil with Different Moisture Contents
by Chao Ji, Wanru Liu, Yiguo Deng, Yeqin Wang, Peimin Chen and Bo Yan
Agriculture 2025, 15(14), 1548; https://doi.org/10.3390/agriculture15141548 - 18 Jul 2025
Abstract
Lateritic soils in tropical regions feature cohesive textures and high specific resistance, driving up energy demands for tillage and harvesting machinery. However, current equipment designs lack discrete element models that account for soil moisture variations, and the microscopic effects of water content on [...] Read more.
Lateritic soils in tropical regions feature cohesive textures and high specific resistance, driving up energy demands for tillage and harvesting machinery. However, current equipment designs lack discrete element models that account for soil moisture variations, and the microscopic effects of water content on lateritic soil deformation remain poorly understood. This study aims to calibrate and validate discrete element method (DEM) models of lateritic soil at varying moisture contents of 20.51%, 22.39%, 24.53%, 26.28%, and 28.04% by integrating the Hertz–Mindlin contact mechanics with bonding and JKR cohesion models. Key parameters in the simulations were calibrated through systematic experimentation. Using Plackett–Burman design, critical factors significantly affecting axial compressive force—including surface energy, normal bond stiffness, and tangential bond stiffness—were identified. Subsequently, Box–Behnken response surface methodology was employed to optimize these parameters by minimizing deviations between simulated and experimental maximum axial compressive forces under each moisture condition. The calibrated models demonstrated high fidelity, with average relative errors of 4.53%, 3.36%, 3.05%, 3.32%, and 7.60% for uniaxial compression simulations across the five moisture levels. Stress–strain analysis under axial loading revealed that at a given surface displacement, both fracture dimensions and stress transfer rates decreased progressively with increasing moisture content. These findings elucidate the moisture-dependent micromechanical behavior of lateritic soil and provide critical data support for DEM-based design optimization of soil-engaging agricultural implements in tropical environments. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

16 pages, 2291 KiB  
Article
State of Charge Estimation for Sodium-Ion Batteries Based on LSTM Network and Unscented Kalman Filter
by Xiangang Zuo, Xiaoheng Fu, Xu Han, Meng Sun and Yuqian Fan
Batteries 2025, 11(7), 274; https://doi.org/10.3390/batteries11070274 - 18 Jul 2025
Abstract
With the increasing application of sodium-ion batteries in energy storage systems, accurate state of charge (SOC) estimation plays a vital role in ensuring both available battery capacity and operational safety. Traditional Kalman-filter-based methods often suffer from limited model expressiveness or oversimplified physical assumptions, [...] Read more.
With the increasing application of sodium-ion batteries in energy storage systems, accurate state of charge (SOC) estimation plays a vital role in ensuring both available battery capacity and operational safety. Traditional Kalman-filter-based methods often suffer from limited model expressiveness or oversimplified physical assumptions, making it difficult to balance accuracy and robustness under complex operating conditions, which may lead to unreliable estimation results. To address these challenges, this paper proposes a hybrid framework that combines an unscented Kalman filter (UKF) with a long short-term memory (LSTM) neural network for SOC estimation. Under various driving conditions, the UKF—based on a second-order equivalent circuit model with online parameter identification—provides physically interpretable estimates, while LSTM effectively captures complex temporal dependencies. Experimental results under CLTC, NEDC, and WLTC cycles demonstrate that the proposed LSTM-UKF approach reduces the mean absolute error (MAE) by an average of 2% and the root mean square error (RMSE) by an average of 3% compared to standalone methods. The proposed framework exhibits excellent adaptability across different scenarios, offering a precise, stable, and robust solution for SOC estimation in sodium-ion batteries. Full article
(This article belongs to the Section Battery Modelling, Simulation, Management and Application)
Show Figures

Figure 1

18 pages, 2109 KiB  
Article
Phase Variation Model of VLF Timing Signal Based on Waveguide Mode Theory
by Xinze Ma, Wenhe Yan, Zhaopeng Hu, Jiangbin Yuan, Chaozhong Yang, Xiao Zhou, Yu Hua and Shifeng Li
Electronics 2025, 14(14), 2885; https://doi.org/10.3390/electronics14142885 - 18 Jul 2025
Abstract
In integrated PNT systems, due to defects in satellite signals and long-wave signals, VLF signals can be an essential supplement. However, there is currently a lack of VLF timing systems in the world, and it is impossible to evaluate the impact of the [...] Read more.
In integrated PNT systems, due to defects in satellite signals and long-wave signals, VLF signals can be an essential supplement. However, there is currently a lack of VLF timing systems in the world, and it is impossible to evaluate the impact of the propagation delay of these signals. Based on the theory of very-low-frequency propagation, this paper determines the waveguide mode propagation at ultra-long distances as the main research direction, establishes a signal phase change model, gives a theoretical formula for the phase velocity of VLF signals, and analyzes the main factors affecting the phase velocity of VLF signal propagation. Finally, combined with historical observation data, the phase change is predicted, compared, and analyzed. The results show that the theoretical calculation is consistent with the measured data. The average error of the delay prediction is 0.015 microseconds per 100 km, and the maximum error of the delay prediction is 0.152 microseconds per 100 km. Full article
Show Figures

Figure 1

17 pages, 11610 KiB  
Article
Exploring the Impact of Species Participation Levels on the Performance of Dominant Plant Identification Models in the Sericite–Artemisia Desert Grassland by Using Deep Learning
by Wenhao Liu, Guili Jin, Wanqiang Han, Mengtian Chen, Wenxiong Li, Chao Li and Wenlin Du
Agriculture 2025, 15(14), 1547; https://doi.org/10.3390/agriculture15141547 - 18 Jul 2025
Abstract
Accurate plant species identification in desert grasslands using hyperspectral data is a critical prerequisite for large-scale, high-precision grassland monitoring and management. However, due to prolonged overgrazing and the inherent ecological vulnerability of the environment, sericite–Artemisia desert grassland has experienced significant ecological degradation. [...] Read more.
Accurate plant species identification in desert grasslands using hyperspectral data is a critical prerequisite for large-scale, high-precision grassland monitoring and management. However, due to prolonged overgrazing and the inherent ecological vulnerability of the environment, sericite–Artemisia desert grassland has experienced significant ecological degradation. Therefore, in this study, we obtained spectral images of the grassland in April 2022 using a Soc710 VP imaging spectrometer (Surface Optics Corporation, San Diego, CA, USA), which were classified into three levels (low, medium, and high) based on the level of participation of Seriphidium transiliense (Poljakov) Poljakov and Ceratocarpus arenarius L. in the community. The optimal index factor (OIF) was employed to synthesize feature band images, which were subsequently used as input for the DeepLabv3p, PSPNet, and UNet deep learning models in order to assess the influence of species participation on classification accuracy. The results indicated that species participation significantly impacted spectral information extraction and model classification performance. Higher participation enhanced the scattering of reflectivity in the canopy structure of S. transiliense, while the light saturation effect of C. arenarius was induced by its short stature. Band combinations—such as Blue, Red Edge, and NIR (BREN) and Red, Red Edge, and NIR (RREN)—exhibited strong capabilities in capturing structural vegetation information. The identification model performances were optimal, with a high level of S. transiliense participation and with DeepLabv3p, PSPNet, and UNet achieving an overall accuracy (OA) of 97.86%, 96.51%, and 98.20%. Among the tested models, UNet exhibited the highest classification accuracy and robustness with small sample datasets, effectively differentiating between S. transiliense, C. arenarius, and bare ground. However, when C. arenarius was the primary target species, the model’s performance declined as its participation levels increased, exhibiting significant omission errors for S. transiliense, whose producer’s accuracy (PA) decreased by 45.91%. The findings of this study provide effective technical means and theoretical support for the identification of plant species and ecological monitoring in sericite–Artemisia desert grasslands. Full article
(This article belongs to the Section Digital Agriculture)
Show Figures

Figure 1

21 pages, 8601 KiB  
Article
Impact of Cloud Microphysics Initialization Using Satellite and Radar Data on CMA-MESO Forecasts
by Lijuan Zhu, Yuan Jiang, Jiandong Gong and Dan Wang
Remote Sens. 2025, 17(14), 2507; https://doi.org/10.3390/rs17142507 - 18 Jul 2025
Abstract
High-resolution numerical weather prediction requires accurate cloud microphysical initial conditions to enhance forecasting capabilities for high-impact severe weather events such as convective storms. This study integrated Fengyun-2 (FY-2) geostationary satellite data (equivalent blackbody temperature and total cloud cover) and next-generation 3D weather radar [...] Read more.
High-resolution numerical weather prediction requires accurate cloud microphysical initial conditions to enhance forecasting capabilities for high-impact severe weather events such as convective storms. This study integrated Fengyun-2 (FY-2) geostationary satellite data (equivalent blackbody temperature and total cloud cover) and next-generation 3D weather radar reflectivity from the China Meteorological Administration (CMA) to construct cloud microphysical initial fields and evaluate their impact on the CMA-MESO 3 km regional model. An analysis of the catastrophic rainfall event in Henan on 20 July 2021, and a 92-day continuous experiment (May–July 2024) revealed that assimilating cloud microphysical variables significantly improved precipitation forecasting: the equitable threat scores (ETSs) for 1 h forecasts of light, moderate, and heavy rain increased from 0.083, 0.043, and 0.007 to 0.41, 0.36, and 0.217, respectively, with average hourly ETS improvements of 21–71% for 2–6 h forecasts and increases in ETSs for light, moderate, and heavy rain of 7.5%, 9.8%, and 24.9% at 7–12 h, with limited improvement beyond 12 h. Furthermore, the root mean square error (RMSE) of the 2 m temperature forecasts decreased across all 1–72 h lead times, with a 4.2% reduction during the 1–9 h period, while the geopotential height RMSE reductions reached 5.8%, 3.3%, and 2.0% at 24, 48, and 72 h, respectively. Additionally, synchronized enhancements were observed in 10 m wind prediction accuracy. These findings underscore the critical role of cloud microphysical initialization in advancing mesoscale numerical weather prediction systems. Full article
Show Figures

Figure 1

20 pages, 6319 KiB  
Article
Spatiotemporal Deformation Prediction Model for Retaining Structures Integrating ConvGRU and Cross-Attention Mechanism
by Yanyong Gao, Zhaoyun Xiao, Zhiqun Gong, Shanjing Huang and Haojie Zhu
Buildings 2025, 15(14), 2537; https://doi.org/10.3390/buildings15142537 - 18 Jul 2025
Abstract
With the exponential growth of engineering monitoring data, data-driven neural networks have gained widespread application in predicting retaining structure deformation in foundation pit engineering. However, existing models often overlook the spatial deflection correlations among monitoring points. Therefore, this study proposes a novel deep [...] Read more.
With the exponential growth of engineering monitoring data, data-driven neural networks have gained widespread application in predicting retaining structure deformation in foundation pit engineering. However, existing models often overlook the spatial deflection correlations among monitoring points. Therefore, this study proposes a novel deep learning framework, CGCA (Convolutional Gated Recurrent Unit with Cross-Attention), which integrates ConvGRU and cross-attention mechanisms. The model achieves spatio-temporal feature extraction and deformation prediction via an encoder–decoder architecture. Specifically, the convolutional structure captures spatial dependencies between monitoring points, while the recurrent unit extracts time-series characteristics of deformation. A cross-attention mechanism is introduced to dynamically weight the interactions between spatial and temporal data. Additionally, the model incorporates multi-dimensional inputs, including full-depth inclinometer measurements, construction parameters, and tube burial depths. The optimization strategy combines AdamW and Lookahead to enhance training stability and generalization capability in geotechnical engineering scenarios. Case studies of foundation pit engineering demonstrate that the CGCA model exhibits superior performance and robust generalization capabilities. When validated against standard section (CX1) and complex working condition (CX2) datasets involving adjacent bridge structures, the model achieves determination coefficients (R2) of 0.996 and 0.994, respectively. The root mean square error (RMSE) remains below 0.44 mm, while the mean absolute error (MAE) is less than 0.36 mm. Comparative experiments confirm the effectiveness of the proposed model architecture and the optimization strategy. This framework offers an efficient and reliable technical solution for deformation early warning and dynamic decision-making in foundation pit engineering. Full article
(This article belongs to the Special Issue Research on Intelligent Geotechnical Engineering)
Show Figures

Figure 1

28 pages, 7756 KiB  
Article
An Interpretable Machine Learning Framework for Unraveling the Dynamics of Surface Soil Moisture Drivers
by Zahir Nikraftar, Esmaeel Parizi, Mohsen Saber, Mahboubeh Boueshagh, Mortaza Tavakoli, Abazar Esmaeili Mahmoudabadi, Mohammad Hassan Ekradi, Rendani Mbuvha and Seiyed Mossa Hosseini
Remote Sens. 2025, 17(14), 2505; https://doi.org/10.3390/rs17142505 - 18 Jul 2025
Abstract
Understanding the impacts of the spatial non-stationarity of environmental factors on surface soil moisture (SSM) in different seasons is crucial for effective environmental management. Yet, our knowledge of this phenomenon remains limited. This study introduces an interpretable machine learning framework that combines the [...] Read more.
Understanding the impacts of the spatial non-stationarity of environmental factors on surface soil moisture (SSM) in different seasons is crucial for effective environmental management. Yet, our knowledge of this phenomenon remains limited. This study introduces an interpretable machine learning framework that combines the SHapley Additive exPlanations (SHAP) method with two-step clustering to unravel the spatial drivers of SSM across Iran. Due to the limited availability of in situ SSM data, the performance of three global SSM datasets—SMAP, MERRA-2, and CFSv2—from 2015 to 2023 was evaluated using agrometeorological stations. SMAP outperformed the others, showing the highest median correlation and the lowest Root Mean Square Error (RMSE). Using SMAP, we estimated SSM across 609 catchments employing the Random Forest (RF) algorithm. The RF model yielded R2 values of 0.89, 0.83, 0.70, and 0.75 for winter, spring, summer, and autumn, respectively, with corresponding RMSE values of 0.076, 0.081, 0.098, and 0.061 m3/m3. SHAP analysis revealed that climatic factors primarily drive SSM in winter and autumn, while vegetation and soil characteristics are more influential in spring and summer. The clustering results showed that Iran’s catchments can be grouped into five categories based on the SHAP method coefficients, highlighting regional differences in SSM controls. Full article
(This article belongs to the Special Issue Earth Observation Satellites for Soil Moisture Monitoring)
Show Figures

Figure 1

Back to TopTop